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Abstract: The use of magnetron sputtering film as a diffusion source was recently achieved in the
industrial production of important grain-boundary-diffusion magnets. In this paper, the multicompo-
nent diffusion source film is explored to optimize the microstructure of NdFeB magnets and improve
their magnetic properties. Multicomponent Tb60Pr10Cu10Al10Zn10 films of 10 µm in thickness and
single Tb films of 10 µm in thickness were deposited on commercial NdFeB magnets’ surfaces by
magnetron sputtering as diffusion sources for grain boundary diffusion. The effects of diffusion
on the microstructure and magnetic properties of the magnets were investigated. The coercivity
of multicomponent diffusion magnets and single Tb diffusion magnets increased from 11.54 kOe
to 18.89 kOe and 17.80 kOe, respectively. The microstructure and element distribution of diffusion
magnets were characterized by scanning electron microscope and transmission electron microscopy.
The multicomponent diffusion facilitates the infiltration of Tb along grain boundaries, rather than
entering the main phase, thereby improving the Tb diffusion utilization. Furthermore, compared to
the Tb diffusion magnet, the thicker thin-grain boundary was observed in multicomponent diffusion
magnets. This thicker thin-grain boundary can effectively serve as the impetus for the magnetic
exchange/coupling between grains. Therefore, the multicomponent diffusion magnets have higher
coercivity and remanence. The multicomponent diffusion source has an increased mixing entropy
and decreased Gibbs free energy, and it therefore does not easily enter the main phase but is retained
in the grain boundary, thus optimizing the microstructure of the diffusion magnet. Our results show
that the multicomponent diffusion source is an effective route for fabricating diffusion magnets with
high performance.

Keywords: grain boundary diffusion; multicomponent film; coercivity; microstructural optimization

1. Introduction

The main phase Nd2Fe14B with a complex tetragonal structure has a strong anisotropy
field and high saturation magnetization (µ0Hc = 7.5 T, µ0Ms = 1.6 T) [1,2]. As a material
medium for energy conversion, NdFeB magnets play a critical role in promoting green
energy today [3,4]. They have been widely used in various important fields, such as electric
vehicles, power generation, medical, maglev trains, etc. By adjusting the composition and
process, the remanence (Br) and maximum energy product ((BH)max) of NdFeB magnets
have reached their theoretical values closely. However, the coercivity of sintered NdFeB
permanent magnets is only about 30% of their theoretical value [5]. It is of great practical
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significance to further develop and innovate NdFeB permanent magnets with higher
coercivity [6].

The grain boundary diffusion (GBD) technology with heavy rare earth (HRE) elements
(Dy/Tb) infiltration is considered to be the most effective at improving the coercivity of
NdFeB magnets without excessive consumption of HRE [7]. Tb2Fe14B and Dy2Fe14B phases
have a magnetocrystalline anisotropy field that is much higher than that of Nd2Fe14B, which
can effectively suppress the reverse magnetization process [8]. The diffusion source rich
in Dy/Tb can diffuse into the magnet interior through the grain boundary (GB), and Nd
atoms are replaced to form a rich-Dy/Tb shell on the outer layer of the Nd2Fe14B grains.
The improvement of coercivity is attributed to the magnetic hardening effect of the Tb/Dy-
rich shell [7]. In addition, due to the antiferromagnetic coupling between Tb/Dy and
Fe [9], a single Tb or Dy diffusion source can make the remanence decline [10]. Although
increasing the Tb/Dy content in the diffusion source can form a high diffusion gradient,
which is helpful for the formation of a Dy/Tb-rich shell structure, it also directly leads to
the low utilization of HRE elements [11,12]. The coercivity of diffused magnets is restricted
by the thickness of the Dy/Tb core–shell structure and HRE diffusion depth [13,14]. The
diffusion sources such as PrTbAl [15], PrTbCuAl [16], TbAl [17], DyZn [18], DyMg [19]
and PrCoAl [20] have been usually utilized in diffusion magnets. These diffusion sources
are beneficial for improving the microstructure of magnets, which is responsible for their
high coercivity. It is found that these grain boundary diffusions promote the formation of
RE-rich core–shell structure and also continuous thin grain boundaries. CuAl element can
improve the wettability of the grain boundary phase [17,21,22].

