

Wenying Wang, Lin Bo D, Junliang Zhu and Degang Zhao *D

School of Materials Science and Engineering, University of Jinan, Jinan 250022, China

* Correspondence: mse_zhaodg@ujn.edu.cn

Abstract: The research on thermoelectric (TE) materials has a long history. Holding the advantages of high elemental abundance, lead-free and easily tunable transport properties, copper-based diamond-like (CBDL) thermoelectric compounds have attracted extensive attention from the thermoelectric community. The CBDL compounds contain a large number of representative candidates for thermoelectric applications, such as CuInGa₂, Cu₂GeSe₃, Cu₃SbSe₄, Cu₁₂SbSe₁₃, etc. In this study, the structure characteristics and TE performances of typical CBDLs were briefly summarized. Several common synthesis technologies and effective strategies to improve the thermoelectric devices of CBDL compounds were introduced. In addition, the latest developments in thermoelectric devices based on CBDL compounds were discussed. Further developments and prospects for exploring high-performance copper-based diamond-like thermoelectric materials and devices were also presented at the end.

Keywords: thermoelectric; copper-based diamond-like compounds; zT; lattice conductivity; device

1. Introduction

The attractive capability of thermoelectric (TE) materials in actualizing the conversion between temperature gradient and electrical power makes them strong candidates for waste-heat recovery as well as solid-state refrigeration [1-3]. The practical and widespread application of TE technology strongly relies on the development of high-performance TE materials, where the TE performance of materials is evaluated by a dimensionless figure of merit, $zT = \alpha^2 \sigma T / \kappa$. The TE parameters α and σ are the Seebeck coefficient and electrical conductivity which, respectively, constitute the power factor, $PF = \alpha^2 \sigma$, used to evaluate electrical conductivity characteristics. Parameter T is the Kelvin thermodynamic temperature, while κ refers to the total thermal conductivity, which is composed of two major contributions from the charge carriers ($\kappa_{\rm E}$) and the lattice ($\kappa_{\rm L}$), respectively. From a computational perspective, the most ideal high-performance TE material should have a large α , high σ as well as a low κ value. What cannot be avoided is the strong coupling between thermoelectric parameters regarding carrier concentration, such as when a high σ means low α and a high κ_E , limiting the improvement of zT [4–6]. In order to achieve high zT in traditional or emerging TE materials, various methods and approaches have been adopted to reduce the correlation between thermal and electrical properties [7–9], including defect engineering, size effects, alloying effect and high-entropy engineering, etc. In addition to achieving high performance, the exploration of alternative materials consists of earth-abundant and eco-friendly components to meet the sake of clean and environmental protection is also considered as one of the most popular approaches in TE field [10–13]. In recent years, diverse bulk TE materials have been widely researched, including liquid-like Cu₂(S, Se, Te), silver-based chalcogenides, Sn(Te, S, Se), half-heuslers, etc. [14–16].

As an environmentally friendly and promising TE material without precious elements, the performance advantages of copper-based diamond-like TE compounds lie in their

Citation: Wang, W.; Bo, L.; Zhu, J.; Zhao, D. Copper-Based Diamond-like Thermoelectric Compounds: Looking Back and Stepping Forward. *Materials* **2023**, *16*, 3512. https://doi.org/10.3390/ ma16093512

Academic Editors: Andres Sotelo and Bertrand Lenoir

Received: 23 March 2023 Revised: 13 April 2023 Accepted: 1 May 2023 Published: 3 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). high Seebeck coefficient and low thermal conductivity [17–21]. Typical compounds include: Cu₃SbSe₄, with a high *zT* of 0.89 at 650 K [19]; Cu₂SnSe₃, with α of ~250 μ V·K⁻¹ in the temperature range of 300–700 K [22]; and CuInTe₂, with a κ_L value as low as $0.3 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$ [23], etc. Copper-based diamond-like TE compounds are a type of material that conforms to the concept of "phonon-glass electron-crystal" (PGEC) [17] materials, and their crystal structures are usually composed of two sublattices [23–25], in which one sublattice constitutes a conductive network, while the other acts as a thermal barrier and is sometimes also known as a charge reservoir. In 2011, Skoug et al. [24] summarized the significance of lone-pair electrons in the Cu-Sb-Se diamond-like system and demonstrated that the low intrinsic κ_L in compounds came from the interaction of lone-pair electrons with neighboring atoms. Moreover, Skoug et al. [25] also confirmed that the dominant Cu-Se network controlled the electric transport while the Sn orbitals only compensated the system for electrons. Several diamond-like crystal structures evolved from thecubic zincblende structure are shown in Figure 1a. Simultaneously, a series of advanced CBDL compounds have been discovered since 2009, most of which have presented outstanding TE properties. The timeline of maximum zTs and the temperature dependence of zTs for selected CBDL compounds are shown in Figure 1b,c. Taking the typical diamond-like compounds of Cu(In, Ga)Te₂, Cu₃SbSe₄, and Cu₂SnSe₃ as examples, long-term efforts have shown that they all apparently have superior TE transport properties with high zTs that exceed one. For instance, Liu et al. [23] devised a pseudocubic crystal structure in CuInTe₂ compounds; thus the highest zT of 1.24 was obtained in Ag-doped CuInTe₂ compounds. A peak zT of 1.14 was attained in a Cu₂Sn_{0.90}In_{0.10}Se₃ compound at 850 K by replacing Sn sites with In. It is also worth noting that a high average $zT(zT_{ave})$ value is desirable for overall TE conversion efficiency. For instance, a high zT_{max} of 1.67 at 873 K, and a zT_{ave} of 0.73, were realized in Cu_{0.7}Ag_{0.3}Ga_{0.4}In_{0.6}Te₂ [26]. In the latest research of Zhou's group [27,28], record-high zT_{ave} values of 0.73 and 0.77 were achieved in Cu₃SbSe₄-based and Cu₃SbS₄-based materials, respectively, which were also comparable to other state-of-the-art TE compounds. Hence one can see that CBDL compounds are expected to become environmentally friendly candidates for TE applications and to achieve excellent performances.

In this review, the structural origins, and the decoupled transport properties of CBDL thermoelectric compounds, were summarized. The latest advances in different types of CBDL compounds were discussed. Then, several common synthetic methods of CBDL compounds were briefly introduce, typical strategies for optimizing the TE properties of CBDL compounds were described in detail, as well as recent updates on CBDL-based TE devices. Finally, the future development of CBDL thermoelectric compounds was evaluated.

Figure 1. (a) Various crystal structures of CBDL thermoelectric compounds; timeline of *zTs* (b) and the temperature dependence of *zTs* (c) for selected copper-based diamond-like thermoelectric compounds, data culled from Cu(In, Ga)Te₂ [23,26,29–41], Cu₃SbSe₄ [27,42–49], Cu₃SbS₄ [28,50,51], CuFeS₂ [52–55], Cu₂SnS₃ [56–58], Cu₂GeSe₃ [59–61], Cu₂SnSe₃ [62–67], Cu₁₂SbSe₁₃ [68,69], Cu₂CdSnSe₄ [70–74], Cu₂ZnGeSe₄ [75], Cu₂CoSnSe₄ [76], Cu₂MnSnSe₄ [76], Cu₂FeSnSe₄ [76–78], Cu₂MgSnSe₄ [79], Cu₂ZnSnS₄ [33], Cu₂ZnSnSe₄ [33].

2. Copper-Based Diamond-like Thermoelectric Compounds

CBDL compounds contain a large number of family members, which include ternary I–III–VI₂ chalcopyrites, I₃–V–VI₄ stannites, I₂–IV–VI₃ stannites, quaternary I₂–II–IV–VI₄ compounds, and even large-cell Cu₁₀B₂C₄D₁₃ tetrahedrites and Cu₂₆P₂Q₆S₃₂ colusites. The TE properties of selected typical CBDL compounds including zT_{ave} , zT_{max} , $\alpha^2 \sigma$, κ_L , and carrier concentration (*n*) at room temperature are displayed in Table 1.

Among CBDL compounds, $CuGaTe_2$ and $CuInTe_2$ are typical $Cu-III-VI_2$ (III = In, Ga; VI = Se, S, Te) chalcopyrites structural compounds which have exhibited excellent thermoelectric properties at higher temperatures. In 2012, Plirdpring et al. [29] achieved a record zT of 1.4 in CuGaTe₂ compound at 950 K, which indicated that it was a potential material in the field of TE applications. Comparatively, it was found that CuInTe₂ possessed a high zT of 1.18 at 850 K [20]. A large number of studies were conducted to optimize the TE transport behaviors of chalcopyrite-based materials in the following years. Through defect engineering, Pei's team obtained a maximum zT of 1.0 at 750 K in the Ag-doped CuGaTe₂ compound [40] and identified that vacancy scattering was an active approach to improve TE transport behaviors [80]. Zhang et al. [26] synthesized a quinary alloy compound Cu_{0.7}Ag_{0.3}Ga_{0.4}In_{0.6}Te₂ with a complex nanosized strain domain structure, which presented excellent TE properties with a peak zT of 1.64 at 873 K and an average zT (zT_{ave}) of 0.73. Through compositing TiO₂ nanofibers, Yang et al. [36] achieved a maximum *zT* of 1.47 at 823 K in a CuInTe₂-based TE compound. Moreover, Chen et al. [23] obtained a maximum zT of 1.24 in the Cu_{0.75}Ag_{0.2}InTe₂ compound. The above shows that Cu(In, Ga)Te₂ diamond-like TE materials have a higher zTs, comparable to other advanced thermoelectric materials such as PbTe [81–84] and SnTe [85–87]. In addition, a natural chalcopyrite mineral, CuFeS₂ [52–55], was also recognized as an advanced CBDL thermoelectric material. It is noteworthy that the $CuFeS_2$ compound is a rare typical *n*-type TE compound among CBDL thermoelectric materials [88,89].

 Cu_3 –V–VI₄ (V = Sb, P, As; VI = Se, S, Te) compounds with a tetragonal diamond-like crystal structure can be approximately regarded as the superposition of four equivalent zincblendes, wherein Cu₃SbSe₄ is considered as a promising TE candidate owing to its narrow band gap of ~0.3 eV [19,27,47,90]. For improving the TE performance of Cu₃SbSe₄based materials, Li et al. [45] coordinately regulated electrical and thermal transport behaviors through the incorporation of Sn-doping and AgSb_{0.98}Ge_{0.02}Se₂ inclusion, and the highest zT of 1.23 was eventually achieved at 675 K. Bo et al. [90] successfully applied the concept of configuration entropy to optimize the TE performance of Cu_3SbSe_4 , and the zT increased by about four times, compared to the initial phase, with the increase of entropy. In their latest report, Zhou's group [27] attained a superior average power factor (PF_{ave}) of 19 μ W·cm⁻¹·K⁻² in 300–723 K by using a small amount of foreign Al atoms as "stabilizers" to supply the high hole concentration, with almost no effect on carrier mobility. Consequently, combined with the reduced κ , a record-high *zT* of 1.4 and a *zT*_{ave} of 0.72 were obtained within the Cu₃SbSe₄-based compounds. A new unconventional doping process that can coordinate the TE properties of materials was also presented. Apart from Cu_3SbSe_4 , Cu_3SbS_4 is also a promising Cu_3-V-VI_4 -type of TE material [28,50,51], and it has been demonstrated that its PF_{ave} can reach up to 16.1 μ W·cm⁻¹·K⁻² and the zT_{ave} up to 0.77 between 400 and 773 K via its optimization [28].

Different from Cu–III–VI₂ and Cu₃–V–VI₄ compounds, ternary Cu₂–IV–VI₃ (IV = Sn, Ge, Pb; VI = Se, Te, S) compounds crystallize in more distorted structures that are far from tetragonal, as shown in Figure 1a. Cu₂SnSe₃ is a kind of CBDL compound with diverse structural phases, which has been found and synthesized successfully, including in cubic, tetragonal, orthogonal, and monoclinic phases involving three variants [22]. Hu et al. [62] improved the TE transport behaviors of Cu₂SnSe₃ by enhancing the crystal symmetry of it via Mg-doping and intensifying the phonon scattering through the introduction of dislocations and nanoprecipitates. Similarly, Ming et al. [65] obtained a peak *zT* of 1.51 at 858 K in the Cu₂Sn_{0.82}In_{0.18}Se_{2.7}S_{0.3} compound through regulating the band structure and introducing multi-scale defects. In addition, a record-high *zT* of 1.61 was obtained at 848 K

by Qin et al. [66] by constructing the intrinsic point defects, including high-dense stacking faults and endo-grown nanoneedles, to obstruct mid- as well as low-frequency phonons in Cu₂SnSe₃ compounds. Except for Cu₂SnSe₃, Cu₅A₂B₇ (A = Si, Ge, Sn; B = S, Se, Te), with a centrosymmetric space group *C2/m*, is also a kind of distorted CBDL compound which has been considered to possess a non-centrosymmetric cubic structure, with the phase crystallized as *C*-centered, as shown in Figure 2a [91–93]. An undesirable characteristic of Cu₅A₂B₇ compounds is that they represent metal-like behaviors, such as the carrier concentration and κ of Cu₅Sn₂Te₇ at 300 K are 1.39×10^{21} cm⁻³ and $15.1 \text{ W}\cdot\text{m}^{-1}\cdot\text{K}^{-1}$, respectively [92]. Simultaneously, zinc atoms have been proven to be effective dopants for strengthening the semiconductor properties of Cu₅Sn₂Te₇ compounds; Sturm et al. [93] introduced a zinc dopant into Cu₅Sn₂Se₇ and Cu₅Sn₂Te₇ compounds, which also supports this conclusion. Especially noteworthy is that the effect of zinc doping is not optimal, and the TE performance of the compound still needs further improvement.

