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Abstract: In this paper, indium tin oxide/silver indium/indium tin oxide (ITO/AgIn/ITO) composite
films were deposited on glass substrates by magnetron sputtering. The effects of the sputtering
temperature on the optical and electrical properties of the composite films were systematically
investigated. The ITO/AgIn/ITO composite films deposited at sputtering temperatures of 25 ◦C and
100 ◦C demonstrated a high reflectivity of 95.3% at 550 nm and a resistivity of about 6.8–7.3 µΩ·cm.
As the sputtering temperature increased, the reflectivity decreased and the resistivity increased
slightly. The close connection between microstructure and surface morphology and the optical and
electrical properties of the composite films was further illustrated by scanning electron microscopy
imaging and atomic force microscopy imaging. It is shown that the ITO/AgIn/ITO thin films have a
promising application for high-reflectivity anodes.

Keywords: sputtering temperature; ITO/AgIn/ITO composite films; optical properties; electrical
properties; AgIn alloy films; magnetron sputtering

1. Introduction

High-reflectivity anodes are widely used in various optoelectronic applications in-
cluding organic light-emitting devices (OLEDs) and photovoltaics [1–4]. The reflectivity of
the bottom anode plays an essential role in the brightness of the top-emitting OLEDs. To
date, plenty of materials, such as Al, Cu and Ag, have been proposed for the bottom anode.
Among these materials, Ag exhibits the highest reflectivity in the visible wavelength range
and the lowest resistivity. Nevertheless, Ag films are subject to agglomeration behavior
when sputtered at higher temperatures [5,6].

In order to fundamentally solve the silver atom migration agglomeration problem,
and simultaneously retain the performance advantages of silver thin films with high
reflectivity and low resistivity, various alloying elements such as Mg, Pd, Cu, Al and other
elements have been incorporated into the Ag layer [7–10]. Indium is a promising candidate
as a doping material in the Ag layer. Jung et al. investigated the suppression of silver
agglomeration behavior by doping of In atoms in silver–indium contacts. It was found that
the silver contacts doped with In atoms demonstrated low resistivity (~3.8 × 10−5 Ω·cm2)
and high reflectivity (~88.4% at 460 nm) after annealing [11]. Lee et al. studied the ITO
ohmic contact layer and the AgIn reflector, which exhibited a low specific contact resistance
(~1.90 × 10−5 Ω·cm−2) and a high visible light reflectance of ~84% [12]. In addition,
indium has a large solid solution in silver, which can ensure the uniform sputtering of
the target [13]. The silver–indium solid solution has good anti-tarnishing and mechanical
properties, which can prevent warping of the film during large-area sputtering [14,15].
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On the other hand, it is reported that covering the Ag layer with an ITO film can
improve the hole injection to fulfill the performance requirements of high-reflectivity
anodes [3,16]. ITO/Ag/ITO composite films have attracted much attention for their excel-
lent optical and electrical properties, and have great potential for various optoelectronic
applications [17–20]. Considerable efforts have also been made in the preparation of
ITO/Ag/ITO thin films to achieve higher application requirements. However, most of
them only study the effects of thickness, power, annealing, etc. on ITO/Ag/ITO thin
films [21–23]. The effect of temperature on composite films has not been deeply stud-
ied. The temperature has a positive influence on the optoelectronic properties of ITO
films [24,25]. In terms of the previous studies on ITO/Ag/ITO composite films, it is of spe-
cial importance to study the effects of sputtering temperature on ITO/AgIn/ITO composite
films. Such a study has not been reported to date.

In this work, ITO/AgIn/ITO composite films were prepared by magnetron sputtering.
The current work focuses on the heat resistance of ITO/AgIn/ITO composite films upon
changing the sputtering temperature in the preparation stage. The effect of sputtering
temperature on their optical and electrical properties was systematically investigated. In
addition, how the microstructure and surface morphology affect the optical and electrical
properties are explained by characterization. The results provide proof for studying the
thermal stability of silver alloy composite films, so as to better understand its influence.

2. Materials and Methods

High-purity ITO ceramic targets (99.99% purity, In2O3:SnO2 = 90 wt.%:10 wt.%) were
used for the top and bottom ITO films, while for step ii, a target consisting of silver–indium
alloy (Ag: 99 wt.%; In: 1 wt.%) was used, which undergoes melting, forging, rolling, heat
treatment and machining processes to finally obtain finished targets of 50 mm diameter.
The base pressure was 5 × 10−4 Pa and the working pressure was maintained at 0.7 Pa.
ITO layers were prepared by RF sputtering at 50 W and the DC power for the middle AgIn
alloy layer deposition was kept at 20 W. Prior to sputtering, both the ITO target and AgIn
alloy target were pre-sputtered for 5–10 min to remove contaminants from the surface. The
entire sputtering process was performed with high-purity argon gas. To investigate the
effect of sputtering temperature on ITO/AgIn/ITO multilayer films, the multilayer films
were deposited without breaking the vacuum, and six samples with different sputtering
temperatures were obtained, employing temperatures of 25 ◦C, 100 ◦C, 150 ◦C, 200 ◦C,
250 ◦C and 300 ◦C.