Varieties of routes have been developed to coat HRE sources on Nd-Fe-B magnets,
such as dipping deposition [23,24], electrophoretic deposition [11,25], magnetron sput-
tering [26,27], etc. Among them, magnetron sputtering film technology is the most im-
portant method and has been recently achieved in the industrial production of grain
boundary diffusion magnets utilized in new energy vehicles. In this work, five-element
Tb60Pr10Cu10Al10Zn10 film and single Tb film were prepared by magnetron sputtering as
diffusion sources of commercial NdFeB magnets. We propose that the multielement sources
diffusing along grain boundaries can increase the mixed entropy of grain boundary phases
and reduce their Gibbs free energy, thereby facilitating the diffusion of heavy rare earth Tb
along grain boundaries.

2. Materials and Methods

The commercial N52 sintered Nd-Fe-B magnets were cut into the size of 25 mm
× 3 mm × 2.5 mm (The c-axis is parallel to the 2.5 mm). The nominal composition of
Nd24.4Pr6.1Fe68B1X0.5 (wt.%, X = Al, Cu, Nb, Ga) was analyzed by the ICP method. The
cutting magnet was ground with silicon carbide sandpaper. After acetone cleaning and
vacuum drying, the experimental magnets were obtained. Tb60Pr10Cu10Al10Zn10 (Tb60)
films of 10 µm in thickness or Tb (Tb) films of 10 µm in thickness were deposited on one side
of the magnet (25 mm × 3 mm surface) by magnetron sputtering system. The commercial
Tb/Pr (99.9%) and Cu/Al/Zn (99.995%) targets were used. The vacuum in the sputtering
chamber is better than 3 × 10−6 Pa. During deposition, Ar pressure for sputtering was
maintained at 0.8 Pa and Ar flow was 32 sccm. The sputtering power for Tb/Pr/Cu/Al/Zn
target was 120 W/24 W/10 W/83 W/13 W, respectively. Then the pre-diffused sample was
sealed in a quartz tube (<3 × 10−4 Pa). Finally, the sealed samples in a muffle furnace were
heat treated at 800 ◦C for 8 h and annealed at 500 ◦C for 2 h. The magnetic properties were
tested at room temperature by magnetic property measurement system (MPMS, Quantum
Design, San Diego, CA, USA) equipped with a 7 T vibrating sample magnetometer (VSM).
The phase and crystal structure before and after diffusion were studied using an X-ray
diffractometer (XRD-D8 ADVANCE, Bruker, Karlsruhe, Germany). The microstructure and
elemental distribution of diffusion magnets were observed by scanning electron microscope
(SEM, FEI Quanta FEG 250, FEI, Oregon City, OR, USA) with an energy-dispersive X-
ray spectrometer (EDS). Talos F200X scanning/transmission electron microscopy (TEM,
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ThemoFisher, Waltham, MA, USA) was exploited to analyze the microstructure of the grain
boundary (GB) phase.

3. Results and Discussion

The demagnetization curves and properties of the original and diffusion magnets
are shown in Figure 1 and Table 1. After Tb60 and Tb films diffusion, the Hcj, Br and
(BH)max were 18.89 kOe/17.80 kOe, 14.39 kGs/13.50 kGs and 378.94 kJ m−3/316.49 kJ m−3,
respectively. Compared with the original magnet, the coercivity increased by 63.47% and
54.78%, respectively. Meanwhile, the coercivity increment of the Tb60 diffusion magnet is
7.35 kOe, which is higher than the 6.26 kOe of the Tb diffusion magnet. It is worth noting
that the Hcj, Br and (BH)max of the Tb60 diffusion magnet are all larger than that of the Tb
diffusion magnet, thus showing the great superiority of the multicomponent diffusion.
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Figure 1. Demagnetization curves of the original and the Tb60 and Tb diffusion magnets.

Table 1. The magnetic properties of the original and the Tb60 and Tb diffusion magnets.

