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Abstract: Pulsed thermography is a nondestructive method commonly used to explore anomalies
in composite materials. This paper presents a procedure for the automated detection of defects
in thermal images of composite materials obtained with pulsed thermography experiments. The
proposed methodology is simple and novel as it is reliable in low-contrast and nonuniform heating
conditions and does not require data preprocessing. Nonuniform heating correction and the gradient
direction information combined with a local and global segmentation phase are used to analyze
carbon fiber-reinforced plastic (CFRP) thermal images with Teflon inserts with different length/depth
ratios. Additionally, a comparison between the actual depths and estimated depths of detected
defects is performed. The performance of the nonuniform heating correction proposed method is
superior to that obtained on the same CFRP sample analyzed with a deep learning algorithm and the
background thermal compensation by filtering strategy.

Keywords: pulsed thermography; composite materials; automated defect detection; estimation of
depth; contrast enhancement; histograms of oriented gradients

1. Introduction

Composite materials are currently of great interest for various industries since they are
resistant to corrosion and fatigue and are stiffer and lighter than traditional materials, such
as steel [1]. High-performance applications in the aerospace, naval, automotive, structural
health and biomedical industries, among others, demand high-quality composites [2].
Evaluating the quality of these materials and the structures built from them is a fundamental
task in modern production processes. Nondestructive testing (NDT) techniques facilitate
inspection and quality control processes while avoiding compromising the integrity of the
objects of interest. Infrared thermography (IRT) is an attractive option for NDT as it is fast,
safe, noninvasive, and contact-free [3,4].

In thermal imaging, locating possible anomalies (detection) and estimating their at-
tributes (characterization), such as their shape, size, depth or other properties, are not
simple tasks. In addition, undesirable effects such as low contrast, the presence of noise,
and nonuniform heating further complicate these tasks [5–8]. Traditional techniques for
thermal information processing have focused on enhancing image contrast, in turn allow-
ing subsequent defect detection and/or characterization processes. However, sometimes,
a processing method does not have a clearly defined scope and does not present objec-
tive criteria for quantifying its performance. Various processing methods, for example,
normalized contrast, traditional definitions of contrast [3], pulsed phase thermography
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(PPT) [9], background thermal compensation by filtering (BTCF) [10], differential absolute
contrast (DAC) [11], polynomial regressions [12], and thermographic signal reconstruction
(TSR) [13], are based on the analysis of spatial data, thermal profiles in the temporal do-
main, phase profiles in the frequency domain, combined information in different domains,
heat propagation models, or mathematical transformations. In addition, according to the
references consulted, few procedures have addressed the task of automatically detecting
defects in thermal images as a preliminary step in characterization processes [14–18]. Using
independent components, Rengifo et al. [14] analyzed complete thermal sequences to syn-
thesize an image highlighting the inspected material anomalies. Florez-Ospina et al. [15,16],
based on signal-to-noise ratio (SNR) maps derived from processed IR images, proposed
a general framework for the semi-automatic calculation of segmentation algorithm pa-
rameters. Aguilera et al. [17] used a scale-invariant-feature-transform (SIFT)-like scale
representation and key points (region of interest) to register far infrared and visible images.
FInally, Maldague et al. [18] proposed an algorithm for subsurface defect extraction in
infrared images.

Moreover, possibly the most important source of degradation caused by low contrast
in thermal images derives from nonuniform background heating [19]. Related to the consid-
erations described above, recent studies [10,12,20] have proposed decoupling background
and defect information in thermograms, contrary to conventional contrast enhancement
techniques that generally require defining healthy reference regions. Thus, a higher contrast
thermogram is achieved by separating the background from the image and subtracting
it from the original image. In this regard, in [12], the thermal behavior of the defect-free
material (background) was obtained from a sixth-order polynomial regression. However,
the defective regions of the material must be identified and eliminated first in order to
reduce the distortion in the regression. Another alternative, presented in [10,20], proposes
the use of two-dimensional median and Gaussian smoothing filters to suppress the defec-
tive regions of the material and obtain a smoothed image representing the background;
however, the filters require parameters to be defined for their implementation. Most recent
works reported in the literature use machine learning [21], deep learning models [22,23],
convolutional neuronal networks [24], and actual datasets [25] or synthetic datasets [21]
to train and validate the proposed approaches. Regarding the methods mentioned above,
the reported methods must establish reference regions that suppose prior sample knowl-
edge, apply smoothing filters and define their parameters, perform high-order polynomial
regression, or make a complete or partial analysis of the temporal/frequency evolution
of the temperature profile or its characteristics. This, together with the high volume of
information in a sequence of thermal images, the low contrast, and the presence of several
adverse effects, mandate advances in the defect detection process.