A series of ITO/AgIn alloy/ITO multilayer films were prepared on glass substrates by
magnetron sputtering at different sputtering temperatures, following a three-step proce-
dure: (i) a 10 nm thick ITO film was deposited on a glass substrate, (ii) a 100 nm thick AgIn
alloy layer was deposited on a glass substrate covered with ITO and finally (iii) an ITO top
layer film was deposited for covering. The preparation principle and processing scheme of
the ITO/AgIn/ITO multilayer films are shown in Figure 1.
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The thickness of the ITO/AgIn/ITO multilayer films was measured with a step profiler.
The crystal structure was determined using an X-ray diffractometer with Cu Kα radiation
(λ = 1.5412 Å). The surface microstructure and cross-sectional observations of the multilayer
films were characterized by field emission scanning electron microscopy (SEM). Surface
roughness and surface morphology were estimated by atomic force microscopy (AFM). The
electrical properties of the samples were measured using the van der Pauw method in a
Hall effect measurement system. The sample was a square of approximately 10 × 10 mm2.
For testing, the four contacts of the sample stage were pressed on the four corners of the
sample at a distance of about 8.5 mm and then put into the tester for measurement. The
contact distance could be adjusted according to the size of the sample. The applied test
current was set to 10 µA. The test results were averaged over several measurements. Optical
properties were evaluated with a UV-Vis spectrophotometer over the wavelength range of
800 to 300 nm.

3. Results

Figure 2 presents the XRD patterns of the ITO/AgIn/ITO films deposited on glass
substrates at different sputtering temperatures. As shown in Figure 2, all samples had
a broad peak with a two-theta angle from 20◦ to 30◦, which could be attributed to the
amorphous structure of the glass substrate. As for the ITO/AgIn/ITO films prepared with
a sputtering temperature below 200 ◦C, specific diffraction peaks at 38.16◦, 44.19◦, 64.44◦

and 77.48◦ can be clearly observed, which correspond to the (111), (200), (220) and (311)
planes of Ag, respectively. The XRD patterns can be well indexed with PDF #87-0717. When
the sputtering temperature is increased to 300 ◦C, there is an additional diffraction peak at
2θ of 81.73◦, which is indexed to be the (222) plane of the Ag. No diffraction peaks for In
can be observed for all the ITO/AgIn/ITO films, suggesting that the In is fully dissolved
in the Ag layer. This is due to the fact that, according to the Ag–In binary phase diagram,
the theoretical solid solubility of In in the silver lattice is high (21 wt.%) [13]. AgIn with
the addition of 1.0 wt.% In should be a solid solution phase, theoretically. As shown in
Figure 3, no diffraction peaks of In were present in the XRD patterns of the samples at each
stage of AgIn alloy target processing.
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Figure 2. XRD patterns of the ITO/AgIn/ITO films at different sputtering temperatures.
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With the increase of sputtering temperature, the intensity of each diffraction peak of
the ITO/AgIn/ITO films was significantly enhanced, and the films were oriented with [111]
as the preferred orientation. This is due to the increase of the substrate temperature reaching
the growth kinetic energy of the films, so that the deposited atoms have a certain diffusion
ability, and the formed film layer is preferentially oriented along the [111] direction. At
sputtering temperatures of 250–300 ◦C, diffraction peaks appeared at 2θ = 30.59◦ and
35.33◦, which are attributed to the (222) and (400) diffraction peaks of In2O3 (PDF #06-0416).
Similar results were observed by Yalan Hu et al., who prepared ITO films at different
temperatures [26]. It was shown that as the temperature increased, the ITO films changed
from the amorphous to the crystalline state, which improved the films in terms of structural
defects. On the other hand, a comparison between AgIn/Glass (Figure S1), ITO/Glass
(Figure S2) and the ITO/AgIn/ITO composite films (Figures 2 and S3) in this work show
that the intermediate layer of the AgIn film promotes the nucleation and crystallization of
the top ITO film.

