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Abstract: A modified numerical procedure for the shakedown analysis of structures under dual cyclic
loadings, based on the Abdalla method, is proposed in this paper. Based on the proposed numerical
procedure, the shakedown analysis of the thick cylindrical vessels with crossholes (TCVCs) under
cyclic internal pressure and cyclic thermal loading was carried out. The effects of material parameters
(elastic modulus and thermal expansion coefficient) and crosshole radius on the elastic shakedown
limit of TCVCs are discussed and, finally, normalized and formularized. Furthermore, the obtained
shakedown limit boundary formulation is compared with FEA results and is verified to evaluate the
shakedown behavior of TCVCs under cyclic internal pressure and cyclic thermal loading.

Keywords: shakedown; cyclic internal pressure; cyclic thermal loading; thick cylindrical vessels;
crossholes

1. Introduction

Pressure-bearing components in petrochemical and nuclear power plants are usually
operated under cyclic loadings. Throughout their lifetime, pressure-bearing components
may face the problem of reversed plasticity or ratcheting failure. Therefore, it is very
important to establish an effective shakedown analysis method to prevent early failure
due to reversed plasticity or ratcheting; the corresponding Bree loading zoning diagram is
shown in Figure 1, where σ0 denotes the mechanical stress, σt is the thermal stress, and σs
is the yield stress [1].

With the increasing emphasis on shakedown analysis in engineering, the theoret-
ical study of the classical upper and lower bound shakedown theorems has gradually
matured, and the corresponding numerical algorithms for shakedown analysis have
also been rapidly developed [1–14]. The researchers have proposed some shakedown
evaluation methods, such as the cycle-by-cycle method (CBC) [15–17], elastic compensa-
tion method (ECM) [2–4], and nonlinear superposition methods (Muscat and Mackenzie
method, min{PL, 2Pe} method, and Abdalla method) [5–11]. The CBC method has higher
accuracy in shakedown assessment, but it is very time-consuming, so it is mainly used
for verification of other shakedown analysis methods. The ECM method calculates the
shakedown limits through the elastic finite element iteration, and each iteration needs
to adjust the elastic modulus of the elements to obtain the redistribution of stress. The
ECM method can achieve high accuracy for simple structures, but it often has a large
calculation error for complex structures [18,19]. The Muscat and Mackenzie method can
only be used for shakedown analysis of structures under mechanical loadings, while the
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min{PL, 2Pe} method just supports the proportional loadings. It is necessary to find a simple
and accurate method applicable to structures subjected to thermomechanical loadings as
shown in Table 1. Furthermore, in the existing studies [1–24] considerable research has been
undertaken on the shakedown of pressure-bearing structures under constant pressure and
cyclic thermal loading, and those considering the shakedown behavior of TCVC and other
structures under the cyclic pressure and cyclic thermal loading simultaneously (dual cyclic
loadings) have not been reported. The establishment of a numerical flow for calculating
the shakedown analysis of structures under dual cyclic loadings is crucial.
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Figure 1. Typical Bree diagram.

Table 1. Comparison of different methods.

Method Supported Load Main Features

Elastic compensation method Proportional load Large error for
complex structures

The cycle-by-cycle method All kinds of load Time-consuming

Nonlinear
superposition

methods

Muscat and
Mackenzie method All kinds of load Only the mechanical

loads

Min {PL, 2Pe} method Proportional load Good precision

Abdalla method All kinds of load Good precision

Thick cylindrical vessels are one kind of important pressure-bearing component in
the process equipment. Meanwhile, thick cylindrical vessels often need crossholes to
ensure equipment maintenance, material transfer, and connection between devices [25,26].
During service, thick cylindrical vessels with crossholes are often subjected to simultaneous
cyclic pressure and cyclic temperature changes due to equipment shutdowns, startups,
and peak regulation. In addition, the introduction of crossholes changes the original
stress distribution of the structures, which causes significant stress concentration [27]. The
structures are then prone to losing their initial shakedown state and may undergo reversed
plasticity or ratcheting failure. Therefore, it is vital to carry out research on safety analysis
of thick cylindrical vessels with crossholes (TCVCs) under dual cyclic loadings.