Based on our previous work [26,27], this paper proposes a procedure for automated
defect detection in inspected composites using pulsed thermography. The main contribu-
tions of our approach compared to the already known works are that our development
methodologies do not require adjusting parameters or selecting reference regions and do
not require prior knowledge about the state of the sample to be analyzed. Additionally,
a complete or partial analysis of the temporal evolution of the temperature or its char-
acteristics is not necessary. The procedure consists of two methodologies: (1) the first
automatically calculates the optimal parameters of a function that allows modeling the
background temperature distribution of the image in order to improve its contrast and sub-
sequently identify defects by a local segmentation technique, and (2) the second transforms
the thermal image into gradient magnitude and angle information and builds directional
histograms that, together with a simple statistical strategy, allow the identification of the
regions containing heating patterns of defective and sound zones. The procedure was
tested on synthesis thermal images, with each image representing the maxigram or dis-
crete integral (sum) of an actual or simulated thermal sequence of a CFRP sample. Each
sample contained 25 and 8 Teflon inserts with length/depth ratios between 15 and 75 and
between 1.7 and 90, respectively. The performance of the procedure was evaluated for
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actual images using the precision-recall ratio in the F-indicator and using the area under the
curve (AUC) indicator for simulated images. In maxigrams of actual sequences, F values
between 0.60 and 0.67 were obtained. The average AUC performance values were (i) 0.98
in integral images and (ii) 0.89 in simulated sequence maxigrams. Additionally, a compari-
son between actual depths and estimated depths of detected defects was performed, and
average percentage errors were found to be (i) 4.33% in simulated sequence maxigrams
and (ii) 22.26% in actual sequence maxigrams. Finally, the estimated depth results were
statistically validated using an analysis of variance (ANOVA).

This paper is organized as follows. Section 2 provides a detailed description of
the proposed procedure and specifies the properties of the materials and the parameters
fitted for the pulsed thermography experiment. Section 3 presents the results obtained
and analyzed using the precision-recall ratio and the AUC indicator. These results are
statistically validated with an analysis of variance. Additonally, the percentage error
calculated between the actual and estimated depth of the detected defects are presented.
Finally, Section 4 sets out the conclusion and proposes future directions.

2. Materials and Methods

Figure 1 shows a flowchart of the procedure proposed in this paper. It is necessary
to define the presence or absence of noise in the thermal sequence based on the criteria
of a human inspector. The upper part shows the flow and type of thermal information
(image from a sequence or image synthesized from a sequence of images) entering the
detection stage based on HOG. Similar information for the contrast enhancement-based
detection stage is presented in the lower part of the figure. A detailed description of how
each methodology works is developed in the following sections.

Figure 1. Main steps of the automated defect detection procedure.

2.1. HOG for Defect Detection

In the thermograms of the inspected material, the segmentation of defective (ROI-d)
and sound (ROI-s) regions of interest is performed in three stages as proposed in [26]. In the
first stage, the gradient magnitude and angle information are calculated from the thermal
image. Then, the gradient information is organized into histograms of oriented gradients,
which represent local signatures of gradient orientation. Finally, with the signatures pro-
vided by these histograms, together with median-based image thresholding, the gradients
corresponding to ROI-d and ROI-s are differentiated.

In the first stage, the magnitude (|∇I| = g(x, y)) and angle (θ) of the gradient are
obtained for each image I(x, y) composing the thermal image sequence, as defined in
Equation (1).
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g(x, y) = |∇I| =

√
∂I
∂x

2
+

∂I
∂y

2
, θ = tan−1

(
∂I/∂y
∂I/∂x

)
. (1)

In the second stage, gradient profiles are constructed over small areas of each image to
characterize the thermal changes as a function of the level of variation, direction, and rela-
tionships with neighboring areas. This procedure involves two main tasks: (1) construction
of local histograms of gradient directions and (2) block normalization of the histograms.
Equation (2) presents a general expression for obtaining the local histograms (hi) in relation
to the image subregions called cells (Ci) and blocks (Bj), the number of blocks (η) into
which the image is divided, and the number of cells (γ) contained in each block. The
working range is chosen between two interval options, (0°, 360°) or (0°, 180°), depending
on how the oriented gradient information is organized. The division number (β) in the
working range is defined to complete the construction of the HOG. Finally, the w parameter
could be 1 if the analyzed region is contained in the work division of the histogram or zero
otherwise, respectively

h
Bj
Ci
(k) = ∑

(x,y)∈Ci

w · g(x, y)


∀ Bj → j = 1, . . . , η

∀ Ci ∈ Bj → i = 1, . . . , γ

k = 1, . . . , β

. (2)

Each block is divided into γ cells; then, the directional histogram is calculated in each
cell, and a vector is subsequently generated by concatenating all the histograms of the cells.
From the division of each element by the norm of this vector ||HBj ||, the normalization of
all the elements of the histograms is obtained according to Equation (3).