Figure 4 depicts the reflectance spectra of the ITO/AgIn/ITO films as a function of
sputtering temperature. At a certain sputtering temperature, the reflectance gradually in-
creases with increasing wavelength. The reflectance decreases sequentially with increasing
sputtering temperature at 550 nm. The films prepared at 25 ◦C had the highest reflectance,
up to 95.3% at 550 nm and 98.6% at 780 nm. The films prepared at 100 ◦C had an approxi-
mate reflectance, but the average reflectance in the visible wavelength range of 380–780 nm
was slightly lower than the reflectance at 25 ◦C. The reflectance at 550 nm at 150 ◦C, 200 ◦C,
250 ◦C and 300 ◦C was 92%, 78.8%, 68.6% and 69.3%, respectively.

Figure 5 compares the resistivity, mobility and carrier concentration of the ITO/
AgIn/ITO films at different sputtering temperatures. ITO/AgIn/ITO films had a low resis-
tivity of about 6.7–7.8 µΩ·cm within the temperature range of 25–300 ◦C. The sheet resis-
tance varied with the sputtering temperature in a small range of 0.58–0.66 Ω/sq. This is be-
cause the top ITO layer, the middle Ag layer and the bottom ITO layer in the ITO/AgIn/ITO
films can be regarded as parallel structures, with the following relationship [27,28]:

1
RITO/AgIn/ITO

=
1

RITO(Top)
+

1
RAgIn

+
1

RITO(Bottom)
, (1)

where RITO/AgIn/ITO, RITO(Top), RAgIn and RITO(Bottom) are the square resistance of the ITO/
AgIn/ITO composite film, the top ITO film, the AgIn film and the bottom ITO film, re-
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spectively, in units of Ω/sq. The resistance of the composite films depends mainly on
the resistance of the middle Ag layer as can be seen from Equation (1). The resistivity of
ITO/AgIn/ITO films showed an overall increasing trend with the increase of sputtering
temperature. However, the resistivity of the films decreased slightly at 200 ◦C. This may be
due to the fact that the grain size starts to increase significantly at 200 ◦C, the crystalliza-
tion of the films increases, the carrier density increases and the concentration of ionized
impurities follows, leading to a decrease in mobility. The relationship between carrier
concentration, mobility and resistivity is given by Equation (2).

ρ =
1

neµ
, (2)

where ρ is the resistivity, n is the carrier concentration, µ is the mobility and e is the electron
charge. Since the carrier concentration increases faster than the mobility decreases, the
resistivity decreases. The resistivity continued to increase again at sputtering temperatures
of 250 ◦C and 300 ◦C, probably due to changes in the structure of the silver caused by the
high sputtering temperature.
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The reflectance and resistivity variations are mainly determined by the grain size and
surface morphology of the films. Figure 6 shows the SEM images of ITO/AgIn/ITO films
prepared at different sputtering temperatures. A significant change in the morphology
of the films can be seen. At a sputtering temperature below 100 ◦C, the ITO/AgIn/ITO
composite film had a flat and smooth surface with fine and uniform grains. The grain
size of the composite film increased with the increase in sputtering temperature. The film
agglomeration behavior was gradually enhanced. The grain size increased sharply at a
sputtering temperature of 200 ◦C. Film island formation was noticeable and the holes were
further increased at 300 ◦C.
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Figure 6. SEM images of the ITO/AgIn/ITO films at different sputtering temperatures. (a) 25 ◦C,
(b) 100 ◦C, (c) 150 ◦C, (d) 200 ◦C, (e) 250 ◦C and (f) 300 ◦C, respectively.

The cross-sectional images of ITO/AgIn/ITO films are shown in Figure 7. With the
increase of sputtering temperature, there is a significant change in the surface flatness state
of the silver alloy films. The composite films prepared at a sputtering temperature below
100 ◦C had a flat continuous film surface. The film grains grew in a columnar structure.
At a temperature of 200 °C, the film still grew in a columnar structure at the beginning
of sputtering. With the increase of sputtering time, the grains on the surface of the film
agglomerate into hills. This is due to the fact that metal films deposited on substrates using
sputtering methods are generally formed in an island growth mode, i.e., nucleation growth–
island formation–continuous film formation [29,30]. The film thickness increased with the
increase of sputtering time, the film grains agglomerated to form islands under the effect of
temperature, the film surface flatness degraded and the surface roughness increased. The
film thickness increases with the increase of sputtering time, the film grains agglomerate
to form islands under the effect of temperature, the film surface flatness degrades and the
surface roughness increases. At a sputtering temperature of 300 ◦C, Ag grains were affected
by temperature, and agglomeration began to appear at the early stage of sputtering. The
channels and voids between the islands increased, and the surface roughness of the films
increased, which affected the optoelectronic properties of the films.

