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Abstract: Tungsten trioxide (WO3) is a versatile n-type semiconductor with outstanding chromogenic
properties highly used to fabricate sensors and electrochromic devices. We present a comprehensive
experimental study related to piezoresponse with piezoelectric coefficient d33 = 35 pmV−1 on WO3

thin films ~200 nm deposited using RF-sputtering onto alumina (Al2O3) substrate with post-deposit
annealing treatment of 400 ◦C in a 3% H2/N2-forming gas environment. X-ray diffraction (XRD)
confirms a mixture of orthorhombic and tetragonal phases of WO3 with domains with different
polarization orientations and hysteresis behavior as observed by piezoresponse force microscopy
(PFM). Furthermore, using atom probe tomography (APT), the microstructure reveals the formation
of N2-filled nanovoids that acts as strain centers producing a local deformation of the WO3 lattice
into a non-centrosymmetric structure, which is related to piezoresponse observations.

Keywords: WO3; films; PFM; APT; nanovoids

1. Introduction

Tungsten trioxide (WO3) is an n-type semiconductor with chromogenic and catalytic
properties that has been used as an electrochromic layer for smart windows [1,2], gas
sensors [3,4], and water-splitting devices [5–7]. A piezoelectric behavior of WO3 would
open an opportunity for diverse applications in the field of the Internet of Things (IoT) [8,9]
and micro-electromechanical systems (MEMS) [10,11]. The piezoelectric effect has been
explained to occur only in crystal structures with non-centrosymmetric space group [12,13],
which lack an inversion point, and hence, a decompensation of charges provides the
formation of polarized domains. The piezoelectric property is usually found in ceramic
materials [13] and semiconductors [14], with lead zirconate titanate (PZT) as the most
common material with remarkable piezoresponse derived from an interaction at the mor-
photropic phase boundary (MPB) [15,16]. The piezoelectric effect is usually measured
by piezoresponse force microscopy (PFM), through the estimation of the piezoelectric
coefficient d33, the obtention of hysteresis loops and switching imaging of the topography
showing piezo-active domains [17,18]. However, non-piezoelectric effects [10,18–24] can
induce electromechanical (EM) responses in PFM measurements that resemble the piezore-
sponse. These can be electrostatic effects [25–27], electrochemical strain [28–31], induced
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polarization (electrostriction) [32], flexoelectricity [33–36], or thermal expansion due to
Joule heating [37]. Such so-called “non-piezoelectric effects” in the literature are strongly
related to ionic migration and diffusion along oxygen vacancies [38], which are considered
the most common functional defects [1,38–41] in transition metal oxides, and can induce
electronic structure-related properties in oxides. Li et al. described how oxygen vacancies
can promote dislocations, and thus induce ion diffusion on lattice sites of WO3 [42]. In
a non-stoichiometric WO3-x, those are also active sites for chemical adsorption of light
molecules for gas sensing of H2 [3,43,44], N2 [45], NO2 [46], and NH3 [47,48] among other
species, and are mobile defects with a high diffusion coefficient [38], which can be tuned by
electric fields, temperature, pressure, or light. Park et al. observed that the rearrangement
of oxygen vacancies while applying a direct electric field can break the crystallographic
symmetry [49,50], inducing a large piezoelectric effect in Gd-doped CeO2-x, an intrinsi-
cally centrosymmetric fluorite, by electric field-induced redistribution of mobile oxygen
vacancies. The formation of oxygen vacancy can produce a micro volume expansion of the
films, leading to bending and to a strain–electrical field relationship. Seol et al. proved the
electrochemical strain contribution to piezoresponse in non-piezoelectric TiO2 thin films,
attributing the effect to oxygen vacancies redistribution by an applied electric field during
PFM measurement [23].

Although WO3 is not a natural piezoelectric, there is strong evidence of piezoresponse
in this material. Yun et al. found a lateral (in-plane) PFM piezoresponse for WO3 of
d33 = 6 pmV−1 attributed to induced flexoelectric polarizations due to strain-gradients
at ferroelastic domain walls of a monoclinic (P21/n) structure [33]. Kim et al. found a
piezoresponse measured by PFM in vertical (out-of-plane) mode in an oxygen-deficient
WO2.96 film with a d33 coefficient of 7.9 pmV−1, attributed to the conductivity in twin walls
in a non-centrosymmetric tetragonal phase [51]. This conductivity is explained by the accu-
mulation of oxygen vacancies at the domain walls, donating free charges and increasing
local charge flow near twin walls [51,52]. As well as non-centrosymmetric structures, or
functional defects such as oxygen vacancies, there is also a relation between piezoelectric
effect and other functional defects, such as porosity or nanovoids. Liu and Wang reported a
model indicating a notable role of porosity distribution on the eigenfrequency of function-
ally graded piezoelectric materials (FGPM) [53]. Li et al. modeled the influence of voids in
piezoelectric coefficients considering permeability and volume fraction of the voids [54].