HBj = [h
Bj
C1

, . . . , h
Bj
Ci
], → H

Bj
norm = HBj /||HBj ||. (3)

In this paper, the statistical median is used on the normalized histograms correspond-
ing to each cell (h̃Ci ) because this is a special case of an average limited to one or two values;
it is a measure of central tendency of information that, in addition, reduces the effect of
possible extreme values [28]. A matrix is constructed from the medians of these histograms.
The element accumulating the highest number of observations (statistical frequency) in the
matrix determines the threshold value (th) for automating the segmentation task defined
in Equation (4), for which values less than or equal to th are associated with ROI-s, thus
allowing their differentiation from ROI-d.

Ib(x, y) =
{

1 If h̃Ci > th ∧ (x, y) ∈ Ci
0 If h̃Ci ≤ th ∧ (x, y) ∈ Ci

. (4)

2.2. Background Thermal Compensation by Parameter Optimization (BTCOp) with Gaussian
Function Parameters

This procedure is described in detail in [27] and posits that the energy pulse used
in a pulsed thermography (PT) experiment produces a thermal pattern in the inspected
material that is related to the nonuniform heating effect. The pattern is exhibited by a
temperature peak in the middle of the image that gradually subsides towards the edges.
Previously, the nonuniform heating phenomenon has been approximated using bi-hexic
functions [12] or using median-type [10] and Gaussian-type [20] filters. However, as in
the case of many signals [3] and considering the physical properties of the sheets and
the mechanism by which cooling affects them, the spatial distribution of heat could be
considered a Gaussian-type process. Thus, this processing block allows for modeling the
spatial behavior of the background thermal pattern as a two-dimensional Gaussian surface.
The parameters of the two-dimensional function are calibrated from the experimental data
using the least squares method.

Equation (5) shows an exponential representation of the Gaussian objective function
(φ) describing the system related to the k-th image of a thermal sequence, and the vector
x represents the spatial coordinates (x, y) within the image (x ∈ N2, x1 = 1, 2, . . . , m and
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x2 = 1, 2, . . . , n, where m and n are the numbers of rows and columns, respectively, of
pixels in the image). The vector θ = [A, µ, Σ]T contains the unknown parameters of this
function to be estimated. The maximum magnitude of the Gaussian function is defined by

the constant A
(√

2π|Σ|
)−1

, µ is the vector of means, and Σ is the covariance matrix [29].

φk(x, θ) = eA · e−
1
2 ·(x−µ)TΣ−1(x−µ), (5)

If the difference between the value of the Gaussian objective (φ) and the value of a
temperature sample (T) evaluated at the same spatial coordinate (x) is defined as an error
(h), it is possible, using the natural logarithm, to construct a linear model of the i-th error
term for each spatial location within an image (see Equation (6)).

hi

(
x(i), θ

)
= ln

(
φ
(

x(i), θ
))
− ln

(
T
(

x(i)
))

. (6)

This approach fits a least squares system and can be presented as an unconstrained
optimization problem, as shown in Equation (7):

min f (θ) =
1
2

HT(θ) · H(θ)

θ ∈ R5,
(7)

where the vector H contains a number of elements equal to the number of available
measurements (s) in the thermal image (see Equation (8)).

H(θ)=
[
h1

(
x(1), θ

)
, . . . , hi

(
x(i), θ

)
, . . . , hs

(
x(s), θ

)]
. (8)

The problem posed in Equation (7) can be solved using general optimization methods,
with emphasis on gradient methods involving iterative processes. The detailed solution to
the above problem is described in [27].

After obtaining the optimal parameter vector θp, the parameter vector θ̂ in the original
problem domain becomes available as a solution to the optimization problem by applying
the exponential function to it. Evaluating θ̂ in Equation (5) yields Tk

B, which represents the
estimated nonuniform background heating model for the k-th image (see Equation (9)).

Tk
B = φk

(
x, θ̂k

)
. (9)

As proposed in [10], the background thermal compensation is achieved by subtracting
from the original image Tk the estimated model of the surface with nonuniform background
heating Tk

B (see Equation (10)).

∆Tk
BTCOp = Tk − Tk

B. (10)

Finally, it is possible to define a normalized version of Equation (10) using a reference
image (see Equation (11)), which can be selected at the moment when the excess temperature
is maximum or at the end of the thermal process [3,16].

∆Tk
BTCOpN =

Tk

Tre f −
Tk

B

Tre f
B

. (11)

Defect Segmentation in Contrast-Enhanced Thermograms

At this stage, once the thermal images have been contrast-enhanced (see Section 2.2) a
local median-based thresholding technique is applied to separate ROI-s and ROI-d. Similar
to the HOG method (see Section 2.1), local structures called cells (Ci) are defined to calculate
the median statistic using all elements contained in a region. The cell size for a region
is defined heuristically by varying its value from the smallest to the largest size of the
defects present in the inspected samples, with the latter value presenting the most favorable
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segmentation result. Once the cell sizes have been defined, the median value in each
region is calculated and used as the local segmentation threshold (thi), which allows the
automatic generation of a binary version Ib(x, y) of the thermal image being analyzed (see
Equation (12)).