In summary, there is an urgent need for the development of a shakedown analysis
procedure for the TCVC under dual cyclic loadings in which the influencing factors of
material properties and structural dimensions are considered. In this paper, the obtained
shakedown limits of four classical methods, namely, the min{PL, 2Pe} method, the Abdalla
method, the stress analysis design method (SAD), and the cycle-by-cycle method (CBC),
are first introduced and a precision comparison is carried out. According to the comparison
results, a modified numerical procedure for the shakedown analysis of structures under
dual cyclic loadings is established based on the Abdalla method by making a distinction
between constant loadings and cyclic loadings and introducing the loading ratios. Then,
considering the effects of material parameters (elastic modulus and thermal expansion
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coefficient) and crosshole radius, the shakedown limits of the TCVC under dual cyclic
loadings are studied and formularized based on the proposed numerical procedure, which
was verified to be effective. The research results have important reference and guiding
significance for studying the shakedown behavior of structures under dual cyclic loadings.

2. Classical Methods for Shakedown Analysis
2.1. Cycle-by-Cycle Method

The cycle-by-cycle method is the most fundamental technique for determining the
shakedown limit of structures, and it is frequently employed to examine the effectiveness
of other shakedown analysis methods [15]. Using the cycle-by-cycle method, the finite
element method is used to simulate the stress–strain behavior of structures under cyclic
loadings. The shakedown behavior of structures is judged according to the convergence of
accumulated plastic strain, and the approximate solution of the shakedown limit load is
obtained by the loading approximation method. Using the cycle-by-cycle method, Zheng
et al. investigated the shakedown limit of thick cylinders with radial openings subjected
to thermomechanical loadings [16]. Camilleri et al. investigated the shakedown and
ratcheting behavior of a thin cylinder, a thick cylinder, and a thick cylinder with a radial
crosshole [17].

The cycle-by-cycle method is applicable to structures under non-proportional loadings.
It requires a considerable number of cycles and a series of loading combinations to find the
shakedown limit load, which greatly affects the efficiency of the calculation. Therefore, this
method is often used to check the accuracy of other methods.

2.2. min{PL, 2Pe} Method

For the min {PL, 2Pe} method, the elastic shakedown limit of a structure under propor-
tional loadings can be further simplified to the lesser of the limit load and twice the elastic
limit load. The limit load PL of the structure is determined according to the elastic-perfectly
plastic analysis, while the elastic limit Pe of the structure is determined according to the
yield strength σs of the material and the maximum elastic equivalent stress |σei|max of the
structure under any proportional loading Pi:

2Pe = 2σs · Pi/|σei|max (1)

The elastic shakedown limit Ps is:

Ps = min{PL, 2Pe} (2)

The min {PL, 2Pe} method is convenient in calculation, but it can only be used to
determine the shakedown limit of structures under proportional loadings.

2.3. Abdalla Method

Abdalla split the operating loading under non-proportional loading into two parts:
constant loading and cyclic loading, and proposed a simplified method to determining the
shakedown limit of the structures [9]. The simplified method utilizes small displacement
formulation and determines the shakedown limit load by performing elastic analysis and
elastic-plastic analysis. In the elastic analysis, only the cyclic loading type is applied
individually to obtain the elastic stress field σE of the structures. In the elastic-plastic
analysis, both the constant and cyclic loading are applied in two consecutive analysis
steps to obtain the elastic-plastic stress field σEPi of the structures. Finally, the two stress
fields are superimposed to obtain the maximum residual stress field satisfying the Melan
shakedown theorem:

σri = σEPi − σETi/TN (3)

σ
eq
r =

1√
2

[(
σrx − σry

)2
+
(
σry − σrz

)2
+ (σrz − σrx)

2 + 6
(

τ2
rxy + τ2

ryz + τ2
rzx

)]1/2
(4)
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The shakedown limit load is the loading that corresponds to the residual stress field.
Abdalla et al. applied this method to solve two benchmark shakedown problems, namely,
the two-bar structure subjected to constant axial force and cyclic thermal loading, and the
Bree cylinder subjected to constant internal pressure and cyclic high-temperature variation
across its wall [10]. The advantages of the Abdalla method are high accuracy and efficiency,
while the method is also applicable to structures under non-proportional loadings.