Film agglomeration is a phenomenon of nucleation and growth of holes; under certain
thermodynamic conditions, continued agglomeration, i.e., growth and then impact of holes
after formation, leads to the formation of islands [31,32]. A large number of Ag particles
exist in the form of islands, and the channels and voids between the islands increase at
higher temperatures. The continuity of the film layer is disrupted and the conductivity of
the film layer decreases. Due to the scattering effect of Ag particles and holes, the light
transmission between them is enhanced, which leads to a decrease in reflectivity.
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To further investigate the effect of surface roughness on the reflectivity and resistivity
of ITO/AgIn/ITO films, we checked their surface roughness and surface morphology.
When the sputtering temperature was 25 ◦C, the films were dense and uniform, the surface
was flat and smooth and the root means square (RMS) roughness of the surface was
3.38 nm. With the increase of sputtering temperature, the particle size increased, the surface
roughness of the films increased and the continuity of the films was destroyed. Films
prepared at 300 ◦C had high surface roughness and serious agglomeration phenomenon.
The surface RMS roughness of the ITO/AgIn/ITO films increased from 3.38 nm at 25 ◦C to
40.26 nm at 300 ◦C (Figure 8), which was consistent with SEM image results. It indicates
that with the increase of sputtering temperature, the flatness of the surface of the film
degrades and the surface roughness increases, which directly leads to the enhancement of
scattering, resulting in the decrease of reflectivity [33].
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4. Discussion

To complete this work and clarify the performance advantages of the ITO/AgIn/ITO
composite films, we compared their optical and electrical properties with those of related
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films reported in the literature [22,34–36], as shown in Table 1. In terms of optical properties,
the ITO/AgIn/ITO composite film has the highest average reflectance compared to the
AgIn film in the literature [22] in the visible range. The reflectance of the ITO/AgIn/ITO
composite film deposited at 25 ◦C is higher than the related film reported in the literature,
but slightly lower than the Ag film on the glass substrate in the literature [36]. The
reflectivity of the composite films at a sputtering temperature of 250 ◦C is better than that
of the Ag/Glass films. In terms of electrical properties, the resistivity of the ITO/AgIn/ITO
composite film is slightly higher than that of the Ag/Glass film, but significantly better
than that of ITO/Ag/ITO, ITO/Ag and AgIn films reported in the literature. This may
be due to the addition of In, which has improved the heat resistance of ITO/AgIn/ITO,
in the bottom ITO/Glass substrate it promotes the growth of AgIn and inhibits AgIn
agglomeration [37] and it has improved the reflectivity and conductivity of ITO/AgIn/ITO
composite film. In a nutshell, the ITO/AgIn/ITO composite film has excellent combined
optical and electrical properties.

Table 1. Comparison of reflectance and resistivity of ITO/AgIn/ITO composite films with related
films reported in the literature.

Temperature
(◦C)

Reflectance at
550 nm (%)

Resistivity
(Ω·cm) References

ITO/AgIn/ITO 25
95.3 6.8 × 10−6

Present work91.8 1

250 68.6 7.4 × 10−6

AgIn reflector 25 84.0 1 1.9 × 10−5 [12]

ITO/Ag/ITO 25 - 3.5 × 10−5 [34]

ITO/Ag 25 92.5 5.3 × 10−5 [35]

Ag/Glass 25 97.5 2 3.7 × 10−6
[36]

250 5 2 5.0 × 10−6

1 Average reflectance in the visible range. 2 Reflectance at 550 nm in the visible range.

5. Conclusions

In summary, this work reports that sputtering temperature has a significant effect on
the optical and electrical properties of ITO/AgIn/ITO composite films. The ITO/AgIn/ITO
composite film deposited at a sputtering temperature of 25 ◦C exhibited the highest re-
flectance in the visible wavelength range, and composite films sputtered at 25 ◦C and
100 ◦C both had a reflectance of 95.3% at 550 nm and a resistivity of about 6.8–7.3 µΩ·cm.
With the increase of sputtering temperature, the reflectivity gradually decreased and the
resistivity slightly increased. There was a significant decrease in reflectivity at 200 ◦C,
and the resistivity remained at 6.9 µΩ·cm. SEM images and AFM images demonstrated
that the increase in temperature caused the surface grains of the films to agglomerate,
the island structure to increase, the flatness of the film surface to degrade and the RMS
roughness to increase. The properties of the composite films, especially the electrical and
optical properties, depend mainly on the metal layers. This further illustrates that the
reflectivity and resistivity of the films are closely related to the microstructure and surface
morphology. It is shown that the ITO/AgIn/ITO thin films have a promising application
for high-reflectivity anodes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16072849/s1, Figure S1: Influence of sputtering temperature on
the structure and properties of AgIn/Glass; Figure S2: Influence of sputtering temperature on the
structure and properties of ITO/Glass; Figure S3: Comparison of SEM images of ITO/AgIn/ITO
films and AgIn films at different sputtering temperatures.
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