Here, we report a piezoresponse measured by PFM in a WO3 film deposited on
sapphire (Al2O3) by radio-frequency sputtering technique with post-deposit annealing
at 400 ◦C under forming gas conditions. Structural and chemical characterization car-
ried out by X-ray diffraction (XRD) and atom probe tomography (APT) reveals that our
piezoresponse is related to local polar structure produced by nanovoids filled with N2.

2. Materials and Methods

The tungsten trioxide (WO3) thin films were deposited by radio frequency (RF) mag-
netron sputtering technique in a Kurt J. Lesker PVD75 equipment using a commercial
target of WO3 (99.95%) and Al2O3 (99.9%) as substrate. The base pressure was set up
to 1.3 × 10−4 Pa and the deposition process was run with a working pressure of 0.4 Pa
and 225 W of RF power, achieving a deposition rate of 1 Å/s. As-deposited samples
were annealed in a Qualiflow-Jiplec Jetfirst 100 furnace at a reduced pressure processing
in a 3% H2/N2 forming gas environment (0 to 200 scm in 15 s). The temperature was
increased with a ramp of 1◦/s until reaching 400 ◦C or 500 ◦C, respectively, and after a
dwell time of 45 min, it was cooled down with a ramp of 1◦/s for 15 min. A film thickness
of 220 nm was measured for the as-deposited film using an Ambios XP-2 profilometer
(Supplemental Material).

The domain imaging and hysteresis loops were obtained using a Dual AC Resonance
Tracking (DART) mode with Switching Spectroscopy Piezoresponse Force Microscopy
(SS-PFM) using an Atomic Force Microscope (AFM) model Infinity 3D Asylum Research®

equipped with two internal lock-ins amplifiers. Identification of the surface domain struc-
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ture was performed in vertical mode with an AC voltage amplitude of 5 Vpk-pk at a drive
frequency of 398 kHz, far below the cantilever’s resonance, and applied between the bot-
tom electrode and the Pt/Ir conductive tip during PFM imaging. SS-PFM obtained local
polarization and hysteresis loop evaluation with an applied voltage from −10 V to 10 V.
In order to diminish electrostatic effects, an electrically charged Ag landing electrode was
placed near the measured area.

The crystallographic structure was studied using a Panalytical Empyrean system with
a Cu Kα radiation source (λ = 1.54 Å) at an operating voltage of 40 kV and emission current
of 30 mA with a scanning angle of 20◦ to 80◦ and step size of 0.05◦. Structure analysis
was completed using a high-resolution transmission electron microscopy (HRTEM) model
JEOL® JEM-2200FS+Cs equipped with a spherical aberration corrector in the condenser
lens and operated at an accelerating voltage of 200 kV. Samples were prepared using a
JEOL® JEM-9320 focused ion beam (FIB) system operated at 30 kV (Supplemental Material).

The chemical elemental distribution was studied using a Cameca® Local Electrode
Atom Probe (LEAP 4000X HR) system equipped with a UV laser (λ~355 nm). For the
measurements, the temperature was set to 50 K with a detection rate of 0.3%, a pulse
frequency of 100 kHz, and a laser beam energy of 30 pJ. The specimens were prepared
using the standard lift-out process and annular milling with focused ion-beam (FIB) [55]
in a scanning electron microscope (Zeiss® Auriga 60©). All data were reconstructed with
Cameca AP Suite 6.1. Compositional profiles were obtained along the z-axis of the images
corresponding to film growth direction, with a bin width of 0.1 nm and background
corrected.