Magnet Hcj (kOe) Mr (kGs) (BH)max (kJ m−3)

Original 11.54 13.74 338.94
Tb60 18.89 14.39 378.26

Tb 17.80 13.50 316.49

X-ray diffraction patterns of the original and the Tb60 and Tb diffusion magnets are
shown in Figure 2. The diffraction peaks match (Nd, Pr)2Fe14B phases (Wyckoff positions
of space group, P42/mnm (136); JCPDS, 89-3632) and RE-rich phases (Wyckoff positions of
space group, P63/mmc (194); JCPDS, 65-3424) well. However, the 2:14:1 matrix phase peak
shifts slightly towards the higher angles after grain boundary diffusion. According to the
Bragg equation, 2dsinθ = nλ [28], where d is the crystal plane spacing, θ is the angle between
the incident X-ray and the crystal plane, and λ represents the X-ray wavelength (using
Cu-Kα radiation, λ = 0.154056 nm), a high angle shift means that the crystal plane spacing
and lattice parameters were reduced [29–31]. Actually, the Tb atom radius is smaller than
that of the Nd/Pr atom. It is considered that the infiltration of the Tb element causes partial
Nd/Pr atoms of the (Nd, Pr)2Fe14B main phase to be replaced [15]. As a result, the lattice
constant decreases. It is emphasized that the peak shift of the Tb60 diffusion magnet is
similar to that of the Tb diffusion magnet, indicating that the Tb substitution total amount
of the two diffusion magnets is approximate in the near surface.
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Figure 2. The X-ray diffraction patterns of the original and the Tb60 and Tb diffusion magnets.

Figure 3 depicts the backscattered electron images of diffusion magnets within the
depth range of 105 µm. Bright white triple grain boundaries and black Nd2Fe14B grains
wrapped in gray Tb-rich shells are clearly visible in both magnets. The difference is that
the gray Tb-rich shell occupies almost the entire main phase grain at the surface of Tb
diffusion magnet (Figure 3b), forming a Tb accumulation zone [32] (about 30 µm). With
the increasing diffusion depth, the thickness of the gray Tb-rich shell gradually decreased,
and the Tb-rich layer could still be observed at a diffusion depth of 75 µm. In a Tb60
magnet (Figure 3a), its shell thickness is thinner than that of the Tb diffusion magnet
at the same diffusion depth, and the Tb-rich shell is visible within a diffusion depth of
45 µm. Obviously, the Tb60 diffusion magnet has a shallower and thinner Tb-rich shell
structure, indicating that most of the Tb is retained in the grain boundary rather than
entering the main phase to form a thick Tb-rich shell during multicomponent diffusion.
Usually, in heavy rare earth grain boundary diffusion magnets, the wider the distribution
of the core–shell structure, the more beneficial it is for the improvement of coercivity [14,15].
However, in our experiments, the distribution depth of the core–shell structure in the Tb
diffusion magnet is superior to that of the Tb60 diffusion magnet, but its coercivity is lower.
This indicates that the core–shell microstructure and its depth have a limited effect on the
coercivity [11]. Other factors affecting coercivity may play a more important role.

Figure 4 shows the elemental distributions in the diffusion magnets within the depths
of 50 µm. The presence of a Tb-rich shell on the surface of the main phase grain is further
confirmed in both magnets. In the Tb diffusion magnet (Figure 4b), the Nd/Pr atoms are
extruded out and enriched at the triple grain boundary. The Tb atoms diffuse almost into
the entire grain, and thicker Tb-rich shells are still observed far away from the magnet
surface. For Tb60 diffusion magnets, only very thin Tb-rich shells are observed at the surface
(Figure 4a). This suggests that, for multicomponent diffusion magnets, the Tb element
does not easily enter the main phase, and most of the Tb is retained in the grain boundary
or at the surface. It was also observed that Nd/Pr/Cu/Al/Zn atoms were enriched at
the triple grain boundary. Due to the low resolution of SEM, thin grain boundaries in the
magnets cannot be seen clearly. We can speculate that these elements are also concentrated
in thin grain boundaries. It is worth mentioning that the gathering of Cu and Zn elements
reduces the melting point of the grain boundary phase [16,20], and this helps improve the
wettability of the grain boundary phase [33].
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diffusion magnet and (b) Tb diffusion magnet.