Ib(x, y) =

{
1 If ∆Tk

BTCOp(x, y) > thi ∧ (x, y) ∈ Ci

0 If ∆Tk
BTCOp(x, y) ≤ thi ∧ (x, y) ∈ Ci.

(12)

2.3. Description of the Set of Images

The images used in this work consisted of two sets of sequences. The first set was
generated from an actual PT experiment, and the second set was generated by applying
simulated PT experiments. These sets of sequences are similar to those used in [27] and
supplemented in [30].

2.3.1. Actual Images

Under the conditions described in Table 1, a PT experiment was performed, obtaining
300 actual 470× 475 pixel images of a square carbon fiber-reinforced plastic (CFRP) sample
with a lateral size of 300 mm, a thickness of 2 mm, a diffusivity (α) of 4.6× 10−7 m2

s and
25 Teflon inserts of different sizes and depths representing the defects (see Figure 2a).
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Figure 2. Geometry of the specimens: (a) actual CFRP specimen with 25 defects * and (b) simulated
CFRP specimen with 8 defects ** (Spatial coordinates: def. 1: (40, 40), def. 2: (150, 30), def. 3: (90,
90), def. 4: (60, 110), def. 5: (120, 120), def. 6: (40, 140), def. 7: (150, 150), and def. 8: (10, 170); depths
(D) available: 0.1, 0.4, 0.7, 1.0, 1.3, 1.6, and 1.8 mm; thickness (Th): 0.1 mm). * Adapted from [31].
Samples and thermal images provided by the Multipolar Infrared Vision (MiViM) research group at
Laval University, Quebec (Canada). ** Adapted with permission from [27] © The Optical Society.

Table 1. Acquisition conditions for the actual PT experiment. Adapted with permission from [27] ©
The Optical Society.

Image Image Acquisition Excitation Acquisition FramesCamera Bandwidth Resolution Intensity Frequency Source Window Captured[Pixels] [Bits] [Hz] [s]

InSb 640× 512 FlashCCD MWIR Used: 14 157 photography 3.42 300
array 470× 475
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2.3.2. Simulated Images

The set of synthetic thermal images used in this work was synthesized using
ThermoCalc-6L software. The simulated PT experiment was performed on an artificial
CFRP specimen of planar geometry, square shape, lateral size of 200 mm, and thickness
of 2 mm. The CFRP specimen contained simulated internal squared defects with fixed
thickness and variable area and depth.

Using previous investigations [27,32,33] as references, Tables 2 and 3 present the
acquisition conditions adjusted in the simulation and the physical properties of the materi-
als, respectively.

Table 2. Parameters used to adjust the simulated PT experiment. Adapted with permission from [27] ©
The Optical Society.

Pulse Width Pulse Density Acquisition Frequency Acquisition Window
[s] [W/m2] [Hz] [s]

1260× 10−5 1× 105 157 9

Table 3. Properties of the materials used.

Material Conductivity (x = y = z Direction) Heat Capacity Density (ρ)
[W/m·K] [W·s/kg·K] [kg/m3]

CFRP 0.7 1200 1600
Teflon 0.25 1050 2170

Air 0.07 928 1.3

The different simulated thermal imaging sequences were obtained by varying the
lateral size (S), thickness (Th), and depth (D) parameters of the defects (see Figure 2b).
Adjusting each of these parameters produces a different sequence of synthetic images
for each simulation, and a single value of S simultaneously adjusts the lateral size of all
defects. The simulated data consist of 49 sequences of 1429 images each, for a total of 70,021
images of 200× 200 pixels each. To evaluate the methodology proposed in this work, we
used a set of 30 synthetic sequences from the total of 49 available in the complete set. The
sequences chosen correspond to lateral size defects of 3 mm, 6 mm, 9 mm, 12 mm, and
15 mm. Thus, the simulated sequences encompass defect sizes similar to those found in the
actual CFRP sample.

3. Results and Discussion

This section presents the results obtained for the proposed automated defect detection
procedure and its subsequent depth estimation, applying different tests on the image sets
described in Section 2.3. Sum-type [34] and maxigram [3] synthesis images were used for
the tests. Sum-type images were chosen to evaluate the methodologies for defect detection
on thermal information under low-contrast conditions. Maxigrams were chosen because
they also allow estimating the depth of the detected anomalies. Although maxigrams
can be obtained on image sequences without preprocessing, the temporal information
concerning them is in the first instants of the sequence due to the energy generated by
the PT experiment. This condition produces unreliable depth estimates with the chosen
approach. Therefore, sum-type images were only used on raw images. Section 3.1 presents
the detection performance for defects in simulated sum-type images. Section 3.2 shows
performance results for maxigrams of simulated images, including depth estimation results
for detected defects. Finally, Section 3.3 presents results for defect detection in actual
thermal image maxigrams and depth estimation for the detected defects.