Quaternary Cu_2 –II–IV–VI₄ (II = Co, Mn, Hg, Mg, Zn, Cd, Fe; IV = Sn, Ge; VI = Se, S, Te) compounds with more complex tetragonal structures have also been widely studied. The distinguishing features of quaternary CBDL compounds are they possess a wider bandgap and a relatively lower carrier mobility compared with the ternary CBDL compounds [68,70,76,94-99]. Taking the orthorhombic enargite-type Cu₂MnGeS₄ as an example [95], the bandgap of it is \sim 1.0 eV in the initial phase while it only converts to 0.9 eV in the Cu_{2.5}Mn_{0.5}GeS₄ by adjusting the ratio of Mn and Cu atoms. The large-cell $Cu_{10}B_2C_4D_{13}$ [100–103] (B = Ag, Cu; C = Co, Ni, Zn, Cu, Mn, Fe, Hg, Cd; Q = Sb, Bi, As; Q = Se, S) tetrahedrites have even more complex crystal structures, as shown in Figure 2b,c, respectively. The featured "PGEC" framework is also displayed in the Cu₁₂Sb₄S₁₃ tetrahedrite, where the electric transmission is controlled by a CuS₄ network and the thermal transmission is governed by a cavity polyhedral consisting of CuS₃ and SbS₃ groups [100]. In 2013, Lu et al. [102] achieved an enhanced zT of 0.95 at 720 K in Cu₁₂Sb₄S₁₃ utilizing Zn-doping. Moreover, Li et al. [103] attained a high zT of 1.15 at 723 K in a porous $Cu_{12}Sb_4S_{13}$ -based material; a segmented single-leg device based on the material was successfully fabricated which realized a high conversion efficiency of 6% when the ΔT reached up to 419 K. $Cu_{26}P_2Q_6S_{32}$ [104–108] (P = V, Ta, Nb, W, Mo; Q = Ge, Sn, As, Sb) colusites are other large-cell examples, which possess 66 atoms in a crystal cell while the tetrahedrites possess 58 atoms. Therefore, the common characteristic of both is their inherent low κ derived from high structural inhomogeneity [108,109]. For instance, Guilmeau's group [105] obtained the lowest κ of 0.4 W·m⁻¹·K⁻¹ at 300 K in the Cu₂₆V₂Sn₆S₃₂ colusite, which was attributed to the structural complexity of colusite and mass fluctuations among the Cu, V and Sn atoms. In 2018, they further elucidated the potential mechanism related to the fountainhead of intrinsically low κ for a colusite along with the influence of antisite defects and S-vacancies on carrier concentration [105,106].

Figure 2. Crystal structure of: (a) $Cu_5Sn_2Se_7$ (reprinted with permission from ref. [91], Copyright 2014 American Chemical Society); (b) $Cu_{12}SbS_{13}$ (reprinted with permission from ref. [110], copyright 2015 American Chemical Society); and (c) $Cu_{26}P_2Q_6S_{32}$ (reprinted with permission from ref. [106], copyright 2018 American Chemical Society).

Composition	zT_{max}	zT_{ave}	$\alpha^2 \sigma$ ($\mu W \cdot cm^{-1} \cdot K^{-2}$)	κ_L (W·m ⁻¹ ·K ⁻¹)	<i>n</i> @RT (10 ¹⁹ cm ⁻³)	Synthesis Method *	Ref.
Cilo 75 Ago 2 In Tea	1 24@850 K	0.47	7 26	0.3	1 11	M + HP	[23]
Polycrystalline CuGaTea	1 40@950 K	0.43	89	0.45	0.11	M	[29]
C_{10} z Ago z Gao 4 Ino z Teo	1 64@873 K	0.73	5.22	0.24	0.007	M + HP	[26]
$(CuInTe_{2})_{0.00}(2ZnTe)_{0.01}=0.1$	1.01007010	0.70	0.22	0.21	0.007	101 111	[20]
wt% TiO2	1.47@823 K	0.50	12.93	0.45	6.01	М	[36]
$Cu_{0.89}Ag_{0.2}In_{0.91}Te_2$	1.60@850 K	0.49	8.81	0.36	0.07	M + SPS	[38]
$Cu_{7.9}In_{8.1}Ga_{0.3}Te_{16}$	1.22@850 K	0.51	11.92	0.55	7.03	M + SPS	[39]
$Cu_0 _7 Ag_0 _3 GaTe_2$	1.00@750 K	0.57	12.26	0.68	4.8	M + HP	[40]
$Cu_{0.8}Ag_{0.2}In_{0.2}Ga_{0.8}Te_{2}$	1.50@ 850 K	0.78	14	0.49	0.043	M + SPS	[41]
$Cu_3SbSe_4+15 \text{ vol}\% \beta-Zn_4Sb_3$	1.23@648 K	0.43	12.7	0.14	5.5	ST	[45]
$Cu_3Sb_{0.96}Sn_{0.04}Se_4-5$ wt%			10.0	a - 4			
$AgSb_{0.98}Ge_{0.02}Se_{2}$	1.23@675 K	0.50	13.8	0.54	8.72	M + SPS	[47]
$C_{112} \circ A_{22} \circ S_{22} \circ $	1 18@623 K	0.36	9 54	0.27	12.0	MAH +	[48]
Cu _{2.8} 150.2000.95010.05004	1.10002010	0.00	2.01	0.27	12.0	SPS	
$Cu_{2.85}Ag_{0.15}SbSe_4$	0.90@623 K	0.52	10.98	0.66	0.57	M + SPS	[49]
Cu_3SbSe_4-4 wt% $CuAlSe_2$	1.40@723 K	0.72	16	0.35	10	M + HP	[27]
$Cu_{0.92}Zn_{0.08}FeS_2$	0.26@623 K	0.14	5.4	2.24	39.6	М	[52]
$Cu_{0.92}In_{0.08}FeS_2$	0.35@723 K	0.19	4.7	0.79	41.2	M + SPS	[53]
$Cu_{0.88}Ag_{0.12}FeS_2$	0.45@723 K	0.22	7.6	1.15	3.6	M + PAS	[54]
CuFe _{0.94} Ge _{0.06} S ₂	0.40@723 K	0.17	6	1.04	4.7	M + HP	[55]
$Cu_2Sn_{0.9}In_{0.1}S_3$	0.60@773 K	0.32	6.23	1.01	126	MA + SPS	[56]
Cu ₂ Sn _{0.85} Mn _{0.15} S ₃	0.68@723 K	0.28	9.2	0.4	462	M + SPS	[57]
Cu ₂ Sn _{0.74} Sb _{0.06} Co _{0.2} S ₃	0.88@773 K	0.43	10.4	0.41	237	M + SPS	[58]
Cu _{1.85} Ag _{0.15} (Sn _{0.88} Ga _{0.1} Na _{0.02})Se ₃	1.60@823 K	0.50	12.75	0.28	91.8	М	[62]
Cu _{1.85} Ag _{0.15} Sn _{0.9} In _{0.1} Se ₃	1.42@823 K	0.38	9.70	-	73.4	SHS	[63]
Cu _{1.85} Ag _{0.15} Sn _{0.9} 1In _{0.09} Se ₃ /4%	1.58@800 K	0.59	12.6	0.12	133.4	SHS + PAS	[64]
$Ag_{2}S$ $Cu_{2}Sn_{0.82}In_{0.18}Se_{2.7}S_{0.3}$	1.51@858 K	0.33	9.3	0.35	151	М	[65]
$Cu_2Sn_{0.88}Fe_{0.06}In_{0.06}Se_3-5$ wt%	1.61@848 K	0.40	7.6	0.2	163	M + MA + HP	[66]
Cu1 o Ago 1 Geo 007 Gao 003 Se3	1.03@768 K	0.58	7.3	0.46	3.5	M + SPS	[60]
$Cu_{1,8}Ag_{0,2}Ge_{0,05}In_{0,05}Se_{2}$	0.97@723 K	0.44	6.4	0.38	4.6	M + HP	[61]
Cu11 7Gdo 2Sb4S12	0.94@749 K	0.46	16	-	60.3	M + HP	[68]
$Cu_{11.7} = Cd_{0.5} = 5b_4 S_{12}$	0.90@623 K	0.72	12.1	0.33	42	M + HP	[98]
				0.00		MA + SPS	[,]
Cu _{11.5} Ni _{0.5} Sb ₄ S ₁₃ +0.7 vol% AP	1.15@723 K	0.66	12.8	0.17	-	+	[103]
Cu_3SbS_4-9 wt% $CuAlS_2-1.5$	1.30@773 K	0.77	16.1	0.72	42.2	M + HP	[28]
$C_{112}Sh_{2}a_{2}Sh_{2}b_{2}Sh_{2}b_{2}Sh_{2}b_{2}Sh_{2}b_{2}Sh_{2}b_{2}Sh_{2}b_{2}Sh_{2}b_{2}Sh_{2}b_{2}Sh_{2}b_{2}Sh_{2}b_{2}Sh_{2}b_{2}Sh$	0 72@623 K	0.37	11 3	0.85	<i>A</i> 1 <i>A</i>	$MA \perp SPS$	[50]
$Cu_3Sb_{0.95S110.05S4}$	0.72@023 K	0.37	12.08	0.85	41.4 74	MA + SPS	[50]
$Cu_{3} = Cu_{10} = Cd_{10} = Cd_{1$	0.70@023 K	0.30	5.90	0.78	74	M + CDC	[70]
$Cu_{2.10}Cu_{0.90}SnSe_4$	0.05@700 K	0.27	6.82	0.23	-	M + SPS	[70]
$Cu_2Coonse_4$	0.70@850 K	0.31	5.85	0.45	19	M + SPS	[70]
$Cu_2 NgSh_{0.925} m_{0.075} Se_4$	0.42@700 K	0.17	5.6	-	14	M + SPS	[79]
$Cu_{2.1}(Fe_{0.5})(10.5)(0.95)(5e_4)$	0.60@600 K	0.22	0.1 E 0	-	30	M + 5P5	[70]
$Cu_{2.1}Fe_{0.9}SnSe_4$	0.52@800 K	0.23	5.9	0.60	23	M + 5r5	[78]
$Cu_2CdSnSe_4$	0.50@760 K	0.17	3.1	0.42	1.15	SPS	[71]
$Cu_{2.1}Cd_{0.8}SnSe_{3.4}$	0.65@723 K	0.27	6.96	0.42	-	ST + HP	[72]
$Cu_{1.7}Ag_{0.3}CdSnSe_4$	0.80@688 K	0.43	6.5	0.37	-	MAH + SPS	[73]
Cu ₂ CdSnSe ₄ -CdSe	0.65@725 K	0.34	5.1	0.56	60	M + HP	[74]
$Cu_{26}Nb_2Ge_{6.0}S_{32}$	1.00@670 K	0.50	8	0.51	-	M + HP	[104]
$Cu_{26}V_2Sn_6S_{32}$	0.93@675 K	0.55	7.73	0.4	380	MA + SPS	[106]
$Cu_{26}Cr_2Ge_6S_{32}$	1.00@700 K	0.48	19.4	0.48	-	MA + SPS	[108]

Table 1. Thermoelectric transport properties of selected CBDL compounds.

* Herein, melting abbreviated to M, hot-pressing abbreviated to HP, spark plasma sintering abbreviated to SPS, microwave-assisted hydrothermal abbreviated to MAH, mechanical alloying abbreviated to MA, plasma-activated sintering abbreviated to PAS, solvothermal abbreviated to ST, self-propagating high-temperature synthesis abbreviated to SHS and colloidal synthesis abbreviated to CS.

3. Material Synthesis Recipes

The synthesis process accompanied by the research and development of the material is a crucial link in obtaining superior TE materials. Therefore, while the performance of TE materials have been improved by leaps and bounds, diverse techniques for synthesizing various TE compounds are also developing vigorously. As shown in Table 1, traditional technologies such as melting, the so-called solid-state reaction, are still widely used in the preparation of high-performance TE materials. Letting nature take its course, the successful application of non-equilibrium formulations, including high-energy ball milling (BM), melt spinning (MS), self-propagating high-temperature synthesis (SHS) and solvothermal (ST) technologies in the TE field provide more options for developing the new generation of TE materials with fine multi-scale microstructures. Simple schematic diagrams of several common synthesis and preparation technologies are shown in Figure 3.

Figure 3. Schematically illustration of BM, MS, SHS, HP&SPS and ST.

High-energy ball milling, also known as mechanical alloying, has been widely adopted to assist in, or directly, synthesize TE compounds with multi-dimensional structures [111–118]. For instance, Nautiyal et al. [117] synthesized a series of polycrystalline Cu₂SnS₃, Cu₂ZnSe₄ and Cu₂ZnSnS₄ TE compounds through MA, which proved that the introduction of nanostructures into the material stabilized the disordered phase structure at low temperatures was conducive to optimizing the TE transport performance of the material. The mechanism of high-energy reaction is achieved by using the inertia between the grinding balls to cause a high-energy impact on the material particles, resulting in cold welding, fracture and re-welding between the particles, leading to further crushing [114]. In addition, most of the BM process involves dry grinding in protective gas to ensure that the collision energy among balls can be effectively applied to the ground powders, and sometimes ethanol and other solvents are used as grinding media. After BM, the fine structure and even nano-powders existing in the material can effectively enhance the phonon scattering and significantly reduce the κ . BM has the advantages of high synthesis efficiency, easy operation, high cost-efficiency and the ability to synthesize thermoelectric materials in large quantities. It is usually used to produce multi-dimensional structure [115], synthetic compound [111,116,117] and mix composites [118] in the TE industry.