2.4. Stress Analysis Design Method

In the ASME Boiler and Pressure Vessel Code Sec. VIII Division 2, the stress analysis
design method is supplied [28]. Using this method, the maximum shear stress theory is
adopted, and the stress is divided into primary stress, secondary stress, and peak stress
based on the location of stresses, loading conditions, stress properties, and other factors.
Also in the stress analysis design method, the stress intensity checks are classified into five
categories according to the stress conditions in different paths of the pressure vessel, which
are listed as follows:

Pm ≤ [σ] (5)

PL ≤ 1.5[σ] (6)

PL + Pb ≤ 1.5[σ] (7)

PL + Pb + Q ≤ 3[σ] (8)

PL + Pb + Q + F ≤ Sa (9)

where Pm is the primary membrane stress, PL means the local primary membrane stress, Pb
is the primary bending stress, Q is the secondary stress, F is the peak stress, and Sa is the
fatigue strength. The stress analysis design method can be used to quickly judge whether
the common component shakes down or not; however, in complex engineering practice,
there are still disputes in how to classify the stresses.

In summary, the Abdalla method has higher accuracy and generality. In this study, the
Abdalla method is further developed for dual cyclic loadings in the proposed shakedown
analysis procedure of the TCVC, as introduced in the following section.

3. The Proposed Numerical Procedure and Finite Element Model
3.1. The Modified Shakedown Analysis Procedure for Dual Cyclic Loadings

Since most of the existing shakedown studies just consider the pressure-bearing
structures under constant pressure and cyclic thermal loading, in this study a modified
numerical procedure for the shakedown analysis of engineering structures subjected to
dual cyclic loadings was developed. In the proposed shakedown analysis procedure, the
Abdalla method was further developed by making a distinction between constant loadings
and cyclic loadings, while a concept of loading ratio was also introduced. Furthermore,
two cyclic loading types were applied along each loading path to calculate the residual
stress field. The proposed procedure can be divided into the following five steps:

1. Establish an initial polygonal loading domain, in which the domain corners are
corresponding to different loading ratios, as shown in Figure 2.

2. Apply two cyclic loadings on the structure monotonically along each loading path de-
termined by a certain loading ratio, and calculate the elastic stress field of the structure.

3. Increase the maximum loading (T0 + ∆T and P0 + ∆P) incrementally along the loading
path in N steps, and calculate the elastic-plastic stress field of the structure at each step.

4. Then assume that the total stress field consists of the elastic stress field and residual
stress field. Calculate the residual stress field at each step by removing the elastic
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stress field, and output the maximum loading value of the residual stress field not
exceeding the yield strength. Then the corresponding elastic shakedown limit load
under the loading ratio is determined.

5. Change the loading path for different loading ratios and repeat steps 2 to 4 in order
to determine the elastic shakedown loading region of the structure under dual cyclic
loadings as the orange region shown in Figure 2.
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In this study, a square loading domain was established according to the shakedown
limit loads under single cyclic internal pressure and single cyclic thermal loading. The
maximum combined load is taken as the value of the coordinates on the square boundary.
The accuracy of the obtained results can be only affected by the increment of ∆P and ∆T
at each step. In addition, it needs to be noted that the maximum combined load should
exceed the yield strength of the structure.

3.2. Finite Element Model and the Cyclic Loadings

In this study, 316 stainless steel thick cylindrical vessels with crossholes (TCVCs) were
considered for the shakedown analysis. The elastic-perfectly plastic constitutive model was
utilized to simulate the shakedown behavior of the TCVC subjected to dual cyclic loadings.
The material property parameters of 316 stainless steel at different temperatures are given
in Table 2. The initial geometric dimensions of the TCVC are shown in Figure 3, for which
the inner radius Ri = 300 mm, outer radius Ro = 450 mm, half length of the whole model
L = 800 mm, and crosshole radius r = 60 mm. Considering the structure geometry and
loading symmetry, a quarter of the TCVC is adopted for modeling, as shown in Figure 4.
For the quarter finite element model, the symmetry constraints are applied on the planes of
X = 0 and Z = 0, while the coupling displacement is applied on the end plane of the TCVC
with Z = L in the Z direction.