3.1. Defect Detection in Simulated Thermal Sequence Sum-Type Synthetic Images

Row 1 in Figure 3 shows sum-type synthetic images obtained for the CFRP material
in simulated raw sequences. The CFRP sample contains internally defective regions of
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interest (ROI-d) with lateral sizes (S) of 3 mm (column 1), 6 mm (column 2), 9 mm (column
3), 12 mm (column 4), and 15 mm (column 5) located at a depth (D) of 1.0 mm. Row
2 shows the binary images resulting from the application of the HOG-based automated
defect detection methodology [26].

Figure 3. Automated defect detectionin simulated thermal sequence sum-type synthetic images.
Lateral size (S) for ROI-d. Column No. 1: 3 mm, No. 2: 6 mm, No. 3: 9 mm, No. 4: 12 mm, and No. 5:
15 mm. Row No. 1: sum-type images, D = 1.0 mm. Row No. 2: resulting binary images.

In all the sum-type images in Figure 3 (row 1, columns 1 to 5) the effect of nonuniform
heating can be seen, which manifests itself with a concentration of intensities greater in the
center of the image and progressively decreasing towards the edges. This phenomenon,
in addition to producing low contrast in the thermal images, prevents easy identification
of the ROI-d, especially for smaller defects (e.g., columns 1 and 2). However, the HOG-
based automated detection method shows acceptable results after evaluating different
(S) conditions (see Figure 3, row 2). Supporting the results described above, the AUC
performance values for depth (D) values of 0.1 mm, 0.4 mm, 0.7 mm, 1.0 mm, and 1.3 mm
are given in Table 4. The AUC indicator is constructed by comparing the results obtained
in the analyzed images with a template or binary reference image containing the correctly
segmented defects. In our case, the AUC is used to evaluate the classification results
(Equation (13)). An ideal system will achieve a true-positive rate (TPR) of 1.0 and a false-
positive rate (FPR) of 0; thus, the ideal AUC will be 1.0. However, in practice, a reliable
system should preferably have AUC values greater than 0.5.

AUC =
1
2
(1 + TPR− FPR) (13)

Table 4. AUC indicator for simulated thermal sequence sum-type synthetic images.

Depth AUC
(D) (mm) S = 3 (mm) S = 6 (mm) S = 9 (mm) S = 12 (mm) S = 15 (mm)

0.1 0.99 0.99 0.98 0.98 0.97
0.4 0.99 0.99 0.98 0.97 0.97
0.7 0.97 0.99 0.98 0.97 0.97
1.0 0.96 0.97 0.97 0.96 0.97
1.3 0.95 0.97 0.97 0.97 0.97

3.2. Automated Defect Detection and Depth Estimation in Simulated Sequence Maxigrams

Row 1 in Figure 4 shows maxigrams of simulated CFRP sequences contrast-enhanced
using the BTCOp method [27]. The CFRP sample contains ROI-d located at the same
depth (D) and with lateral sizes (S) equal to those used in the test described in Section 3.1
(columns 1 to 5).
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Figure 4. Automated defect detection in simulated thermal sequence maxigrams. Lateral size (S) of
ROI-d. Column: No. 1: 3 mm, No. 2: 6 mm, No. 3: 9 mm, No. 4: 12 mm, and No. 5: 15 mm. Row No.
1: maxigrams, D = 1.0 mm. Row No. 2: resulting binary images.

The improved information is seen with a dark and uniform intensity level that repre-
sents the background of the image, while the defective regions are easily distinguished with
light intensity levels. Thus, the defects are observed for all the lateral size (S) conditions
evaluated. In row 2 of the same figure, the binary images resulting from applying the
methodology for automated defect detection based on the combined use of BTCOp and
local thresholding described in Section 2.2 are shown. Table 5 presents the AUC perfor-
mance indexes for the depth (D) and lateral size (S) values used with the simulated thermal
sequence maxigrams. In general, the performance indexes are slightly lower than those
obtained with the sum-type images processed with the HOG method.

Table 5. AUC indicator for maxigrams of simulated thermal sequences.