Melt-spinning technology is an effective approach to achieve rapid solidification by injecting a molten alloy flow into a rotating and internally cooled roller [119], as shown in Figure 3. When the melt contacts the roller, the melt will undergo rapid solidification or even amorphous transformation accompanying the rapid transfer of heat and will be produced in the form of thin strips or ribbons [119–121]. The microstructure, that depends on local temperature and cooling rate, can be easily controlled by adjusting the machining parameters in the process of MS [119,122]. Previous studies have shown that a large number of refined microstructures and nano-grains can be introduced in TE compounds by MS, such as SnTe, BiSbTe, PbTe and skutterudite, etc., [120,123–125]. In 2019, Zhao's group [121] successfully prepared Cu-Te alloy ribbons with nanocrystalline structures using MS, and achieved the lowest κ of 0.22 W·m⁻¹·K⁻¹ in the Cu₂SnSe₃–based composite.

The self-propagating high-temperature synthesis starts with the heating of a small part of the sample at a point, and then the combustion wave spreads along the material to

gradually realize the synthesis of the material in an extremely short amount of time [64,126], as shown in Figure 3. In 2014, Su et al. [126] successfully applied SHS to the preparation of various TE compounds for the first time, including Cu₂SnSe₃, CoSb₃, Bi₂(Te, Se)₃, SnTe, Mg₂(Sn, Si), etc. As the combustion wave spreads across the whole sample, it plays a role in purifying the material and maintaining its stoichiometry [126,127]. The most attractive aspect of SHS is its rapid one-step process, which can be expanded and completed with minimal energy. This feature makes it popular in the synthesis of a variety of CBDL compounds [63,64,127,128]. The main shortcoming of the self-propagating high-temperature synthesis process is that the reaction is so rapid that the sintering size of the sample is difficult to control, requiring secondary processing to ensure the quality of the materials [64,126]. For subsequent measurements and characterizations, dense block TE materials are generally manufactured using sintering technology, including HP and SPS (also known as plasma-activated sintering (PAS)). In most cases, the procedure of sintering is the last step of fabrication, as shown in Table 1, which can strengthen the densification of products and further purify the phases.

In addition, hydrothermal as well as solvothermal reactions are very efficient approaches to preparing refined materials with controllable dimensions and morphologies through the chemical synthesis process [42,45,48,129–133]. In the process of ST, the stoichiometric precursor material required for the synthetic material is first dissolved in the aqueous solution, and then the internal reaction conditions, such as the pressure, pH value and additive concentration, are strictly controlled to make it react in a sealed autoclave [130,131,134–136]. Although the operation is more complex compared to the physical methods mentioned above, controllable thermoelectric compound nanostructures can be synthesized through a wet process, which has the advantages of a low synthesis temperature and fine grain size. It is also worth noting that some the morphologies and sizes of the products can be greatly modified by external conditions, such as the ultrasonic mixture pretreatment time, and the reaction temperature and time [131]. For instance, Wang et al. [136] synthesized the monodispersed Cu_2SnTe_3 nanocrystals (~25 nm) using hot-injection synthesis for the first time, in which the Te precursor was selected by dissolving TeO₂ in 1–dodecanethiol and the reaction solvent was a Cu–Sn complex solution. Moreover, Wei et al. [135] synthesized Cu_3SbSe_4 hollow microspheres dispersed with TiO_2 by a procedure of microwave-assisted hydrothermal synthesis. One advantage of chemical synthesis is that it can control the doping of foreign ions and optimize the grain orientations of nanostructures, which has an important impact on adjusting the carrier concentration and improving phonon scattering [43,129,132,135,136].

In recent years, additive manufacturing [137,138] and machine learning [14,139–144], as emerging intelligent industries, have gradually entered the thermoelectric field, which opens a novel and convenient means to exploring multi-phase space. Referring to diverse indicators closely related to material properties, a series of high-performance CBDL compounds have been discovered. For instance, Zhang's group [139] investigated and predicted the electronic structures and the TE transport behaviors of ABX₂ materials using a high-throughput (HTP) framework, as shown in Figure 4a. Taking the energy position of the band edge as an indicator, Chen's team [140] verified the HTP strategy with the bandgap as an indicator by screening out the potential high-performance *n*-type TE compounds from Cu-containing chalcogenides, as shown in Figure 4b. In addition, Shi et al. [145] proposed a new performance indicator, shown in Figure 4c,d, for guiding the discovery of TE compounds with low κ . The new indicator referred to the number mismatch (δ) between anions and cations. It should also be noted that since the difference of atomic mass was not considered, the indicator was applicable to compound families with the same elements but different compositions. It was well demonstrated in the Cu-Sn-S systems shown in Figure 4d.

Figure 4. (a) The high-performance thermoelectric material screening workflow for ternary compounds ABX₂ with diamond-like structures, reprinted with permission from ref. [139], copyright 2019 American Chemical Society; (b) workflow of the HTP screening process in Cu–containing metal chalcogenides, reprinted with permission from ref. [140], copyright 2022 American Chemical Society. Room temperature κ_L varying with number mismatch in (c) ternary Cu– and Ag–based chalcogenides; and (d) Cu–Sn–S compounds, reprinted with permission from ref. [145], copyright 2020 the Springer Nature.

4. Strategies for Optimizing the TE Performances of CBDL Compounds

There are two main basic principles for achieving high-performance TE materials, one of which is to maximize the *PF* while the other is to minimize the κ_L . One of the typical characteristics of CBDL compounds is that the highly degenerated valence band results in the compound possessing a high Seebeck coefficient. The common defect for most CBDL compounds is that they generally have low carrier concentrations at low temperatures and high κ_L in their initial form. Therefore, trying to promote or maintain *PF* is the critical issue in the development of high-performance CBDL compounds while reducing the κ_L .

4.1. Several Representative Strategies for Enhancing Power Factor

4.1.1. Optimization in Carrier Concentration

As most TE materials have an optimal carrier concentration in the range of 10¹⁹ to 10^{21} cm⁻³, one of the most common approaches to maximizing the PFs of TE materials is tuning the carrier concentration [4,5]. For optimizing the carrier concentration in CBDL compounds, a quantity of impurities with different functions has been introduced into pristine compounds. Successful cases among $Cu(In, Ga)_{1-x}N_xTe_2$ (M = Ag, Zn, Ni, Mn, Cd, Hg, Gd) [23,34,146–151], Cu_{1-x}Fe_{1+x}S₂ [152], Cu₃Sb_{1-x}N_xSe₄ (N = As, Zr, Hf, Al, In, Sn, Ge, Bi, La) [42,43,113,115,132,153,154] and Cu₂Cd_{1-x}In_xSnSe₄ [155] have demonstrated that doping towards a higher charge-carrier density can effectively improve the electrical performances of the compounds. In addition, introducing vacancies is also another available approach to optimizing the electrical transport properties as well as minimizing the κ_L . On the one hand, as the most common form of *p*-type doping, Cu vacancy has been widely created in CBDL compounds owing to the small formation energy of defects, as seen in $Cu_{12-x}N_xSb_4S_{13}$ (N = Cd, Mn, Ge, Fe, Co, Sn, Ni, Bi, Zn) [98,156], $Cu_{1-x}(In, In)$ Ga)Te₂ [40,157,158] and Cu_{3-x}SbSe₄ [159]. On the other hand, it is feasible to use anion vacancies for donor doping, as displayed in $Cu_2ZnGeSe_{4-x}S_x$ [160], $CuFeS_{2-x}$ [161], $Cu_{12}Sb_4S_{13-x}Se_x$ [100] and Cu_2FeSnS_{4-x} [162].

4.1.2. Modulation Doping

It should be pointed out that the effect of traditional doping by substituting host atoms by alien ones is fettered by the solubility limit, and worse still, it is easy to cause intense charge-carrier scattering at room temperature, resulting in a loss of electrical transport performance [7]. Compared with traditional doping, modulation doping can effectively avoid the above problems. It is usually designed as a composite composed of two kinds of nanoparticles, and only one of them contains a doping agent [86]. Recently, an

unconventional doping (UDOP) strategy was proposed by Zhou et al. [27,28,163] supported this view, where the increase in the vacancies concentration was obtained from an Sb vacancy stabilized by Al rather than alien atoms. Combined with an optimized hole concentration $(3.1 \times 10^{20} \cdot \text{cm}^{-3})$ and a maintained carrier mobility, a considerably high average *PF* of 19 μ W·cm⁻¹·K⁻² was obtained in the temperature range of 300–723 K [27]. In contrast to the conventional doping method (Figure 5a), the carrier concentration and carrier mobility decouple by vacancies in the route of UDOP (Figure 5b). In other words, it can be considered that in the purposeful doping process, the doping additive itself does not provide carriers, but acts as a "stabilizer" of the cationic vacancy (Figure 5c–e), which actually offers additional holes for *p*-type conductive semiconductors. It has been proved that the modulation-doping strategy can be used to not only improve the *PF* of CBDL compounds, but also to maintain the carrier mobility of various compounds requiring a high carrier concentration.

Figure 5. Schematic diagrams of (**a**) conventional; and (**b**)unconventional doping; Cu₃SbSe₄ with (**c**) perfect lattice; (**d**) Sb vacancy; and (**e**) Sb vacancy surrounded by Al as a stabilizer. Reprinted with permission from ref. [27], copyright 2022 Wiley-VCH GmbH.

4.1.3. Pseudocubic Structure

Apart from obtaining an optimal carrier concentration, the regulation of PF is also linked with the electronic band structure [5,7,8]. The high band convergence (N_v) originating from high symmetric crystal structures is beneficial for obtaining large α and high σ . Similarly, the CBDL compounds derived from the high-symmetry cubic phase, ensures that they possess highly degenerate valence bands [18,32,33]. In particular, Zhang et al. [31] proposed a pseudocubic strategy were the *PF* could be optimized to the greatest extent by pruning the band split-off, which was also considered as an efficient approach to exploring and screening high-performance non-cubic TE compounds. As shown in Figure 6a,b, when the valence band-splitting energy Δ_{CF} approximates to zero, this means that the distortion parameter $\eta = c/2a$ approaches one; in other words, the bands are in a degenerate state at this time, which can trigger the maximum PF. The pseudocubic approach, also known as the unity- η rule ($\eta = c/2a$), has been successfully applied to screen out high-performance tetragonal CBDL compounds [23,35,76,97]. For instance, Li et al. [97] found that the Δ_{CF} of $Cu_2ZnSnSe_4$ could be appropriately tuned by applying the proper strain, which provides an alternative way to improve the thermoelectric properties of the compound. As a systematic strategy, the unity- η rule is used to qualitatively guide the evaluation and manipulation of TE diamond-like lattices. For instance, the distortion parameter η , as a function of the cell parameter a, for tetragonal diamond-like chalcogenides [32] is shown in Figure 6c. It should be noted that the pseudocubic approach is limited to low-symmetry material with an ideal bandgap and a low κ_L [7].

Figure 6. Band convergence in (**a**) cubic zincblende structure; and (**b**) pseudocubic ternary chalcopyrites, reprinted with permission from ref. [31], copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. The *c* and *a* are the lattice constants. Γ_{4v} is a nondegenerate band, and Γ_{5v} is a doubly degenerate band. Δ_{CF} is the crystal field-induced energy split at the top of the Γ_{4v} and Γ_{5v} bands; (**c**) distortion parameter η as a function of the lattice parameter *a*, reprinted with permission from ref. [32], copyright 2018 Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature.

4.1.4. Softening *p*-*d* Hybridization

It is well known that the *p*-*d* hybridization in CBDL compounds is very strongly attributable to the quite small separation energy among the atomic levels of chalcogen *p*-orbitals and Cu-3*d* states [91,99,164]. For most CBDL compounds, the electric transport channel (mostly the valence band maxima, VBM) is regarded as being constructed by Cu-X bonds [18,22]. The chemical bonding and the electronic structure in TE materials are closely linked to their internal charge carriers and phonon transport behaviors. Therefore, the regulation of *p*-*d* hybrid strength potentially serves as an adjustable critical parameter in adjusting the properties of CBDL compounds. Taking Cu₂SnSe₃ [25] as an example in Figure 7a, the VBM is mostly occupied by the p-d hybridization from Cu-Se bonds, which acts as the charge-conduction pathway as well as a structural retainer. In contrast, the *p*-orbitals of Sn atoms contribute little to the occupied states while the conductive band is primarily dominant. Similarly, the Cu-X conduction channel has also been demonstrated in some other CBDL compounds, such as CuGaS₂ [164], Cu₃SbSe₄ [24], Cu₂CdZnSe₄ [70], etc. The Cu₃SbSe₄ diamond-like compound with a small bandgap is also an example influenced by the strong relativistic orbital-contraction effect [164, 165]. Softening *p*-*d* hybridization, as an active strategy, has been adopted to synergistically improve the electronic and thermal transport performance of Cu_3SbSe_4 via Ag-doping [49,166], as shown in Figure 7b. Zhang et al. [49] discovered that the PF of Cu₃SbSe₄ was significantly enhanced by changes in the bandgap and the density of states caused by the softening of *p*-*d* hybridization, which, accompanied by Ag-doping, induced large strain fluctuations in some local structural distortions and resulted in greatly reduced κ_L . In addition, Ge et al. [53] introduced an abnormally high concentration of indium in CuFeS₂ compound, as shown in Figure 7c-e; the indium was not fully ionized to In³⁺ cation when on the Cu sublattice and existed mainly in the In⁺ oxidation state. The latter, with $5s^2$ lone-pair electrons, could cause strong local bond distortions, thereby softening the In-S and Cu-S bonds and introducing localized low-frequency vibrations [89]. Therefore, a low κ_L value of 0.79 W·m⁻¹·K⁻¹ (Figure 7f) and a high *zT* value of 0.36 were recorded at 723 K in $Cu_{1-x}In_xFeS_2$ samples.