3. Results and Discussion
3.1. Piezoresonse by PFM

By local switching and hysteresis behavior during PFM measurements, a piezore-
sponse was confirmed for WO3 films processed at 400 ◦C. Figure 1a shows the surface
topography and grain domains. The phase signals before and after measurements, re-
vealing the existence of domains with different polarization orientations, as described by
Kholkin et al. [56,57], are presented in Figure 1b,c, respectively. Insets show the region
directly affected by the SS-PFM measurement, where the reorientation of polarization
with the applied electric field is observed, due to an indirect piezoelectric effect. White
regions correspond to positive polarization domains (Pz), dark violet regions correspond to
polarization in-plane (Px) towards the bottom electrode, while yellow regions correspond to
a remanent polarization; thus, an evident reorientation of polarization is achieved as found
by many authors with this technique [17–19,58,59]. The hysteresis loop from switching po-
larization domains at a phase difference of 180◦ using AC voltage is presented in Figure 1e.
The amplitude (nm) versus bias voltage (V) plot in Figure 1d exhibits a butterfly loop
related to local deformation under the applied bias, which demonstrates polarization in
granular domains, as described by Roelofs et al. [60]. Even with DART mode it was possible
to see that loops can be shifted towards a negative applied bias, suggesting electrostatic
contributions to the electromechanical response. These are commonly explained by oxygen
vacancies, which produce a high surface electrostatic potential [23,25,27,61]. The local d33
coefficient in Figure 1f was estimated using the relation (V − V1)d33 = D − D1 [62,63], where
D is the piezoelectric deformation or amplitude and V the applied voltage, respectively.
D1 and V1 designate the values at the intersection in the butterfly loop in Figure 1d. A
coercive voltage of 2.7 V was obtained by using the relation (Vc

+ − Vc
−)/2, where Vc

+ and
Vc

− are forward and reverse coercive bias voltages, respectively. A piezoelectric coefficient
d33 of 35 pmV−1 was obtained for a maximum voltage of 10 V, which is four times higher
than that reported by Kim et al. for WO2.96 [51]. The piezoresponse was only observed for
the film annealed at 400 ◦C, but neither for the as-deposited nor for the 500 ◦C specimen
(Supplemental Material).
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Figure 1. (a) Topography in contact mode of WO3 thin film annealed at 400 ◦C. PFM phase signal
images (b) before and (c) after measurement of the local hysteresis loops revealing variation of
the structure of domains with different orientation of polarization; (d) amplitude, (e) phase, and
(f) piezoelectric coefficient (d33) versus applied bias.

3.2. Crystal Structure Analysis

The crystallographic structures were studied using the X-ray diffraction technique; the
results indicate an amorphous structure for the as-deposited film and crystalline structures
for films annealed at 400 ◦C and 500 ◦C, as presented in Figure 2. It is known that WO3
crystal structures may form during the annealing process as follows: monoclinic (γ-WO3)
above 300 ◦C, orthorhombic (β-WO3) between 400 ◦C and 600 ◦C, and tetragonal (α-WO3)
above 700 ◦C [64,65]. The diffraction pattern of the sample showing the piezoresponse
correspond to a mixture of phases; the plane diffraction at ~23◦ is a contribution of (001)
plane of orthorhombic (PDF 00-020-1324) and (110) of tetragonal (PDF 00-018-1417) WO3
phases. Diffraction planes at 28.7◦, 33.5◦, 41.2◦, 48.8◦, 54.5◦, and 59.7◦ may correspond to
any of those phases.

By using HRTEM, we were able to confirm the presence of a non-centrosymmetric α-
WO3, as presented in Figure 3, which shows a clear interface between film and single crystal
sapphire (α-Al2O3) substrate. The selected area electron diffraction (region in yellow frame)
corresponds to a polycrystalline structure, which allows for distinguishing the diffraction
planes (200) and (220) with an interplanar distance d110 = 3.74 Å of a non-centrosymmetric
α-WO3 (P4/nmm) (PDF 01-018-1417). Diffraction planes (012) and (104) with an interplanar
distance d012 = 3.47 Å corresponding to the sapphire (α-Al2O3) substrate with space group
R-3c (167) (PDF 01-077-2135) were also identified, in agreement with previous results
with the diffraction plane (110) at ~38◦. The film annealed at 500 ◦C has a predominant
contribution of an orthorhombic structure (PDF 00-020-1324), but also traces of α-WO3;
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however, no piezoresponse was found in this film, suggesting different features related to
its final crystal structure.
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3.3. Composition Distribution Analysis by APT

Mass spectra corresponding to time-of-flight events were analyzed to achieve volume
rendering of the as-deposited samples and those annealed at 400 ◦C and 500 ◦C. The mass
spectra show a significant difference in the range of mass-to-charge ratios corresponding to
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N-species and Ar between the analyzed samples (Supplemental Material). The overlapping
peaks at 28 Da in the mass spectra can lead to wrong interpretations since it can be attributed
to AlH or N2. In this case, the presence of AlH was excluded because the Al3+ is missing
in the spectrum. The as-deposited sample mass spectrum presents a low intensity of
peaks attributed to N2, which increase significantly at 400 ◦C of annealing treatment under
forming gas and decrease at 500 ◦C. A significant amount of Ar is present in the as-deposited
sample, with a peak at 41 Da, which we attribute to ArH−. The Ar concentration decreases
significantly in the sample annealed at 400 ◦C, and increases at 500 ◦C.