Depth AUC
(D) (mm) S = 3 (mm) S = 6 (mm) S = 9 (mm) S = 12 (mm) S = 15 (mm)

0.1 0.94 0.97 0.98 0.99 0.99
0.4 0.72 0.85 0.90 0.92 0.94
0.7 0.72 0.85 0.90 0.92 0.94
1.0 0.72 0.85 0.89 0.92 0.94
1.3 0.71 0.90 0.89 0.92 0.93

With the HOG-based methodology, overly segmented ROI-d are obtained (see Figure 3,
row 2). This result can be attributed to the geometry and resolution of the structures used
to calculate the HOGs, as explained in [26]. On the other hand, after compensating in the
images for nonuniform heating with the BTCOp method [27], more well-defined defects
with more uniform sizes can be observed (see Figure 4, row 2). The BTCOp method uses
all available samples in the image for estimating the background model parameters and
therefore has no resolution constraints.

hd = A ·
√

tCmax · (Cmax)
n. (14)

Applying a linear regression method to Equation (14) [3], it is possible to calculate the
coefficients A and n that allow automatic estimation of the depths (hd) of the ROI-d detected.
The values Cmax and tCmax signify the maximum contrast value, in our case located at the
element (pixel) having the maximum intensity value within the detected ROI-d, and its
corresponding time, respectively.

With the estimated depth values (De = hd) for the ROI-d, percentage error values
relative to the actual depths (D) of the defects are calculated (see Equation (15)). In
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a maxigram of simulated sequences, all ROI-d are at the same depth. Table 6 shows
the calculated percentage errors for all evaluated length/depth ratios. No trends were
identified in the results that relate the calculated error as a function of depth (D) or lateral
size (S) of the defects. However, a maximum percentage error of 8.07% (S = 9 mm y
D = 0.4 mm) and a minimum percentage error of 0.68% for (S = 3 mm y D = 0.1 mm)
were observed.

Error[%] =
|D−De|

D
· 100. (15)

Table 6. Relative percent error (%) between estimated depth (De) and actual depth (D) of defects for
simulated thermal sequence maxigrams.

Depth Error [%]
(D) (mm) S = 3 (mm) S = 6 (mm) S = 9 (mm) S = 12 (mm) S = 15 (mm)

0.1 0.68 4.74 4.14 3.75 3.96
0.4 3.77 7.65 8.07 7.39 7.49
0.7 0.76 3.18 2.50 2.00 2.23
1.0 2.05 4.60 4.00 3.45 3.68
1.3 1.55 7.51 7.38 7.10 7.22

Figure 5 presents the results of the ANOVA that statistically complements the infor-
mation described in Table 6. In this test, the null hypothesis (H0) was that the mean values
of estimated depth (De) of the ROI-d are equal for the five lateral sizes (S) used. On the
other hand, the alternative hypothesis (H1) was that these mean depth values are different.
Before performing this statistical test, the datasets were tested for normality.
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Figure 5. Analysis of variance (ANOVA) of estimated depth (De) and lateral size (S) of defects
varying the actual depth (D) of defects. Test performed on simulated sequence maxigrams of CFRP
samples. (a) D = 0.1 mm, (b) D = 0.4 mm, (c) D = 0.7 mm, (d) D = 1.0 mm and (e) D = 1.3 mm.
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The ANOVA test was repeated with the same conditions for each of the five depth
(D) values evaluated (0.1 mm, 0.4 mm, 0.7 mm, 1.0 mm, and 1.3 mm). The datasets for
each ANOVA corresponded to estimated depth (De) values for the eight ROI-d present in
each maxigram relative to the five lateral size (S) conditions (see Figure 5a–e). Thus, each
(D) condition was represented by 39 degrees of freedom (eight De values for five lateral
size values).

From the p-values obtained in the tests and with a certainty of 95%, it is possible to
affirm that the defects with S values of 6 mm, 9 mm, 12 mm, and 15 mm did not differ
significantly in De. However, they exhibited higher De values than those found for a
lateral size of 3 mm (see Table 6). These differences could be explained by noise levels and
nonuniform heating correction affecting small defects more than large ones. The above
behavior was maintained for all depth (D) values evaluated.

3.3. Automated Defect Detection and Depth Estimation in Actual Sequence Maxigrams

In this section, we present the detection of defective regions by the techniques proposed
in our study (BTCOp and normalized BTCOp, BTCOpN) and using traditional thermal
information processing techniques: normalized contrast (CN), DAC, BTCF, and normalized
BTCF (BTCFN). For ROI-d segmentation with the traditional methods, the classical Canny
edge detection algorithm was used. For the BTCOp and BTCOpN methods, the automated
detection process proposed in this paper and described in Section 2.2 was used.

Figure 6 shows in the first row the sequence maxigrams of the actual CFRP sample
(see Section 2.3.1) contrast-enhanced using the CN (column 1), DAC (column 2), BTCF
(column 3), BTCFN (column 4), BTCOp (column 5), and BTCOpN (column 6) methods. In
the second row are the corresponding binary images resulting from the detection process.

The binary images produced after analyzing the contrast-enhanced maxigrams show
that the BTCOpN, BTCFN, and BTCOp methods correctly detected 19, 18, and 13 ROI-d
and falsely detected 1, 1, and 5 ROI-d, respectively (Figure 6, row 2, columns 6, 4 and
3). The BTCF, CN, and DAC methods underperformed, correctly detecting 11, 11, and 5
ROI-d, respectively, and falsely detecting 2, 2, and 5 ROI-d, respectively (Figure 6, row 2,
columns 3, 1, and 2).