The variation of the Tb concentration in the grain boundary of the diffusion magnet is
shown in Figure 5. After the magnet is annealed at a high temperature, the multicomponent
diffuses into the magnet along the liquid grain boundary. The diffusion magnet used in
this study has only one face perpendicular to the NdFeB magnet c-axis as the diffusion
surface; thus, it can be simplified to a diffusion model whose components are not affected
by diffusion at one end. The Grube solution for one-dimensional diffusion under constant
source conditions according to Fick’s second law is as follows [34]:

c (x, t) = c1 − (c1 − c0) erf (
x√
Dt

), (1)

where c (x, t) represents the element concentration as a function of diffusion depth (x) and
time (t), c1 represents the concentration of diffused elements at the surface of the magnet,
c0 represents the initial concentration of diffusion elements at infinity from the magnet
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and D is the diffusion coefficient. The data of Tb content change when the depth in the
grain boundary of the diffusion magnet is fitted to the equation to obtain the fitting curve
and diffusion coefficient. As the diffusion depth increases, the Tb concentration in the
Tb60 diffusion magnet decreases more slowly than that in the Tb diffusion magnet. The
diffusion coefficient of Tb60 diffusion magnets is just slightly lower than that of Tb diffusion
magnets. Although the Tb content in the Tb60 diffusion source is significantly lower, the
Tb atoms’ diffusion depth is not much different from that of the Tb diffusion magnet, thus
indicating that most of Tb in the Tb60 diffusion magnet is retained in the grain boundary
or grain surface and does not enter the main phase grain. This reflects the advantages of
multicomponent diffusion. In the Tb60 diffusion magnet, the multicomponent elements
diffuse into the magnet along the grain boundary, reducing the melting point of the grain
boundary phase. More importantly, the multicomponent increases the mixed entropy of
the grain boundary phase and reduces its Gibbs free energy, causing most of the Tb to be
retained in the grain boundary or grain surface layer without entering the main phase grain
too much, and therefore inhibiting the increase of the thickness of the Tb-rich shell. This is
also the reason why the core–shell structure of the Tb60 diffusion magnet is shallow. The
addition of multicomponent greatly improves the utilization efficiency of Tb.

Materials 2023, 16, x FOR PEER REVIEW 6 of 10 
 

 

The variation of the Tb concentration in the grain boundary of the diffusion magnet 

is shown in Figure 5. After the magnet is annealed at a high temperature, the multicom-

ponent diffuses into the magnet along the liquid grain boundary. The diffusion magnet 

used in this study has only one face perpendicular to the NdFeB magnet c-axis as the 

diffusion surface; thus, it can be simplified to a diffusion model whose components are 

not affected by diffusion at one end. The Grube solution for one-dimensional diffusion 

under constant source conditions according to Fick’s second law is as follows [34]: 

c (x, t) = c1 − (c1 − c0) erf (
x

√Dt
), (1) 

where c (x, t) represents the element concentration as a function of diffusion depth (x) and 

time (t), c1 represents the concentration of diffused elements at the surface of the magnet, 

c0 represents the initial concentration of diffusion elements at infinity from the magnet 

and D is the diffusion coefficient. The data of Tb content change when the depth in the 

grain boundary of the diffusion magnet is fitted to the equation to obtain the fitting curve 

and diffusion coefficient. As the diffusion depth increases, the Tb concentration in the 

Tb60 diffusion magnet decreases more slowly than that in the Tb diffusion magnet. The 

diffusion coefficient of Tb60 diffusion magnets is just slightly lower than that of Tb diffu-

sion magnets. Although the Tb content in the Tb60 diffusion source is significantly lower, 

the Tb atoms’ diffusion depth is not much different from that of the Tb diffusion magnet, 

thus indicating that most of Tb in the Tb60 diffusion magnet is retained in the grain 

boundary or grain surface and does not enter the main phase grain. This reflects the ad-

vantages of multicomponent diffusion. In the Tb60 diffusion magnet, the multicomponent 

elements diffuse into the magnet along the grain boundary, reducing the melting point of 

the grain boundary phase. More importantly, the multicomponent increases the mixed 

entropy of the grain boundary phase and reduces its Gibbs free energy, causing most of 

the Tb to be retained in the grain boundary or grain surface layer without entering the 

main phase grain too much, and therefore inhibiting the increase of the thickness of the 

Tb-rich shell. This is also the reason why the core–shell structure of the Tb60 diffusion 

magnet is shallow. The addition of multicomponent greatly improves the utilization effi-

ciency of Tb. 

 

Figure 5. Tb concentrations at different depths and the corresponding fitting curves of Tb60 diffu-

sion magnet and Tb diffusion magnet. 