The loading conditions of the finite element model primarily include a cyclic internal
pressure loading and a cyclic thermal loading, as shown in Figure 5. The cyclic pressure
varies from P0 to P0 + ∆P, and is applied as the inner pressure of the TCVC with an initial
internal pressure of P0 = 0 MPa. When the environmental pressure remains P0, ∆P means
the maximum pressure difference between the inner surface and the outer surface of the
TCVC. Then the cyclic thermal loading is distributed linearly along the thickness with a
constant outer surface temperature of T0 and a cyclic inner surface temperature of T0 + ∆T
(T0 = 300 ◦C), in which ∆T denotes the maximum temperature difference between the inner
surface and the outer surface of the TCVC. Hence, the elastic shakedown limit load can be
characterized jointly by the maximum pressure difference ∆P and temperature difference
∆T. Furthermore, it should be mentioned that for the condition of TCVC subjected to cyclic
thermomechanical loadings, Formula (8) must be used to limit the sum of the primary plus
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secondary stress to within two times the yield strength in order to ensure the shakedown
of the structure.

Table 2. Material property parameters of 316 stainless steel.

Temperature 300 ◦C 400 ◦C

Young’s modulus (GPa) 176 168
Yield stress (MPa) 109.12 100.80

Poisson’s ratio 0.3 0.3
Thermal expansion coefficient

(1/◦C) 17.2 × 10−6 17.8 × 10−6
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4. Results and Discussion
4.1. Method Comparison

In order to compare the effectiveness of different shakedown analysis methods, the
shakedown analysis of the TCVC subjected to only the cyclic internal pressure was first
carried out, as shown in this section. Figure 6 shows the elastic shakedown limits for the
structure with different crosshole radii r obtained by the min{PL, 2Pe} method, Abdalla
method, stress analysis design method (SAD) and cycle-by-cycle method (CBC). With
the comparison with the results from the cycle-by-cycle method, the most fundamental
and accurate method, the most accurate to least accurate are shown to be: min{PL, 2Pe}
method, Abdalla method, and stress analysis design method. In comparison with the stress
analysis design method, the results obtained by the min{PL, 2Pe} method and Abdalla
method are more accurate. Meanwhile, compared with the min{PL, 2Pe} method, the
Abdalla method can be used to further analyze the shakedown of structures under non-
proportional loadings, which has contributed to its widespread adoption.
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4.2. The Shakedown Analysis Considering Dual Cyclic Loadings

Based on the proposed shakedown analysis flow, the elastic shakedown limit of the
TCVC with different material parameters and crosshole radius under dual cyclic loadings
are investigated by taking the cyclic thermal loading into account. Firstly, the elastic
modulus and thermal expansion coefficient were multiplied by different coefficients Ec and
αc on the original basis to study the effects of material parameters on the elastic shakedown
limit of the TCVC. In the simulations, 11 loading ratios were adopted. The simulated results
are shown in Figure 7. It can be found that when the yield strength is constant, the elastic
shakedown limit load decreases with the increase in elastic modulus and thermal expansion
coefficient. In order to conduct an in-depth study on the shakedown of the TCVC, the
dimensionless treatment was carried out for Figure 7. In the dimensionless treatment,
the maximum pressure difference ∆P is divided by the limit pressure PL of the TCVC as
the vertical coordinate, and the elastic thermal loading σt = Eα∆T/2(1− v) divided by
the yield stress σs replaces ∆T as the horizontal coordinate. Figure 8 shows the results of
dimensionless treatment. It can be seen from the figures that the elastic shakedown limits
of the TCVC with different material parameters almost coincide, and a general rule of
shakedown for the TCVC at a certain size is obtained.