Figure 7. (a) Schematic diagrams of the partial charge density of the states close to upper valenceband in Cu₂SnSe₃ on (100) crystal face, reprinted with permission from ref. [25], copyright 2010 American Chemical Society; (b) the calculated electron-localization function of Ag-doped Cu₃SbSe₄ on (101) crystal face, reproduced from ref. [49], copyright 2019 the Royal Society of Chemistry. The X-ray photoelectron spectra (XPS) of (c) Cu 2*p*; (d) Fe 2*p*; and (e) In 3*d* for the Cu_{1-x}In_xFeS₂ samples; and (f) the κ_L of Cu_{1-x}In_xFeS₂ samples, reproduced from ref. [53], copyright 2022 Elsevier Ltd.

4.2. Strategies for Reducing Lattice Thermal Conductivity 4.2.1. Point-Defect Scattering

In the thermoelectric field, defect and nanostructuring engineering have been widely adopted to optimize the thermoelectric performance enhancement of TE materials, especially the dislocations and nanostructured interfaces which involve the scattering of lowand mid-frequency phonons, have received more attention [6]. In the process of improving the TE performance for CBDL compounds, the existence of point defects plays a more important and beneficial role in phonon scattering than in affecting the electrical behavior. There are two main types of influence on κ_I originating from point defects in TE materials: the mass fluctuation (Figure 8a) and strain field fluctuation (Figure 8b) among the host and guest atoms. Shen et al. [40] testified that substitutional defects of Ag_{Cu} in CuGaTe₂ could reduce the κ_L more efficiently than substitutional defects of Zn_{Ga} or In_{Ga} at the equivalent concentration, which was attributable to the larger mass fluctuation. When the dominant point defects are vacancies, the types of scattering inflected by the strain and mass fluctuations can be maximized [5]. Thus, the compounds with an intrinsic high concentration of cation vacancies, such as In₂Te₃ and Ga₂Te₃, were introduced in CuGaTe₂ to depress the κ_L of the matrix phase by constituting solid solutions [80]. Additionally, an elaborate investigation about the room temperature κ for cation-substituted Cu₂ZnGeSe_{4-x}S_x compounds displayed a reduction of 42% for κ_L , where the reduction caused by mass contrast accounted for 34% and the remaining 8% was caused by strain fluctuations [160]. In their latest study, Xie et al. [151] observed the off-centering effect (Figure 8c) of an Ag atom by investigating the thermal transmission behaviors in $Cu_{1-x}Ag_xGaTe_2$ as well as in $CuGa_{1-x}In_xTe_2$. It is obvious that the off-centering behavior of the Ag atom means a new phonon scattering mechanism is brought about by point defects, where the Ag-alloyed solid solutions resulted in an extremely low κ_{L} , which was attributed to crystallographic distortion and extra-strong acoustic-optical phonon scattering, as shown in Figure 8d. Moreover, it can also be seen that a modified Klemens model was developed by integrating the off-centering effect and alloy-scattering with the crystallographic distortion parameter (η), which can be used as an indicator to predict the κ of diamondoid solid solutions.

Figure 8. Schematic diagrams of (**a**) mass fluctuation; (**b**) strain fluctuation; (**c**)off-centering effect in phonon transport; and (**d**) relationship between tetragonal distortion and thermal conductivity for different Ag-based and Cu-based diamondoid compounds, the *V* is crystal volume, *m* is the formula weight. Reprinted with permission from ref. [151], copyright 2023 American Chemical Society.

4.2.2. Nanostructure Engineering

Controlling the nanostructures of TE materials is also an effective approach to enhancing phonon scattering through realizing an all-scale hierarchical architecture in TE materials. Zhang et al. [26] adopted a quinary alloy compound system with a complex nanosized strain-domain structure in CuGaTe₂ (Figure 9a), which made the room-temperature κ decline from 6.1 W·m⁻¹·K⁻¹ for the initial compound to 1.5 W·m⁻¹·K⁻¹ for the Ag and In co-doped sample. Wang et al. [167] achieved low κ values of 0.491 W·m⁻¹·K⁻¹ and $0.481 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$ in Cu₃Sb_{0.92}Sc_{0.08}Se₄ and Cu₃Sb_{0.92}Y_{0.08}Se₄ at 623 K, respectively, with a constructed multiscale heterostructure. In 2021, Hu et al. [103] designed pore networks for tetrahedrite $Cu_{12}Sb_4S_{13}$ -based TE materials using a BiI₃ sublimation technique, as shown in Figure 9b, which led to a hierarchical structure which contained pores, pore interfaces, point defects, and granular precipitates. The effect of various scattering mechanisms on phonon-transport behaviors for Cu₁₂Sb₄S₁₃-based samples are shown in Figure 9c,d. First, the existence of specially designed pores and pore interfaces reduced the κ_L of samples with 0.7 vol% annealed pores (AP) by about 36%. Furthermore, Cu_{1.8}S precipitates, point defects involved Ni-alloying and Bi-doping, dislocations, the solid solution of impurity Cu_3SbS_4 phase as well as volume expansion also contributed to the reduction of κ_L because they realized full-scale phonon scattering in the TE sample. Consequently, a ~72% reduction in the κ_L was obtained for samples with 0.7 vol% AP with the addition of a small amount of Bil₃. Moreover, previous works demonstrated that high-density stacking faults (SFs) could be realized in doped Cu₂SnSe₃ [62,66,168], as shown in Figure 9e–g, which also caused strong scattering of phonons as a phonon-scattering center. In addition, solvothermal synthesis [43,134,135,153] and ball milling [113,115] are effective and convenient approaches to constructing nanostructures for TE materials.

4.2.3. Nanocomposite

Compositing with uniformly dispersed nanoinclusions, secondary phases or nanoparticles has been widely considered as a predominant and effective strategy to optimize TE performance in CBDL compounds [27,47,67,118,128,169–172]. Nanoparticles (NPs) introduced in composites can be effectively used as intermediate frequency phonons scatter centers and diminish κ_L [5]. Sun et al. successfully incorporated ZnO [173] and Nb₂O₅ [174] NPs into the grain boundaries of $Cu_{11.5}Ni_{0.5}Sb_4S_{13}$ compounds via mechanical alloying and spark plasma sintering, respectively, and the both composites achieved a reduced κ and high zTs. In our previous work, we also introduced graphene nanosheets or SnTe NPs into Cu₃SbSe₄ through ball milling and realized the optimization of thermoelectric properties. Hu et al. [175] obtained a relatively low κ of 0.9 W·m⁻¹·K⁻¹ at all temperatures in Fe₂O₃-dispersed Cu₁₂Sb₄S₁₃ tetrahedrite via the combination of nanostructuring and defect engineering (Figure 10a-e). As shown in Figure 10a-d, dislocations along with diverse nanostructures, such as NPs, nanotwins and nanoprecipitates, were introduced into $Cu_{11.5}Ni_{0.5}Sb_4S_{13}$ by compositing magnetic γ -Fe₂O₃ NPs, which realized all-scale hierarchical phonon scattering in the samples, making the zT reached up to ~1.0 (Figure 10f). For reducing κ_L , Li et al. [39] synthesized CuInTe₂-based compounds with in-situ formed InTe

nanostrips, which wrapped the nanodomains (Figure 10g–j) and resulted in the reduction of κ_L by a factor of ~2 compared to parent compound. It is notably anticipated that the content, dimensions and especially distribution of nano-additives in composites have an important impact the effective regulation of TE performances.

Figure 9. (a) Schematic illustration of the transport behaviors for phonons and holes in CuGaTe₂, reprinted with permission from ref. [26], copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (b) schematic illustration showing the formation of a porous network during BiI₃ sublimation; (c) κ_L of sample with 0.7 vol% AP, which took Umklapp process (U), porous interfaces (I), precipitates (P), point defects (PD), dislocation cores (DC), and strains (DS, D = DC + DS) into account; (d) frequency-dependent accumulative reduction in the lattice thermal conductivity of the EMT-corrected sample with 0.7 vol% AP due to various scattering mechanisms. Reprinted with permission from ref. [103], copyright 2021 Wiley-VCH GmbH; (e) calculated generalized stacking fault energies as a function of normalized Burger's vector *b* <010> in Cu₂SnSe₃-based system, the insert was the high-dense stacking faults (SFs) in (Fe, Ag, In)-doped Cu₂SnSe₃. Reprinted with permission from ref. [66], copyright 2022 Elsevier Ltd. High-dense SFs in (f) (Ag, Ga, Na)-doped (reprinted with permission from ref. [62], copyright 2021 Wiley-VCH GmbH); and (g) Ni-doped (reprinted with permission from ref. [168], copyright 2021 American Chemical Society) Cu₂SnSe₃.

4.2.4. Lattice Softening Effects

The internal strain fluctuation induced by lattice defects, such as nanoprecipitates and dislocations, can locally shift the phonon frequencies in the TE material, which in principle can bring about lattice-softening accompanied by phonon scattering owing to changes in phonon speed, as shown in Figure 11a. In several cases, improvements in TE performance ascribed to lattice-softening through the introduction of vacancies or alloying have been presented [176–178], such as SnTe with AgSbTe₂ alloying, and the lattice-softening effect in Cu₂Se, as shown in Figure 11b. In 2019, Hanus et al. [179] authenticated that the changes of thermal transport behavior in the PbTe system were attributable to the lattice-softening through alloying or lattice defects, and pointed out that the modulation of lattice stiffness had a significant impact on the phonon transport in some states. In addition, Muchtar et al. [176] introduced lattice-softening into SnTe by inserting Ti and Zr atoms, which effectively suppressed the phonon group velocities and reduced the κ . Moreover, Snyder et al. [180] found the lattice-softening effect induced by charge-carrier-mediated in several high-performing (zT > 1) TE materials (such as SnTe, PbTe, Nb0_{.8+x}CoSb, etc.) contributed more than 20% to zT. Simultaneously, the results shown in Figure 11c indicate that a strong dependence of sound velocities v_s on Hall charge-carrier concentration n_H was observed in each compound in which the measured v_s significantly decreased with increasing n_H . Lattice-softening effects also have been successfully used to improve the TE performances of CBDL compounds. Pöhls et al. [181] demonstrated that the Li-induced phonon-softening

effect was feasible to enhance the TE performance of chalcopyrite CuGaTe₂. Xie et al. [38] obtained an extremely low κ_L of 0.47 W·m⁻¹·K⁻¹ at 850 K in Ag-doped CuInTe₂ compound that was attributed to strong interactions among low-frequency optical phonons derived from the weakened Ag-Te bonds, as shown in Figure 11d.

Figure 10. Microstructure of the Cu_{11.5}Ni_{0.5}Sb₄S₁₃–1.0% Fe₂O₃ sample including: (**a**)HRTEM image; (**b**) dislocation; (**c**) nanotwins; and (**d**) HRTEM images of the area D; (**f**) schematic diagram of phonon scattering in γ -Fe₂O₃ dispersed Cu_{11.5}Ni_{0.5}Sb₄S₁₃ (CNAS), (**e**) *zTs* for all CNAS-*x*Fe₂O₃ samples. Reprinted with permission from ref. [175], copyright 2020 American Chemical Society; (**g**) high-angle annular dark field; (**h**) high-resolution TEM image; (**i**) magnified TEM image and the fast Fourier transform of the CuInTe₂:23 wt% InTe bulk sample; (**j**) schematic illustrating of the transport in both the phonons-p and electrons-e. Reprinted with permission from ref. [39], copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 11. (a) Schematic illustration of lattice-softening effects and phonon scattering originated from internal-strain fields. Reprinted with permission from ref. [179], copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (b) schematic illustration of lattice-softening in Cu₂Se. Reprinted with permission from ref. [177], copyright 2022, American Chemical Society; (c) sound velocities plotted against measured Hall charge-carrier concentration for SnTe, PbTe, Nb0_{.8+x}CoSb, CoSb₃, La_{3-x}Te₄, Pr_{3-x}Te₄, and Mo₃Sb₇. Reprinted with permission from ref. [180], copyright 2021 Elsevier Inc.; and (d) contribution of distinct scattering mechanism to the κ_L of Cu_{0.8}Ag_{0.2}InTe₂. Here the U, B, P and R represent Umklapp scattering, grain-boundaries scattering, point-defect scattering, and phonon-resonance scattering, respectively; the insert shows the calculated phonon relaxation times τ versus phonon frequency ω for Cu_{0.8}Ag_{0.2}InTe₂ with different scattering mechanisms. Reprinted with permission from ref. [38], copyright 2020 The Royal Society of Chemistry.