The near-surface microstructure of the diffusion magnets is also characterized by 

HRTEM. The Tb60 diffusion magnet (Figure 6a) has thicker (about 11 nm) and more con-

tinuous thin grain boundary phases. However, a thinner and discontinuous interface 

phase is observed in the Tb diffusion magnet (Figure 6b). The reason for the thickening of 
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magnet and Tb diffusion magnet.

The near-surface microstructure of the diffusion magnets is also characterized by
HRTEM. The Tb60 diffusion magnet (Figure 6a) has thicker (about 11 nm) and more
continuous thin grain boundary phases. However, a thinner and discontinuous interface
phase is observed in the Tb diffusion magnet (Figure 6b). The reason for the thickening of
grain boundaries after multicomponent diffusion can be explained by the Gibbs free energy.
For multi-alloys, Gmulti-elements = Hmulti-elements − TSmulti-elements. The multicomponent
diffuses into the magnet, causing an increased entropy and decreased Gibbs free energy
of the grain boundary phase. The stability of the multicomponent liquid grain boundary
phase is increased, so that most of the diffusion elements are retained in the grain boundary
and do not easily enter the main phase, thereby broadening the thin grain boundary in the
magnet and increasing its continuity. The thicker and continuous thin grain boundaries
can effectively inhibit the magnetic exchange coupling between grains [35,36]. This is why
Tb60 diffusion magnets still have higher coercivity than Tb diffusion magnets when only
60% Tb content is contained in the diffusion source. Therefore, multicomponent grain
boundary diffusion has greater advantages in optimizing the microstructure and improving
the magnetic properties.
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Figure 6. TEM images of the grain boundary structure: (a) Tb60 diffusion magnet and (b) Tb diffusion
magnet.

Figure 7 shows the temperature dependence of the coercivities for Tb and Tb60
diffusion magnets. The coercivity temperature coefficient (βHcj) is used to describe the
stability of magnets at high temperatures. The βHcj is calculated by the following formula:

βHcj = [Hcj(T) − Hcj(T0)]/[Hcj(T)(T − T0)] × 100%, (2)

where T0 is the contrast temperature, T is the highest temperature, Hcj(T0) is the coercivity
of a magnet at contrast temperature and Hcj(T) is the coercivity of a magnet at the highest
temperature. The original magnet, Tb60 diffusion magnet and Tb diffusion magnet βHcj
are −0.619%/K, −0.553%/K and −0.635%/K, respectively. The βHcj value of the Tb60
diffusion magnet is increased from −0.619%/K to −0.553%/K, while the βHcj value of
single Tb diffusion magnet is decreased from −0.619%/K to −0.635%/K. The |βHcj| value
of the Tb60 diffusion magnet was lower than that of the original magnets, indicating that
the thermal stability of the Tb60 diffusion magnet was improved [37], which may be related
to the optimization of the boundary phase after multicomponent diffusion. On the contrary,
the single Tb diffusion magnet has poor thermal stability compared to the original magnet.
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4. Conclusions

After the boundary diffusion by the multicomponent Tb60Pr10Cu10Al10Zn10 film and
single Tb film, the magnet coercivity increased from 11.54 kOe to 18.89 kOe and 17.80 kOe,
respectively. Although the multicomponent diffusion source contains only 60 at. % Tb,
the coercivity of the diffusion magnet was improved more than that of the Tb diffusion
magnet. The microstructure analysis confirms that a thinner Tb-rich shell structure and a
thicker continuous thin grain boundary are formed in the Tb60 diffusion magnet. Moreover,
the Tb diffusion depth of Tb60 diffusion magnet is close to that of Tb diffusion magnet
due to the addition of multicomponent. The multicomponent diffusion increases the
mixed entropy of the grain boundary phase and reduces its Gibbs free energy, making
Tb and other diffusion elements more difficult to enter the main phase but retained in
the grain boundary phase or grain surface, thus forming a thin Tb-rich shell, deep grain
boundary diffusion and thickened continuous thin grain boundary phase, leading to the
improvement of the coercivity. The multicomponent grain boundary diffusion has great
advantages in optimizing magnet microstructure, improving Tb utilization and increasing
magnetic properties. This work provides a reference for the design and development of
high-performance sintered NdFeB magnets with multicomponent elements serving as
diffusion sources.
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