Based on the research above, the effect of different crosshole radii (r/Ri = 0.1, 0.2,
0.3, 0.4) on the elastic shakedown limit of the TCVC with a constant inner radius is analyzed.
As an illustration, the model for r/Ri = 0.2 in Figure 4 is used and the crosshole radius
changes to 30 mm, 90 mm, and 120 mm. In order to establish the shakedown region in
Bree’s diagram, the elastic shakedown limit of the TCVC with 13 loading ratios is calculated
based on the proposed numerical flow. The simulated results are shown in Figure 9. The
elastic shakedown limit can be approximately expressed by piecewise linear functions. It
can be seen from Figure 9 that when σt/σs is small, the elastic shakedown limit decreases as
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the crosshole radius increases; however, when σt/σs reaches a specific value, the crosshole
radius has little effect on the elastic shakedown limit.
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Figure 7. Elastic shakedown limit of TCVC considering different elastic modulus and thermal
expansion coefficient.
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In summary, after the normalization of Bree’s diagram considering the material pa-
rameters, the elastic shakedown limit of TCVC in Figure 9 still receives a dispersion of the
crosshole radius influence. In order to obtain a more flexible shakedown limit description,
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we performed a segmented linear fitting to the shakedown boundary of the TCVC for
different crosshole radii in Figure 9, and the resulting equation is listed as following:

r/Ri = 0.1; ∆P/PL =

{
0.355× σt

σs
+ 0.473 (σt/σs ≤ 0.2)

−0.68× σt
σs
+ 0.68 (0.2 < σt/σs ≤ 1)

r/Ri = 0.2; ∆P/PL =

{
0.304× σt

σs
+ 0.434 (σt/σs ≤ 0.25)

−0.68× σt
σs
+ 0.68 (0.25 < σt/σs ≤ 1)

r/Ri = 0.3; ∆P/PL =

{
0.270× σt

σs
+ 0.395 (σt/σs ≤ 0.3)

−0.68× σt
σs
+ 0.68 (0.3 < σt/σs ≤ 1)

r/Ri = 0.4; ∆P/PL =

{
0.245× σt

σs
+ 0.356 (σt/σs ≤ 0.35)

−0.68× σt
σs
+ 0.68 (0.35 < σt/σs ≤ 1)

(10)

Further, it can also be seen from Figure 9 that the shakedown limit value corresponding
to σt/σs = 0 and the slope of the linear function before the turning point are related to the
crosshole radius ratio r/Ri, which can be fitted as a formula as:

∆P/PL = 0.05×r/Ri+0.066
0.5×r/Ri+0.15 ×

σt
σs
+ (−0.39× r/Ri + 0.512)

(σt/σs ≤ (0.5× r/Ri + 0.15))
(11)

Therefore, the uniform description of the elastic shakedown limit of the TCVC consid-
ering different crosshole radii can be expressed as:

∆P/PL =


0.05×r/Ri+0.066
0.5×r/Ri+0.15 ×

σt
σs
+ (−0.39× r/Ri + 0.512)

(σt/σs ≤ (0.5× r/Ri + 0.15))
−0.68× σt

σs
+ 0.68

((0.5× r/Ri + 0.15) < σt/σs ≤ 1)

(12)

In order to validate the reliability of the above fitting formula, the shakedown limit
boundary obtained from Formula (12) is compared with the numerical solution result at
r/Ri = 0.35 simulated with the finite element method, as shown in Figure 10. It can be
seen from Figure 10 that the calculated results of the formulation match well with the
finite element analysis results obtained from the proposed procedure. Meanwhile, the
shakedown limit boundary determined by the cycle-by-cycle (CBC) method is also shown
in Figure 10, which agrees well with that obtained from the proposed procedure. Therefore,
the proposed numerical procedure for the shakedown analysis of the TCVC under dual
cyclic loadings established in this study is verified to be effective and reliable.
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5. Conclusions

In this work, a developed numerical procedure for the shakedown analysis of TCVCs
under dual cyclic loadings is proposed, and the shakedown behavior of TCVCs under
dual cyclic loadings is studied to verify the effectiveness and reliability of the proposed
procedure. It is shown that:

(1) Comparing different shakedown analysis methods for only the application of cyclic
internal pressure, it is shown that the Abdalla method is more accurate and is also
effective for non-proportional loading.

(2) The elastic shakedown limit load of the TCVC decreases with the increase in the elastic
modulus and the thermal expansion coefficient of the material. After dimensionless
treatment, the influence of material parameters can be eliminated.

(3) The modified shakedown evaluation method and procedure proposed in this work
can be used to accurately evaluate the shakedown of TCVCs under cyclic internal
pressure and cyclic thermal loading.
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