4.3. Synergistic Regulation

4.3.1. Entropy Engineering

In the process of optimizing the electrical and thermal transport properties of TE materials, it is never just to adjust one of them individually. To some extent, the above optimization process can realize the decoupling of electron and phonon transmission. Entropy engineering provides a new pathway to synergistically optimize the electrical, thermal, and mechanical properties for promoting the development of CBDL compounds [15,41,90,182,183]. Through synergistic regulation, Xie et al. [41] achieved a maximum zT of 1.5 at 850 K in the quinary (Cu_{0.8}Ag_{0.2})(In_{0.2}Ga_{0.8})Te₂ compound, in which Ga-substituted In and Agsubstituted Cu effectively optimized the electrical and thermal transport properties, respectively. In addition, Cai et al. [183] obtained a high zT of 1.02 in CuInTe₂ compound, which was attributed to the reduction of κ by devising a high-entropy structure as well as by improving the carrier mobility by one order of magnitude. In many cases long before that, Liu et al. [15] utilized the entropy attribute as the comprehensive gene-like performance indicator to screen and devise TE materials with high *zT*. As can be seen in Figure 12a,b, a special example can be noted that when multi-component alloy elements are adopted in compounds, the configurational entropy can especially be changed. For a given multicomponent material, the maximum entropy lies on the solubility parameter δ of the whole material, which is linked to the mismatch of the atomic radius, shear modulus and lattice constant in the material, as shown in Figure 12c. Instructing with δ -criterion (Figure 12d), representative multi-component (Cu/Ag)(In/Ga)Te₂-based CBDL compounds with zTsapproaches to 1.6 were screened out owing to the optimization of entropy.

Figure 12. (a) Schematic diagram of the lattice framework in multicomponent materials compared to a simple binary compound; (b) schematic diagram of the entropy engineering with multicomponent TE materials; (c) the maximum configurational entropy (in units of k_B per formula unit) as a function of a material's solubility parameter δ for given multicomponent TE materials, where *n* is the number of components; and (d) plots of maximum *zT* versus the configurational entropy in several selected TE systems. Reprinted with permission from ref. [15], copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

4.3.2. Progressive Regulation Strategy

The progressive regulation strategy can be realized via integrating point defects and microstructure engineering. Luo et al. [30,36] successfully acquired high-performance CuInTe₂ compounds by integrating the cation/anion substitution and in-situ oxidation, as shown in Figure 13a. Taking the in-situ substitution reaction between CuInTe₂ and ZnO additive as a case [36], the priority generation of acceptor defects Zn_{In}^- significantly optimized the *PF* while the In₂O₃ nanoinclusions incurred by the in-situ reaction led to a low κ of CuInTe₂. Through triple doping in Cu₂SnSe₃, Hu et al. [62] obtained an excellent *zT* of 1.6 at 823 K in cubic Cu_{1.85}Ag_{0.15}(Sn_{0.88}Ga_{0.1}Na_{0.02})Se₃ and a decent *zT_{ave}* of 0.7 from 475 to 823 K in Cu_{1.85}Ag_{0.15}(Sn_{0.93}Mg_{0.06}Na_{0.01})Se₃ via synergistic effects. As shown in Figure 13b, during the management process from the initial phase to (Ag, Ga, Na)-doped Cu₂SnSe₃, the gradually improved *zT* originated from symmetry enhancing, alloying scattering and dislocation/nanoprecipitate construction, respectively. Similarly, synergistically optimized CuGaTe₂ [135] (Figure 13c), Cu₃SbSe₄ nanocrystals with Cu_{2-x}Se in-situ inclusions [48], CuIn_{1-x}Ga_xTe₂:yInTe with in situ formed nanoscale phase InTe [39],

Cu₂SnSe₃ with CuInSe₂ alloying [184], *etc*, demonstrated that the progressive and collaborative optimization strategies have been widely applied in CBDL materials.

Figure 13. (a) Synergistic strategies of point defects and microstructure engineering in CuInTe₂. Reprinted with permission from ref. [30,36], copyright 2015 Elsevier Ltd. All rights reserved and 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (b) quality factor analysis on the relationship of chemical potential η versus zT in Cu₂SnSe₃–based compounds. Reprinted with permission from ref. [62], copyright 2021 Wiley-VCH GmbH; and (c) schematic diagram illustrating various phonon scattering mechanisms and the electron localized region near carbon particles (CPs) within the CuGaTe₂+x wt% CPs sample. Reprinted with permission from ref. [135], copyright 2020 The Royal Society of Chemistry.

5. CBDL-Based TE Devices

For practical TE applications, moving from high-performance materials to highefficiency devices is of great significance. CBDL compounds conform to the concept of green environmental protection and have great practical application value while the absence of *n*-type conductive compounds greatly hinders the manufacture and application of CBDL-based TE devices. During the journey of device development, researchers have made a lot of efforts. In 2017, Qiu et al. [185] manufactured a CBDL-based TE module via integrating high-performance *n*-type Ag_{0.9}Cd_{0.1}InSe₂ and *p*-type Cu_{0.99}In_{0.6}Ga_{0.4}Te₂ leg, respectively, as shown in Figure 14a. The output power of module reached 0.06 W under a temperature difference of 520 K (Figure 14b), demonstrating that diamond-like compounds are also potential candidates for TE applications. On the foundation of obtaining high-performance in (Sn, Bi)-codoped nanocrystalline Cu₃SbSe₄ materials, Liu et al. [153] fabricated a hot pipe integrated by a series of ring-shaped Cu₃Sb_{0.88}Sn_{0.10}Bi_{0.02}Se₄-based TE modules (Figure 14c), which can be used for the purpose of retrieving the waste heat from exhaust gas pipes in vehicles. Moreover, Li et al. [103] synthetized a segmented $Cu_{12}Sb_4S_{13}$ -based single-leg module, which had a superior conversion efficiency η of 6% at ΔT = 419 K, as shown in Figure 14d,e. Recently, the Cu₃SbS₄-based single-leg module synthetized by Zhang et al. [28] approached a conversion efficiency η of 2% with $\Delta T = 375$ K, which reached to 5.5% predicted by the COMSOL simulation analysis (Figure 14f,g). Apart from realizing excellent TE efficiency, good thermal stability is also crucial for the manufacturing of TE devices. In practice, the volatilization induced softening and decomposition is the core issue for thermoelectric selenides and sulfides working at elevated temperatures. In the latest research from Zhou's group [163] demonstrated that the compositing of CuAlS₂ significantly optimized the thermal stability of Cu₃SbSe₄-based compounds by pushing the decomposition temperature to a higher value, while also greatly improving the mechanical properties of the material. Eventually, a maximum η over 3% was achieved at a ΔT = of 367 K and an I = 0.8 A. Based on the above research, it seems that CBDL has considerable TE performance and has gradually attracted researchers' attention in the field of practical TE applications.

Figure 14. (a) Schematic diagram of the fabricated diamond-like module, and (b) plots of output voltage and power versus current for TE module based on diamond-like materials. Reprinted with permission from ref. [185], copyright 2018 The Royal Society of Chemistry. (c) Schematic diagrams of annular Cu₃Sb_{0.88}Sn_{0.10}Bi_{0.02}Se₄–based TE modules, reprinted with permission from ref. [153], copyright 2017 The Royal Society of Chemistry. (d) The Mini-PEM used to measure the conversion efficiency of a segmented Cu₁₂Sb₄S₁₃–based single-leg, and (e) experimental power generation efficiency for the segmented leg. The insets are the fabricated TE single-leg. Reprinted with permission from ref. [103], copyright 2021 Wiley-VCH GmbH. (f) Experimental TE conversion efficiency η and (g) simulated η by COMSOL Multiphysics software for Cu₃SbS₄–based single-leg module, the inset is a photo of mini-PEM test. Reprinted with permission from ref. [28], copyright 2023 Wiley-VCH GmbH.

6. Conclusions and Perspectives

By reviewing the research on copper-based diamond-like thermoelectric materials, it has been found that diverse compounds appear to have excellent TE performances as well as possessing *zT* higher than unity and an even approach to two. Advanced approaches to guide the development of new high-performance CBDL materials have been found, such as machine learning, high-throughput and union- η rules. There are also various approaches to improving the TE properties of CBDL compounds. It is worth considering that, during the process of optimizing electrical and thermal transport behaviors of TE materials, the regulation is never carried out separately, but that coordination and unification of the two are sought. Based on the efforts of researchers, the CBDL compounds have been greatly developed. There is no escaping the fact that the softening and decomposition of Cu-based compounds occurs when the compounds are exposed to high temperatures. Therefore, compared with practical materials, the CBDL compounds still have great room for improvement.

Considering practical applications, it is of great significance to shift our focus from high-performance TE materials to highly efficient devices. The integration for TE equipment requires both high-performance *n*-type and *p*-type legs. Currently, CBDL compounds are mostly *p*-type materials, while the further development of *n*-type CBDL compounds is beneficial for its TE application. In addition, in the research and development process of TE devices, it is also necessary to consider the comprehensive properties such as thermal stability, processability and self-compatibility. Therefore, the feasibility of manufacturing efficient TE devices based on CBDL materials remains a highly challenging issue.

The exploration of material properties is still ongoing, and the practical application of devices also needs to be developed. There has been a deep understanding of the transport mechanism of TE materials with the iteration and update of characterization methods, accompanied by the assistance of more advanced manufacturing technologies, and that the development of high-performance TE materials and devices based on CBDL compounds has a bright future.

Author Contributions: Conceptualization, W.W. and D.Z.; methodology, W.W. and L.B.; writing original draft preparation, W.W. and J.Z.; writing—review and editing, W.W.; funding acquisition, D.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (grant no. 51772132); Shandong Province Higher Educational Youth Innovative Science and Technology Program (grant no. 2019KJA018); the leader of scientific research studio program of Jinan (grant no. 2021GXRC082).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. *Science* **2008**, *321*, 1457–1461. [CrossRef] [PubMed]
- Shi, X.L.; Zou, J.; Chen, Z.G. Advanced Thermoelectric Design: From Materials and Structures to Devices. *Chem. Rev.* 2020, 120, 7399–7515. [CrossRef] [PubMed]
- 3. DiSalvo, F.J. Thermoelectric cooling and power generation. Science 1999, 285, 703–706. [CrossRef] [PubMed]
- 4. Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [CrossRef] [PubMed]
- 5. Tan, G.; Zhao, L.D.; Kanatzidis, M.G. Rationally Designing High-Performance Bulk Thermoelectric Materials. *Chem. Rev.* 2016, 116, 12123–12149. [CrossRef]
- Mukherjee, M.; Srivastava, A.; Singh, A.K. Recent Advances in Designing Thermoelectric Materials. J. Mater. Chem. C 2022, 10, 12524–12555. [CrossRef]
- He, J.; Tritt, T.M. Advances in Thermoelectric Materials Research: Looking Back and Moving Forward. *Science* 2017, 357, eaak9997. [CrossRef]
- Wu, Z.; Zhang, S.; Liu, Z.; Mu, E.; Hu, Z. Thermoelectric Converter: Strategies from Materials to Device Application. *Nano Energy* 2022, 91, 106692. [CrossRef]
- 9. Pei, Y.Z.; Shi, X.Y.; LaLonde, A.; Wang, H.; Chen, L.D.; Snyder, G.J. Convergence of Electronic Bands for High Performance Bulk Thermoelectrics. *Nature* **2011**, 473, 66–69. [CrossRef]
- Liu, W.; Yin, K.; Zhang, Q.J.; Uher, C.; Tang, X.F. Eco-Friendly High-Performance Silicide Thermoelectric Materials. *Nat. Sci. Rev.* 2017, 4, 611–626. [CrossRef]
- Liu, W.S.; Jie, Q.; Kim, H.S.; Ren, Z.F. Current Progress and Future Challenges in Thermoelectric Power Generation: From Materials to Devices. *Acta Mater.* 2015, 87, 357–376. [CrossRef]
- 12. Li, J.F.; Pan, Y.; Wu, C.H.; Sun, F.H.; Wei, T.R. Processing of Advanced Thermoelectric Materials. *Sci. China Technol. Sci.* 2017, 60, 1347–1364. [CrossRef]
- 13. He, Y.; Day, T.; Zhang, T.; Liu, H.L.; Shi, X.; Chen, L.D.; Snyder, G.J. High Thermoelectric Performance in Non-Toxic Earth-Abundant Copper Sulfide. *Adv. Mater.* **2014**, *26*, 3974–3978. [CrossRef]
- 14. Cao, Y.; Sheng, Y.; Li, X.; Xi, L.L.; Yang, J. Application of Materials Genome Methods in Thermoelectrics. *Fron. Mater.* **2022**, *9*, 861817. [CrossRef]
- 15. Liu, R.H.; Chen, H.Y.; Zhao, K.P.; Qin, Y.T.; Jiang, B.B.; Zhang, T.S.; Sha, G.; Shi, X.; Uher, C.; Zhang, W.Q.; et al. Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials. *Adv. Mater.* **2017**, *29*, 1702712. [CrossRef]
- 16. Tee, S.Y.; Ponsford, D.; Lay, C.L.; Wang, X.; Wang, X.; Neo, D.C.J.; Wu, T.; Thitsartarn, W.; Yeo, J.C.C.; Guan, G.; et al. Thermoelectric Silver-Based Chalcogenides. *Adv. Sci.* 2022, *9*, 2204624. [CrossRef]
- Slack, G.A. New Materials and Performance Limits for Thermoelectric Cooling. In CRC Handbook of Thermoelectrics; Rowe, D.M., Ed.; CRC Press: Boca Raton, FL, USA, 1995; pp. 407–440.
- 18. Qiu, P.F.; Shi, X.; Chen, L.D. Cu-Based Thermoelectric Materials. Energy Storage Mater. 2016, 3, 85–97. [CrossRef]
- 19. Skoug, E.J.; Cain, J.D.; Morelli, D.T. High Thermoelectric Figure of Merit in the Cu₃SbSe₄–Cu₃SbS₄ solid Solution. *Appl. Phys. Lett.* **2011**, *98*, 261911. [CrossRef]
- Liu, R.H.; Xi, L.L.; Liu, H.L.; Shi, X.; Zhang, W.Q.; Chen, L.D. Ternary Compound CuInTe₂: A Promising Thermoelectric Material with Diamond-Like Structure. *Chem. Commun.* 2012, 48, 3818–3820. [CrossRef]
- Suekuni, K.; Takabatake, T. Research Update: Cu-S Based Synthetic Minerals as Efficient Thermoelectric Materials at Medium Temperatures. APL Mater. 2016, 4, 104503. [CrossRef]
- 22. Fan, J.; Carrillo-Cabrera, W.; Akselrud, L.; Antonyshyn, I.; Chen, L.D.; Grin, Y.R. New Monoclinic Phase at the Composition Cu₂sSnSe₃ and Its Thermoelectric Properties. *Inorg. Chem.* **2013**, *52*, 11067–11074. [CrossRef] [PubMed]
- Liu, R.H.; Qin, Y.T.; Cheng, N.; Zhang, J.W.; Shi, X.; Grin, Y.R.; Chen, L.D. Thermoelectric Performance of Cu_{1-X-δ}Ag_XInTe₂ Diamond-Like Materials with a Pseudocubic Crystal Structure. *Inorg. Chem. Front.* **2016**, *3*, 1167–1177. [CrossRef]