Figure 6. Automated defect detection in actual thermal sequence maxigrams of a CFRP sample. Row
No. 1: Maxigrams of sequences contrast-enhanced with different techniques. Column: No. 1: CN,
No. 2: DAC, No. 3: BTCF, No. 4: BTCFN, No. 5: BTCOp and No. 6: BTCOpN. Row No. 2: resulting
binary images.

With the normalized BTCOpN and BTCFN techniques, maxigrams with better contrast
were obtained (in comparison with the maxigrams generated with the other methods,
which were BTCF, BTCOp, CN, and DAC). The result described above is consistent with
the number of correct detections obtained using these methods and additionally with the
superior performance displayed by these techniques as a function of the signal-to-noise
ratio (SNR) [27]. The performance of the BTCOpN method is similar to the result obtained
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for the same actual CFRP sample recently analyzed with a deep learning algorithm [23],
where 17 correct detections and 4 false ROI-d detections were reported. Table 7 shows the
performance indicators that were calculated using the different processing techniques for
the maxigrams in Figure 6. Using the recall indicator, which represents the proportion of
actual defects that were correctly identified, the best performance was exhibited by the
BTCOpN technique (0.84), followed by the BTCFN (0.72), BTCOp (0.61), BTCF (0.56), CN
(0.39), and DAC (0.18) methods.

Table 7. Performance indicators for maxigrams of actual thermal sequences using different processing
techniques.

Method Precision Recall Accuracy F-Value

CN 0.94 0.39 0.98 0.55
DAC 0.45 0.18 0.97 0.26
BTCF 0.92 0.56 0.99 0.69

BTCFN 0.85 0.72 0.99 0.79
BTCOp 0.58 0.61 0.97 0.60

BTCOpN 0.56 0.84 0.97 0.67

In terms of accuracy, the BTCOpN and BTCOp methods showed values close to 0.56,
representing a nonnegligible level of false detections. However, these were mostly located
around the correctly detected ROI-d, which would facilitate the future implementation of a
strategy to improve shape characterization in defects (ROI-d). This phenomenon, which
can be interpreted as oversegmentation, can be attributed to the heat scattering effect that
occurs at the boundaries between the sound and defective regions of the inspected material,
the resolution that was defined for the regions, and the calculation of the local thresholds.

Following a procedure similar to that described in Section 3.2, Tables 8 and 9 present
the estimated depth (De) values and the calculated percentage errors between the actual
depths (D) of the defects and the estimated depths (De) that were obtained using the
BTCOp and BTCOpN contrast enhancement methods.

As with the simulated sequence maxigrams, no trends were identified in the results
for the actual sequence maxigrams for the error values calculated as a function of defect
depth (D) or lateral size (S). Using BTCOp for contrast enhancement, a maximum relative
percentage error of 13.04% for S = 7 mm and a minimum relative percentage error of 0.39%
for S = 5 mm were found. On the other hand, with the BTCOpN method, the maximum
value was 161.26% for S = 3 mm, and the minimum was 0.11% for S = 15 mm.

Figure 7 presents ANOVA results to complement the statistical analysis of the informa-
tion in Tables 8 and 9. Similar to the hypotheses examined in Section 3.2, the null hypothesis
(H0) was that the mean estimated depth values (De) of the detected ROI-d are equal in
relation to the actual depth values (D) (0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm). The
alternative hypothesis (H1) was that these mean depth values are different.

Table 8. Estimated depths (De) and relative percentage errors (%) of defects for maxigrams of actual
thermal sequences processed by the BTCOp method.

Depth (S) [mm]
(D) [mm] 3 5 7 10 15

0.2 De 0.18 0.20 0.23 0.20 0.20
Error (%) 10.46 −0.39 −13.04 1.58 2.28

0.4 De - 0.37 0.42 0.44 0.42
Error (%) - 8.30 −4.27 −8.86 −5.68

0.6 De - - - 0.62 0.60
Error (%) - - - −4.06 0.71

0.8 De X - - 0.86 0.78
Error (%) X - - −7.96 2.48

1.0 De X - - - -
Error (%) X - - - -

(-) ROI-d not detected; (X) ROI-d not defined in the ground truth.



Materials 2023, 16, 2998 13 of 16

Table 9. Estimated depths (De) and relative percentage errors (%) of defects for maxigrams of actual
thermal sequences processed by the BTCOpN method.