The peak identification in each mass spectra allows us to obtain the chemical volume
distributions and composition profile of the specimens. Tomographies of the whole FIB-
needled tip reveal defined interfaces, meaning strong adherence between WO3 and the
α-Al2O3 ([0001] sapphire) substrate. The analysis ahead was performed for reconstructions
of 160 nm of the tips, at 20 nm far from the sapphire, as presented in Figure 4, with WO3 ions
and isosurfaces for Ar and N2 ions. Composition profiles elucidate the atomic composition
shown in Table 1, supporting the observations in the mass spectra for Ar and N2.
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Table 1. Atomic composition of O, W, Ar, and N2 in WO3 thin films as deposited and annealed at
400 ◦C and 500 ◦C.

As Deposited 400 ◦C 500 ◦C

O 66.2 69.4 71.3
W 27.1 25.2 27.4
Ar 1.9 0.04 0.4
N 1.2 3.1 0.8

To characterize the spatial environment of ions the radial distribution function (RDF)
and nearest neighbor distribution (NND) (Supplemental Material) were applied. RDF
describe how many neighboring ions of a particular ion type have a specific direction and
radial distance, while NND gives the distribution of distances between ions of the same
type and their individual nearest neighbor [66]. In order to identify chemical compounds
that might be clustering, RDF was obtained for several atom centers, such as Ar, W-species
(W, WO, WO2, W2O5, W2O), and N-species (N2, NO, N2O, NO2). Except for Ar and N2,
RDF do not show good qualities for any other center ion to proceed further in the clustering
analysis, either because the compounds are found in a very low atomic percentage or
because the distribution is homogeneous. RFD for the as-deposited sample (Figure 5a)
reveal some clustering distribution of Ar with a small gradient towards the interface
with the sapphire, suggesting the formation of defects, i.e., oxygen vacancies, during the
deposition process. At this stage, N-species are homogeneously distributed in the film
matrix.
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For the samples annealed at 400 ◦C and 500 ◦C, clustered platelet-shaped regions with
high N2 or Ar content were observed in the reconstructions, suggesting the formation of
nanovoids filled with these atomic species and “spilled out” during evaporation in the
APT measurement. The nanovoids in the 400 ◦C sample showing the piezoresponse consist
mainly of N2. It is expected that the annealing process induces crystallization, and also
the formation of oxygen vacancies [40,64,67], which can act as active sites for the chemical
adsorption of N molecules [45,68,69]. At 400 ◦C the Ar is released from the film leaving
behind nanovoid distribution inside the polycrystalline WO3 matrix, allowing N2 trapping
during the annealing treatment in a forming gas environment. Fewer nanovoids were
observed in the sample processed at 500 ◦C (Figure 5c), filled predominantly with Ar. In this
specimen it was determined that the N-concentration is homogeneously distributed as N-
species (NO, N2O, NO2), proving the temperature-dependence of the action of the forming
gas, as it has been observed in tin oxide layers [70]. RDF shows some Ar clustering, which
suggests that it must be a competition of reactions in which the formation of N-species is
preventing the Ar from becoming trapped in the nanovoids. The non-centrosymmetric
structure (α-WO3) was also found in the films without piezoresponse; hence, the presence
of a non-centrosymmetric structure is not sufficient in this material to achieve piezo-active
domains detected by PFM. However, nanovoids observed by APT may be indirectly related
to the piezoresponse. Such nanovoids could act as strain centers promoting a local break
symmetry, and thus, the defect-induced polarity related with the piezoresponse measured
by PFM.

4. Conclusions

Fabrication of tungsten trioxide WO3 thin films using RF-sputtering over sapphire
substrates with post-deposit annealing processing at 400 ◦C and 500 ◦C in a forming gas
environment were studied by piezo-force microscopy (PFM), obtaining a piezoresponse
with d33 = 35 pmV−1 by domain piezoresponse imaging and piezoelectric hysteresis loops in
thin films processed at 400 ◦C. The piezoresponse is mainly attributed to a local break in the
symmetry related to N2-filled nanovoid distribution as revealed by atom probe tomography.
Complementary characterization by electron microscopy in scanning and transmission
mode and X-ray diffraction, indicates a mixture of orthorhombic and tetragonal phases for
samples processed at 400 ◦C.
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Mass spectra of WO3 thin films measured by APT.
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