- Skoug, E.J.; Morelli, D.T. Role of Lone-Pair Electrons in Producing Minimum Thermal Conductivity in Nitrogen-Group Chalcogenide Compounds. *Phys. Rev. Lett.* 2011, 107, 235901. [CrossRef] [PubMed]
- Shi, X.; Xi, L.L.; Fan, J.; Zhang, W.Q.; Chen, L.D. Cu-Se Bond Network and Thermoelectric Compounds with Complex Diamondlike Structure. *Chem. Mater.* 2010, 22, 6029–6031. [CrossRef]
- Zhang, J.; Huang, L.L.; Zhu, C.; Zhou, C.J.; Jabar, B.; Li, J.; Zhu, X.G.; Wang, L.; Song, C.J.; Xin, H.X.; et al. Design of Domain Structure and Realization of Ultralow Thermal Conductivity for Record-High Thermoelectric Performance in Chalcopyrite. *Adv. Mater.* 2019, *31*, e1905210. [CrossRef]
- Huang, Y.L.; Zhang, B.; Li, J.W.; Zhou, Z.Z.; Zheng, S.K.; Li, N.H.; Wang, G.W.; Zhang, D.; Zhang, D.L.; Han, G.; et al. Unconventional Doping Effect Leads to Ultrahigh Average Thermoelectric Power Factor in Cu₃SbSe₄-Based Composites. *Adv. Mater.* 2022, 34, 2109952. [CrossRef]
- Zhang, D.; Wang, X.C.; Wu, H.; Huang, Y.L.; Zheng, S.K.; Zhang, B.; Fu, H.X.; Cheng, Z.E.; Jiang, P.F.; Han, G.; et al. High Thermoelectric Performance in Earth-Abundant Cu₃SbS₄ by Promoting Doping Efficiency via Rational Vacancy Design. *Adv. Funct. Mater.* 2023, 33, 2214163. [CrossRef]
- 29. Plirdpring, T.; Kurosaki, K.; Kosuga, A.; Day, T.; Firdosy, S.; Ravi, V.; Snyder, G.J.; Harnwunggmoung, A.; Sugahara, T.; Ohishi, Y.; et al. Chalcopyrite CuGaTe₂: A High-Efficiency Bulk Thermoelectric Material. *Adv. Mater.* **2012**, *24*, 3622–3626. [CrossRef]
- Luo, Y.B.; Yang, J.Y.; Jiang, Q.H.; Li, W.X.; Zhang, D.; Zhou, Z.W.; Cheng, Y.D.; Ren, Y.Y.; He, X. Progressive Regulation of Electrical and Thermal Transport Properties to High-Performance CuInTe₂ thermoelectric Materials. *Adv. Energy Mater.* 2016, *6*, 160007. [CrossRef]
- Zhang, J.W.; Liu, R.H.; Cheng, N.; Zhang, Y.B.; Yang, J.H.; Uher, C.; Shi, X.; Chen, L.D.; Zhang, W. High-Performance Pseudocubic Thermoelectric Materials from Non-Cubic Chalcopyrite Compounds. *Adv. Mater.* 2014, 26, 3848–3853. [CrossRef]
- 32. Wei, T.R.; Qin, Y.T.; Deng, T.T.; Song, Q.F.; Jiang, B.B.; Liu, R.H.; Qiu, P.F.; Shi, X.; Chen, L.D. Copper Chalcogenide Thermoelectric Materials. *Sci. China Mater.* **2018**, *62*, 8–24. [CrossRef]
- 33. Zhang, D.; Bai, H.C.; Li, Z.L.; Wang, J.L.; Fu, G.S.; Wang, S.F. Multinary Diamond-Like Chalcogenides for Promising Thermoelectric Application. *Chin. Phys. B* 2018, 27, 047206. [CrossRef]
- Zhang, Z.P.; Gao, Y.; Wu, Y.; Wang, B.Y.; Sun, W.L.; Yu, L.; Wei, S.T.; Zheng, S.Q. P-Type Doping of Transition Metal Elements to Optimize the Thermoelectric Properties of CuGaTe₂. *Chem. Eng. J.* 2022, 427, 131807. [CrossRef]
- 35. Qin, Y.T.; Qiu, P.F.; Liu, R.H.; Li, Y.L.; Hao, F.; Zhang, T.S.; Ren, D.D.; Shi, X.; Chen, L.D. Optimized Thermoelectric Properties in Pseudocubic Diamond-Like CuGaTe₂ Compounds. *J. Mater. Chem. A* **2016**, *4*, 1277–1289. [CrossRef]
- Luo, Y.B.; Yang, J.Y.; Jiang, Q.H.; Li, W.X.; Xiao, Y.; Fu, L.W.; Zhang, D.; Zhou, Z.W.; Cheng, Y.D. Large Enhancement of Thermoelectric Performance of CuInTe₂ via a Synergistic Strategy of Point Defects and Microstructure Engineering. *Nano Energy* 2015, 18, 37–46. [CrossRef]
- Yan, Y.C.; Lu, X.; Wang, G.Y.; Zhou, X.Y. Zt = 1.1 in CuInTe₂ Solid Solutions Enabled by Rational Defect Engineering. ACS Appl. Energy Mater. 2019, 3, 2039–2048. [CrossRef]
- Xie, H.Y.; Hao, S.Q.; Cai, S.T.; Bailey, T.P.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow Thermal Conductivity in Diamondoid Lattices: High Thermoelectric Performance in Chalcopyrite Cu_{0.8+Y}Ag_{0.2}In_{1-Y}Te₂. *Energy Environ. Sci.* 2020, 13, 3693–3705. [CrossRef]
- Li, M.; Luo, Y.; Hu, X.J.; Cai, G.M.; Han, Z.K.; Du, Z.L.; Cui, G.L. Synergistic Regulation of Phonon and Electronic Properties to Improve the Thermoelectric Performance of Chalcogenide CuIn_{1-x}Ga_xTe₂:yInTe (x = 0–0.3) with In Situ Formed Nanoscale Phase InTe. *Adv. Electron. Mater.* 2020, *6*, 190114. [CrossRef]
- 40. Shen, J.W.; Zhang, X.Y.; Chen, Z.W.; Lin, S.Q.; Li, J.; Li, W.; Li, S.S.; Chen, Y.; Pei, Y.Z. Substitutional Defects Enhancing Thermoelectric CuGaTe₂. J. Mater. Chem. A 2017, 5, 5314–5320. [CrossRef]
- Xie, H.Y.; Hao, S.Q.; Bailey, T.P.; Cai, S.T.; Zhang, Y.Y.; Slade, T.J.; Snyder, G.J.; Dravid, V.P.; Uher, C.; Wolverton, C.; et al. Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (Cu_{1-x}Ag_x)(In_{1-y}Ga_y)Te₂. *J. Am. Chem. Soc.* 2021, 143, 5978–5989. [CrossRef]
- 42. Wang, B.Y.; Zheng, S.Q.; Chen, Y.X.; Wu, Y.; Li, J.; Ji, Z.; Mu, Y.N.; Wei, Z.B.; Liang, Q.; Liang, J.X. Band Engineering for Realizing Large Effective Mass in Cu₃SbSe₄ by Sn/La Codoping. *J. Phys. Chem.* C **2020**, *124*, 10336–10343. [CrossRef]
- Wang, B.Y.; Zheng, S.Q.; Wang, Q.; Li, Z.L.; Li, J.; Zhang, Z.P.; Wu, Y.; Zhu, B.S.; Wang, S.Y.; Chen, Y.X.; et al. Synergistic Modulation of Power Factor and Thermal Conductivity in Cu₃SbSe₄ Towards High Thermoelectric Performance. *Nano Energy* 2020, 71, 104658. [CrossRef]
- 44. Kumar, A.; Dhama, P.; Saini, D.S.; Banerji, P. Effect of Zn Substitution at a Cu Site on The Transport Behavior and Thermoelectric Properties in Cu₃SbSe₄. *RSC Adv.* **2016**, *6*, 5528–5534. [CrossRef]
- Zou, T.H.; Qin, X.Y.; Li, D.; Li, L.L.; Sun, G.L.; Wang, Q.Q.; Zhang, J.; Xin, H.X.; Liu, Y.F.; Song, C.J. Enhanced Thermoelectric Performance of β-Zn₄Sb₃ Based Composites Incorporated with Large Proportion of Nanophase Cu₃SbSe₄. *J. Alloys Compd.* 2014, 588, 568–572. [CrossRef]
- Li, J.M.; Li, D.; Song, C.J.; Wang, L.; Xin, H.X.; Zhang, J.; Qin, X.Y. Realized High Power Factor and Thermoelectric Performance in Cu₃SbSe₄. *Intermetallics* 2019, 109, 68–73. [CrossRef]
- 47. Li, J.M.; Ming, H.W.; Zhang, B.L.; Song, C.J.; Wang, L.; Xin, H.X.; Zhang, J.; Qin, X.Y.; Li, D. Ultra-Low Thermal Conductivity and High Thermoelectric Performance Realized in a Cu₃SbSe₄ Based System. *Mater. Chem. Front.* **2021**, *5*, 324–332. [CrossRef]