Depth (S) (mm)
(D) (mm) 3 5 7 10 15

0.2 De 0.52 0.24 0.19 0.23 0.20
Error (%) −161.26 −19.88 3.78 −13.91 −0.52

0.4 De - 0.55 0.40 0.44 0.40
Error (%) - −36.15 −1.07 −10.00 −0.25

0.6 De - 0.94 0.69 0.59 0.62
Error (%) - −55.89 −15.33 1.36 −3.65

0.8 De X - 0.94 0.94 0.77
Error (%) X - −17.86 −16.97 3.61

1.0 De X - 1.28 1.10 1.01
Error (%) X - −28.25 −9.68 −0.50

(-) ROI-d not detected; (X) ROI-d not defined in the ground truth.
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Figure 7. Analysis of variance (ANOVA) of estimated depth (De) and actual depth (D) of defects for
maxigrams of actual CFRP sequences processed using (Column 1) BTCOp method and (Column 2)
BTCOpN method.

Based on the p-values obtained in the tests and with a certainty of 95%, it is possible to
state the following:

1. On the maxigram of the actual sequence compensated with the BTCOp method, in
the detected ROI-d and using the values of (De), statistically significant differences
were found for the four actual depths corresponding to the defects (see the left side
of Figure 7). In this case, the numbers of defects that could be detected were five for
D = 0.2 mm, four for D = 0.4 mm, two for D = 0.6 mm, and two for D = 0.8 mm.

2. On the maxigram of the same actual sequence, compensated with the BTCOpN
method, in the detected ROI-d and taking into account the values of (De), no significant
differences were found between the actual depths (D) of 0.2 mm and 0.4 mm or among
the actual depths (D) of 0.6 mm, 0.8 mm, and 1.0 mm. However, between these two
groups, there were statistically significant differences (see Figure 7, right).

Table 10 shows percentage values of the errors in estimated depth (De) obtained for
the ROI-d detected with the BTCOpN techniques and the BTCFN. These quantities were
calculated for the defects having the greatest lateral size (S = 15 mm) in the actual CFRP
sample. For the comparative analysis, the BTCFN method was chosen since it detected a
higher number of defects compared to the remainder of the traditional techniques evaluated.
The BTCFN method showed a minimum absolute error of 1.5% for S = 0.2 mm and a
maximum of 7.0% for S = 0.4 mm. The BTCOpN method had a minimum value of 0.2%
for S = 0.4 mm and 3.6% for S = 0.4 and 0.8 mm. In general, the error values for the two
methods did not show trends in relation to the lateral sizes (S) of defective regions or their
depths (D). However, the BTCOpN method in most of the depth conditions evaluated
exhibited lower error values than those obtained with the BTCFN method.
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Table 10. Relative percent error (%) for ROI-d detected in maxigrams of actual thermal sequences
processed by the BTCFN and BTCOpN methods (S = 15 mm).

Lateral Size (S) (mm)
Method 0.2 0.4 0.6 0.8 1.0

BTCFN * −1.5 7.0 −2.3 −2.9 2.3
BTCOpN −0.5 −0.2 −3.6 3.6 −0.5

* Values taken from [10].

The differences in the performance results could have been due to how each method
accomplishes the decoupling of the background information and the information corre-
sponding to the defects. Possibly, the optimal estimation of the parameters describing
the image background favors obtaining the nonuniform heating model, in contrast to the
BTCFN method, which masks the defect regions using a median filter operation.

4. Conclusions

This paper introduces a procedure for the automated detection of laminar defects
in CFRP material inspected by pulsed thermography. For this purpose, two mutually
exclusive methodologies were employed. The first uses a contrast enhancement method
together with a local thresholding strategy. On the other hand, the second methodology
constructs local histograms of oriented gradients with a global thresholding strategy for
each thermal image.

The main contributions of our approach compared to the already known works are
that our development methodologies do not require adjusting parameters or selecting
reference regions and do not require prior knowledge about the state of the sample to be
analyzed. Additionally, a complete or partial analysis of the temporal evolution of the
temperature or its characteristics is not necessary.

Finally, our results show that on maxigrams of the actual CFRP sample containing
25 defects, the BTCOpN and BTCOp techniques correctly detected 19 and 13 flaws with 1
and 5 false detections, respectively. The performance of the BTCOpN method is superior
to that obtained on the same CFRP sample recently analyzed with a deep-learning algo-
rithm [23], where 17 correct defect detections and 4 false detections were reported. It is
also superior to that obtained with the BTCFN method (18 correct detections and 1 false
detection). Finally, its performance is superior to traditional contrast enhancement methods
(e.g., CN, DAC, and BTCF) under the conditions evaluated. In sum-type images and
raw thermal sequences, the methodology based on directional histograms of the gradient
yielded AUC values greater than 0.95. This result is superior to that obtained with the
G-SNR method and reported in [26], which at best only achieves AUC values with irregular
trends and slightly higher than 0.85.
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BTCOp Background thermal compensation by parameter optimization
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CFRP Carbon fiber-reinforced plastic
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FPR False-positive rate
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