- Xie, D.D.; Zhang, B.; Zhang, A.; Chen, Y.; Yan, Y.; Yang, H.; Wang, G.; Wang, G.; Han, X.; Han, G.; et al. High Thermoelectric Performance of Cu₃SbSe₄ Nanocrystals with Cu_{2-x}Se in Situ Inclusions Synthesized by a Microwave-Assisted Solvothermal Method. *Nanoscale* 2018, *10*, 14546–14553. [CrossRef]
- 49. Zhang, D.; Yang, J.Y.; Bai, H.C.; Luo, Y.B.; Wang, B.; Hou, S.H.; Li, Z.L.; Wang, S. Significant Average Zt Enhancement in Cu₃SbSe₄-Based Thermoelectric Material via Softening P-D Hybridization. *J. Mater. Chem. A* **2019**, *7*, 17648–17654. [CrossRef]
- 50. Chen, K.; Di Paola, C.; Du, B.; Zhang, R.Z.; Laricchia, S.; Bonini, N.; Weber, C.; Abrahams, I.; Yan, H.; Reece, M. Enhanced Thermoelectric Performance of Sn-Doped Cu₃SbS₄. *J. Mater. Chem. C* **2018**, *6*, 8546–8552. [CrossRef]
- 51. Shen, M.J.; Lu, S.Y.; Zhang, Z.F.; Liu, H.Y.; Shen, W.X.; Fang, C.; Wang, Q.Q.; Chen, L.C.; Zhang, Y.W.; Jia, X.P. Bi and Sn Co-Doping Enhanced Thermoelectric Properties of Cu₃SbS₄ Materials with Excellent Thermal Stability. ACS Appl. Mater. Interfaces 2020, 12, 8271–8279. [CrossRef]
- Xie, H.Y.; Su, X.L.; Zheng, G.; Zhu, T.; Yin, K.; Yan, Y.G.; Uher, C.; Kanatzidis, M.G.; Tang, X.F. The Role of Zn in Chalcopyrite CuFeS₂: Enhanced Thermoelectric Properties of Cu_{1-x}Zn_xFeS₂ with in Situ Nanoprecipitates. *Adv. Energy Mater.* 2016, *7*, 601299.
- Ge, B.Z.; Lee, H.; Zhou, C.J.; Lu, W.Q.; Hu, J.B.; Yang, J.; Cho, S.P.; Qiao, G.J.; Shi, Z.Q.; Chung, I. Exceptionally Low Thermal Conductivity Realized in the Chalcopyrite CuFeS₂ via Atomic-Level Lattice Engineering. *Nano Energy* 2022, 94, 106941. [CrossRef]
- Ge, B.Z.; Shi, Z.Q.; Zhou, C.J.; Hu, J.B.; Liu, G.W.; Xia, H.Y.; Xu, J.T.; Qiao, G.J. Enhanced Thermoelectric Performance of N-Type Eco-Friendly Material Cu_{1-x}Ag_xFeS₂ (X=0–0.14) via Bandgap Tuning. *J. Alloys Compd.* 2019, 809, 151717. [CrossRef]
- Tippireddy, S.; Azough, F.; Vikram; Bhui, A.; Chater, P.; Kepaptsoglou, D.; Ramasse, Q.; Freer, R.; Grau-Crespo, R.; Biswas, K.; et al. Local Structural Distortions and Reduced Thermal Conductivity in Ge-Substituted Chalcopyrite. *J. Mater. Chem. A* 2022, 10, 23874–23885. [CrossRef]
- Tan, Q.; Sun, W.; Li, Z.L.; Li, J.F. Enhanced Thermoelectric Properties of Earth-Abundant Cu₂SnS₃ via in Doping Effect. J. Alloys Compd. 2016, 672, 558–563. [CrossRef]
- 57. Zhang, Z.; Zhao, H.W.; Wang, Y.F.; Hu, X.H.; Lyu, Y.; Cheng, C.C.; Pan, L.; Lu, C.H. Role of Crystal Transformation on the Enhanced Thermoelectric Performance in Mn-Doped Cu₂SnS₃. *J. Alloys Compd.* **2019**, *780*, 618–625. [CrossRef]
- Zhao, Y.Q.; Gu, Y.; Zhang, P.; Hu, X.H.; Wang, Y.F.; Zong, P.; Pan, L.; Lyu, Y.; Koumoto, K. Enhanced Thermoelectric Performance in Polymorphic Heavily Co-Doped Cu₂SnS₃ through Carrier Compensation by Sb Substitution. *Sci Technol. Adv. Mater.* 2021, 22, 363–372. [CrossRef]
- 59. Huang, T.Y.; Yan, Y.C.; Peng, K.L.; Tang, X.D.; Guo, L.J.; Wang, R.F.; Lu, X.; Zhou, X.Y.; Wang, G.Y. Enhanced Thermoelectric Performance in Copper-Deficient Cu₂GeSe₃. *J. Alloys Compd.* **2017**, *723*, 708–713. [CrossRef]
- 60. Wang, R.F.; Li, A.; Huang, T.; Zhang, B.; Peng, K.L.; Yang, H.Q.; Lu, X.; Zhou, X.Y.; Han, X.D.; Wang, G.Y. Enhanced Thermoelectric Performance in Cu₂GeSe₃ via (Ag,Ga)-Co-Doping on Cation Sites. *J. Alloys Compd.* **2018**, *769*, 218–225. [CrossRef]
- 61. Yang, J.; Lu, B.B.; Song, R.F.; Hou, H.G.; Zhao, L.J.; Zhang, X.Z.; Liu, G.W.; Qiao, G.J. Realizing Enhanced Thermoelectric Properties in Cu₂GeSe₃ via a Synergistic Effect of in and Ag Dual-Doping. *J. Eur. Ceram. Soc.* **2022**, *42*, 169–174. [CrossRef]
- Hu, L.; Luo, Y.B.; Fang, Y.W.; Qin, F.Y.; Cao, X.; Xie, H.Y.; Liu, J.W.; Dong, J.F.; Sanson, A.; Giarola, M.; et al. High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu₂SnSe₃. *Adv. Energy Mater.* 2021, *11*, 2100661. [CrossRef]
- Li, Y.Y.; Liu, G.H.; Cao, T.F.; Liu, L.M.; Li, J.T.; Chen, K.X.; Li, L.F.; Han, Y.M.; Zhou, M. Enhanced Thermoelectric Properties of Cu₂SnSe₃ by (Ag, In)-Co-Doping. *Adv. Funct. Mater.* 2016, *26*, 6025–6032. [CrossRef]
- 64. Cheng, X.; Yang, D.W.; Su, X.L.; Xie, H.Y.; Liu, W.; Zheng, Y.; Tang, X.F. Synergistically Enhanced Thermoelectric Performance of Cu₂SnSe₃-Based Composites via Ag Doping Balance. *ACS Appl. Mater. Interfaces* **2021**, *13*, 55178–55187. [CrossRef]
- Ming, H.W.; Zhu, G.F.; Zhu, C.; Qin, X.Y.; Chen, T.; Zhang, J.; Li, D.; Xin, H.X.; Jabar, B. Boosting Thermoelectric Performance of Cu₂SnSe₃ via Comprehensive Band Structure Regulation and Intensified Phonon Scattering by Multidimensional Defects. ACS Nano 2021, 15, 10532–10541. [CrossRef]
- Ming, H.W.; Zhu, C.; Chen, T.; Yang, S.H.; Chen, Y.; Zhang, J.; Li, D.; Xin, H.X.; Qin, X.Y. Creating High-Dense Stacking Faults and Endo-Grown Nanoneedles to Enhance Phonon Scattering and Improve Thermoelectric Performance of Cu₂SnSe₃. *Nano Energy* 2022, 100, 107510. [CrossRef]
- Ming, H.W.; Zhu, C.; Qin, X.Y.; Zhang, J.; Li, D.; Zhang, B.L.; Chen, T.; Li, J.M.; Lou, X.N.; Xin, H.X. Improved Figure of Merit of Cu₂SnSe₃ via Band Structure Modification and Energy-Dependent Carrier Scattering. ACS Appl. Mater. Interfaces 2020, 12, 19693–19700. [CrossRef]
- Zhu, C.; Chen, Q.; Ming, H.W.; Qin, X.Y.; Yang, Y.; Zhang, J.; Peng, D.; Chen, T.; Li, D.; Kawazoe, Y. Improved Thermoelectric Performance of Cu₁₂Sb₄S₁₃ through Gd-Substitution Induced Enhancement of Electronic Density of States and Phonon Scattering. *ACS Appl. Mater. Interfaces* 2021, *13*, 25092–25101. [CrossRef]
- Zhu, C.; Ming, H.; Huang, L.; Zhang, B.; Lou, X.; Li, D.; Jabar, B.; Xin, H.; Zhang, J.; Qin, X. Achieving High Power Factor and Thermoelectric Performance through Dual Substitution of Zn and Se in Tetrahedrites Cu₁₂Sb₄S₁₃. *Appl. Phys. Lett.* 2019, 115, 182102. [CrossRef]
- Liu, M.L.; Chen, I.W.; Huang, F.Q.; Chen, L.D. Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu₂CdSnSe₄. Adv. Mater. 2009, 21, 3808–3812. [CrossRef]
- Chen, Q.F.; Yan, Y.C.; Zhan, H.; Yao, W.; Chen, Y.; Dai, J.Y.; Sun, X.N.; Zhou, X.Y. Enhanced Thermoelectric Performance of Chalcogenide Cu₂CdSnSe₄ by Ex-Situ Homogeneous Nanoinclusions. J. Mater. 2016, 2, 179–186.

- 72. Fan, F.J.; Yu, B.; Wang, Y.X.; Zhu, Y.L.; Liu, X.J.; Yu, S.H.; Ren, Z.F. Colloidal Synthesis of Cu₂CdSnSe₄ Nanocrystals and Hot-Pressing to Enhance the Thermoelectric Figure-of-Merit. J. Am. Chem. Soc. **2011**, 133, 15910–15913. [CrossRef] [PubMed]
- Chen, Q.F.; Wang, G.W.; Zhang, A.J.; Yang, D.F.; Yao, W.; Peng, K.L.; Yan, Y.C.; Sun, X.N.; Liu, A.P.; Wang, G.Y.; et al. Colloidal Synthesis of Cu_{2-x}Ag_xCdSnSe₄ Nanocrystals: Microstructures Facilitate High Performance Thermoelectricity. *J. Mater. Chem. C* 2015, 3, 12273–12280. [CrossRef]
- Basu, R.; Mandava, S.; Bohra, A.; Bhattacharya, S.; Bhatt, R.; Ahmad, S.; Bhattacharyya, K.; Samanta, S.; Debnath, A.K.; Singh, A.; et al. Improving the Thermoelectric Performance of Tetrahedrally Bonded Quaternary Selenide Cu₂CdSnSe₄ Using Cdse Precipitates. J. Electron. Mater. 2019, 48, 2120–2130. [CrossRef]
- Chetty, R.; Bali, A.; Femi, O.E.; Chattopadhyay, K.; Mallik, R.C. Thermoelectric Properties of in-Doped Cu₂ZnGeSe₄. J. Electron. Mater. 2015, 45, 1625–1632. [CrossRef]
- 76. Song, Q.F.; Qiu, P.F.; Hao, F.; Zhao, K.P.; Zhang, T.S.; Ren, D.D.; Shi, X.; Chen, L.D. Quaternary Pseudocubic Cu₂TmSnSe₄(Tm = Mn, Fe, Co) Chalcopyrite Thermoelectric Materials. *Adv. Electron. Mater.* **2016**, *2*, 1600312. [CrossRef]
- 77. Song, Q.F.; Qiu, P.F.; Zhao, K.; Deng, T.T.; Shi, X.; Chen, L.D. Crystal Structure and Thermoelectric Properties of Cu₂Fe_{1-x}Mn_xSnSe₄ Diamond-Like Chalcogenides. *ACS Appl. Energy Mater.* **2019**, *3*, 2137–2146. [CrossRef]
- 78. Song, Q.F.; Qiu, P.F.; Chen, H.; Zhao, K.; Guan, M.; Zhou, Y.; Wei, T.R.; Ren, D.D.; Xi, L.; Yang, J.; et al. Enhanced Carrier Mobility and Thermoelectric Performance in Cu₂FeSnSe₄ Diamond-Like Compound via Manipulating the Intrinsic Lattice Defects. *Mater. Today Phys.* 2018, 7, 45–53. [CrossRef]
- Pavan Kumar, V.; Guilmeau, E.; Raveau, B.; Caignaert, V.; Varadaraju, U.V. A New Wide Band Gap Thermoelectric Quaternary Selenide Cu₂MgSnSe₄. J. Appl. Phys. 2015, 118, 155101. [CrossRef]
- 80. Shen, J.W.; Zhang, X.Y.; Lin, S.Q.; Li, J.; Chen, Z.W.; Li, W.; Pei, Y.Z. Vacancy Scattering for Enhancing the Thermoelectric Performance of CuGaTe₂ Solid Solutions. *J. Mater. Chem. A* **2016**, *4*, 15464–15470. [CrossRef]
- Zhong, Y.; Tang, J.; Liu, H.T.; Chen, Z.W.; Lin, L.; Ren, D.; Liu, B.; Ang, R. Optimized Strategies for Advancing N-Type PbTe Thermoelectrics: A Review. ACS Appl. Mater. Interfaces 2020, 12, 49323–49334. [CrossRef]
- Shi, H.N.; Qin, Y.X.; Qin, B.C.; Su, L.Z.; Wang, Y.P.; Chen, Y.J.; Gao, X.; Liang, H.; Ge, Z.H.; Hong, T.; et al. Incompletely Decomposed In₄SnSe₄ Leads to High-Ranged Thermoelectric Performance in N-Type PbTe. *Adv. Energy Mater.* 2022, *12*, 2202539. [CrossRef]
- 83. Jia, B.H.; Huang, Y.; Wang, Y.; Zhou, Y.; Zhao, X.D.; Ning, S.T.; Xu, X.; Lin, P.J.; Chen, Z.Q.; Jiang, B.B.; et al. Realizing High Thermoelectric Performance in Non-Nanostructured N-Type PbTe. *Energy Environ. Sci.* 2022, *15*, 1920–1929. [CrossRef]
- 84. Wang, S.Q.; Chang, C.; Bai, S.L.; Qin, B.C.; Zhu, Y.C.; Zhan, S.P.; Zheng, J.Q.; Tang, S.W.; Zhao, L.D. Fine Tuning of Defects Enables High Carrier Mobility and Enhanced Thermoelectric Performance of N-Type PbTe. *Chem. Mater.* **2023**, *35*, 755–763. [CrossRef]
- 85. Xu, H.H.; Wan, H.; Xu, R.; Hu, Z.Q.; Liang, X.L.; Li, Z.; Song, J.M. Enhancing the Thermoelectric Performance of SnTe-CuSbSe₂ with an Ultra-Low Lattice Thermal Conductivity. *J. Mater. Chem. A* **2023**, *11*, 4310–4318. [CrossRef]
- Chen, Z.Y.; Guo, X.M.; Zhang, F.J.; Shi, Q.; Tang, M.J.; Ang, R. Routes for Advancing SnTe Thermoelectrics. J. Mater. Chem. A 2020, 8, 16790–16813. [CrossRef]
- Li, W.; Wu, Y.X.; Lin, S.Q.; Chen, Z.W.; Li, J.; Zhang, X.Y.; Zheng, L.L.; Pei, Y.Z. Advances in Environment-Friendly SnTe Thermoelectrics. ACS Energy Lett. 2017, 2, 2349–2355. [CrossRef]
- Tippireddy, S.; Azough, F.; Vikram; Tompkins, F.T.; Bhui, A.; Freer, R.; Grau-Crespo, R.; Biswas, K.; Vaqueiro, P.; Powell, A.V. Tin-Substituted Chalcopyrite: An N-Type Sulfide with Enhanced Thermoelectric Performance. *Chem. Mater.* 2022, 34, 5860–5873. [CrossRef]
- Xie, H.Y.; Su, X.L.; Hao, S.Q.; Zhang, C.; Zhang, Z.K.; Liu, W.; Yan, Y.G.; Wolverton, C.; Tang, X.F.; Kanatzidis, M.G. Large Thermal Conductivity Drops in the Diamondoid Lattice of CuFeS₂ by Discordant Atom Doping. *J. Am. Chem. Soc.* 2019, 141, 18900–18909. [CrossRef]
- Bo, L.; Li, F.J.; Hou, Y.B.; Wang, L.; Wang, X.L.; Zhang, R.P.; Zuo, M.; Ma, Y.Z.; Zhao, D.G. Enhanced Thermoelectric Properties of Cu₃SbSe₄ via Configurational Entropy Tuning. *J. Mater. Sci.* 2022, *57*, 4643–4651. [CrossRef]
- Fan, J.; Carrillo-Cabrera, W.; Antonyshyn, I.; Prots, Y.; Veremchuk, I.; Schnelle, W.; Drathen, C.; Chen, L.D.; Grin, Y. Crystal Structure and Physical Properties of Ternary Phases around the Composition Cu₅Sn₂Se₇ with Tetrahedral Coordination of Atoms. *Chem. Mater.* 2014, 26, 5244–5251. [CrossRef]
- Adhikary, A.; Mohapatra, S.; Lee, S.H.; Hor, Y.S.; Adhikari, P.; Ching, W.Y.; Choudhury, A. Metallic Ternary Telluride with Sphalerite Superstructure. *Inorg. Chem.* 2016, 55, 2114–2122. [CrossRef] [PubMed]
- Sturm, C.; Macario, L.R.; Mori, T.; Kleinke, H. Thermoelectric Properties of Zinc-Doped Cu₅Sn₂Se₇ and Cu₅Sn₂Te₇. *Dalton Trans.* 2021, 50, 6561–6567. [CrossRef] [PubMed]
- 94. Hasan, S.; San, S.; Baral, K.; Li, N.; Rulis, P.; Ching, W.Y. First-Principles Calculations of Thermoelectric Transport Properties of Quaternary and Ternary Bulk Chalcogenide Crystals. *Materials* **2022**, *15*, 2843–2871. [CrossRef] [PubMed]
- 95. Pavan Kumar, V.; Passuti, S.; Zhang, B.; Fujii, S.; Yoshizawa, K.; Boullay, P.; Le Tonquesse, S.; Prestipino, C.; Raveau, B.; Lemoine, P.; et al. Engineering Transport Properties in Interconnected Enargite-Stannite Type Cu_{2+x}Mn_{1-x}GeS₄ Nanocomposites. *Angew. Chem. Int. Ed. Engl.* 2022, *61*, e202210600. [CrossRef]
- Shi, X.Y.; Huang, F.Q.; Liu, M.L.; Chen, L.D. Thermoelectric Properties of Tetrahedrally Bonded Wide-Gap Stannite Compounds Cu₂ZnSn_{1-x}In_xSe₄. *Appl. Phys. Lett.* 2009, 94, 122103. [CrossRef]

- 97. Zou, D.F.; Nie, G.Z.; Li, Y.; Xu, Y.; Lin, J.; Zheng, H.; Li, J.G. Band Engineering via Biaxial Strain for Enhanced Thermoelectric Performance in Stannite-Type Cu₂ZnSnSe₄. *RSC Adv.* **2015**, *5*, 24908–24914. [CrossRef]
- 98. Prem Kumar, D.S.; Chetty, R.; Rogl, P.; Rogl, G.; Bauer, E.; Malar, P.; Mallik, R.C. Thermoelectric Properties of Cd Doped Tetrahedrite: Cu_{12-x}Cd_xSb₄S₁₃. *Intermetallics* **2016**, *78*, 21–29. [CrossRef]
- Chen, S.Y.; Gong, X.G.; Walsh, A.; Wei, S.H. Electronic Structure and Stability of Quaternary Chalcogenide Semiconductors Derived from Cation Cross-Substitution of II-VI And I-III-VI₂ compounds. *Phys. Rev. B* 2009, 79, 165211. [CrossRef]
- Lu, X.; Morelli, D.T.; Wang, Y.X.; Lai, W.; Xia, Y.; Ozolins, V. Phase Stability, Crystal Structure, and Thermoelectric Properties of Cu₁₂Sb4S_{13-x}Se_x Solid Solutions. *Chem. Mater.* 2016, 28, 1781–1786. [CrossRef]
- Chetty, R.; Bali, A.; Mallik, R.C. Tetrahedrites as Thermoelectric Materials: An Overview. J. Mater. Chem. C 2015, 3, 12364–12378.
 [CrossRef]
- 102. Lu, X.; Morelli, D.T.; Xia, Y.; Zhou, F.; Ozolins, V.; Chi, H.; Zhou, X.Y.; Uher, C. High Performance Thermoelectricity in Earth-Abundant Compounds Based on Natural Mineral Tetrahedrites. *Adv. Energy Mater.* **2013**, *3*, 342–348. [CrossRef]
- 103. Hu, H.H.; Zhuang, H.L.; Jiang, Y.L.; Shi, J.L.; Li, J.W.; Cai, B.W.; Han, Z.N.; Pei, J.; Su, B.; Ge, Z.H.; et al. Thermoelectric Cu₁₂Sb₄S₁₃-Based Synthetic Minerals with a Sublimation-Derived Porous Network. *Adv. Mater.* **2021**, *33*, e2103633. [CrossRef]
- 104. Bouyrie, Y.; Ohta, M.; Suekuni, K.; Kikuchi, Y.; Jood, P.; Yamamoto, A.; Takabatake, T. Enhancement in the Thermoelectric Performance of Colusites Cu₂₆A₂E₆S₃₂(A=Nb, Ta; E=Sn, Ge) Using E-Site Non-Stoichiometry. J. Mater. Chem. C 2017, 5, 4174–4184. [CrossRef]
- 105. Bourgès, C.; Gilmas, M.; Lemoine, P.; Mordvinova, N.E.; Lebedev, O.I.; Hug, E.; Nassif, V.; Malaman, B.; Daou, R.; Guilmeau, E. Structural Analysis and Thermoelectric Properties of Mechanically Alloyed Colusites. J. Mater. Chem. C 2016, 4, 7455–7463. [CrossRef]
- 106. Bourgès, C.; Bouyrie, Y.; Supka, A.R.; Al Rahal Al Orabi, R.; Lemoine, P.; Lebedev, O.I.; Ohta, M.; Suekuni, K.; Nassif, V.; Hardy, V.; et al. High-Performance Thermoelectric Bulk Colusite by Process Controlled Structural Disordering. *J. Am. Chem. Soc.* 2018, 140, 2186–2195. [CrossRef]
- Kim, F.S.; Suekuni, K.; Nishiate, H.; Ohta, M.; Tanaka, H.I.; Takabatake, T. Tuning the Charge Carrier Density in the Thermoelectric Colusite. J. Appl. Phys. 2016, 119, 175105. [CrossRef]
- 108. Pavan Kumar, V.; Supka, A.R.; Lemoine, P.; Lebedev, O.I.; Raveau, B.; Suekuni, K.; Nassif, V.; Al Rahal Al Orabi, R.; Fornari, M.; Guilmeau, E. High Power Factors of Thermoelectric Colusites Cu₂₆T₂Ge₆S₃₂ (T= Cr, Mo, W): Toward Functionalization of the Conductive "Cu-S" Network. *Adv. Energy Mater.* 2018, *9*, 1803249. [CrossRef]
- 109. Guélou, G.; Lemoine, P.; Raveau, B.; Guilmeau, E. Recent Developments in High-Performance Thermoelectric Sulphides: An Overview of the Promising Synthetic Colusites. *J. Mater. Chem. C* 2021, *9*, 773–795. [CrossRef]
- Bouyrie, Y.; Candolfi, C.; Dauscher, A.; Malaman, B.; Lenoir, B. Exsolution Process as a Route toward Extremely Low Thermal Conductivity in Cu₁₂Sb_{4-x}Te_xS₁₃ Tetrahedrites. *Chem. Mater.* 2015, 27, 8354–8361. [CrossRef]
- 111. Vaidya, M.; Muralikrishna, G.M.; Murty, B.S. High-Entropy Alloys by Mechanical Alloying: A Review. J. Mater. Res. 2019, 34, 664–686. [CrossRef]
- 112. Murty, B.S.; Ranganathan, S. Novel materials synthesis by mechanical alloying/milling. *Int. Mater. Rev.* **1998**, 43, 101–141. [CrossRef]
- 113. Wei, T.R.; Wang, H.; Gibbs, Z.M.; Wu, C.F.; Snyder, G.J.; Li, J.F. Thermoelectric Properties of Sn-Doped P-Type Cu₃SbSe₄: A Compound with Large Effective Mass and Small Band Gap. J. Mater. Chem. A 2014, 2, 13527–13533. [CrossRef]
- 114. Suryanarayana, C.; Ivanov, E.; Boldyrev, V.V. The Science and technology of mechanical Alloying. *Mater. Sci. Eng. A* 2001, 304, 151–158.
- 115. Zhang, D.; Yang, J.Y.; Jiang, Q.H.; Zhou, Z.W.; Li, X.W.; Xin, J.; Basit, A.; Ren, Y.Y.; He, X.; Chu, W.J.; et al. Combination of Carrier Concentration Regulation and High Band Degeneracy for Enhanced Thermoelectric Performance of Cu₃SbSe₄. ACS Appl. Mater. Interfaces 2017, 9, 28558–28565. [CrossRef]
- Chen, K.; Du, B.; Bonini, N.; Weber, C.; Yan, H.X.; Reece, M.J. Theory-Guided Synthesis of an Eco-Friendly and Low-Cost Copper Based Sulfide Thermoelectric Material. J. Phys. Chem. C 2016, 120, 27135–27140. [CrossRef]
- 117. Nautiyal, H.; Lohani, K.; Mukherjee, B.; Isotta, E.; Malagutti, M.A.; Ataollahi, N.; Pallecchi, I.; Putti, M.; Misture, S.T.; Rebuffi, L.; et al. Mechanochemical Synthesis of Sustainable Ternary and Quaternary Nanostructured Cu₂SnS₃, Cu₂ZnSnS₄, and Cu₂ZnSnSe₄ Chalcogenides for Thermoelectric Applications. *Nanomaterials* **2023**, *13*, 366–387. [CrossRef]
- Wang, W.Y.; Bo, L.; Wang, Y.P.; Wang, L.; Li, F.J.; Zuo, M.; Zhao, D.G. Enhanced Thermoelectric Properties of Graphene /Cu₃SbSe₄ Composites. J. Electron. Mater. 2021, 50, 4880–4886. [CrossRef]
- Wang, S.Y.; Xie, W.J.; Li, H.; Tang, X.F.; Zhang, Q.J. Effects of Cooling Rate on Thermoelectric Properties of N-Type Bi₂(Se_{0.4}Te_{0.6})₃ Compounds. J. Electron. Mater. 2011, 40, 1150–1157. [CrossRef]
- Xie, W.J.; Tang, X.F.; Yan, Y.G.; Zhang, Q.J.; Tritt, T.M. Unique Nanostructures and Enhanced Thermoelectric Performance of Melt-Spun Bisbte Alloys. *Appl. Phys. Lett.* 2009, 94, 102111. [CrossRef]
- Zhao, D.G.; Wang, L.; Wu, D.; Bo, L. Thermoelectric Properties of CuSnSe₃-Based Composites Containing Melt-Spun Cu-Te. *Metals* 2019, 9, 971–980. [CrossRef]
- 122. Zheng, Y.; Xie, H.Y.; Zhang, Q.; Suwardi, A.; Cheng, X.; Zhang, Y.F.; Shu, W.; Wan, X.J.; Yang, Z.L.; Liu, Z.H.; et al. Unraveling the Critical Role of Melt-Spinning Atmosphere in Enhancing the Thermoelectric Performance of P-Type Bi_{0.52}Sb_{1.48}Te₃ Alloys. ACS Appl. Mater. Interfaces **2020**, 12, 36186–36195. [CrossRef]

- 123. Ding, G.C.; Si, J.X.; Wu, H.F.; Yang, S.D.; Zhao, J.; Wang, G.W. Thermoelectric Properties of Melt Spun PbTe with Multi-Scaled Nanostructures. *J. Alloys Compd.* **2016**, *662*, 368–373. [CrossRef]
- 124. Yang, B.; Li, S.M.; Li, X.; Liu, Z.P.; Zhong, H.; Feng, S.K. Ultralow Thermal Conductivity and Enhanced Thermoelectric Properties of SnTe Based Alloys Prepared by Melt Spinning Technique. J. Alloys Compd. 2020, 837, 155568. [CrossRef]
- Geng, H.Y.; Zhang, J.L.; He, T.H.; Zhang, L.X.; Feng, J.C. Microstructure Evolution and Mechanical Properties of Melt Spun Skutterudite-Based Thermoelectric Materials. *Materials* 2020, 13, 984–998. [CrossRef]
- 126. Su, X.L.; Fu, F.; Yan, Y.G.; Zheng, G.; Liang, T.; Zhang, Q.; Cheng, X.; Yang, D.W.; Chi, H.; Tang, X.F.; et al. Self-Propagating High-Temperature Synthesis for Compound Thermoelectrics and New Criterion for Combustion Processing. *Nat. Commun.* **2014**, *5*, 4908–4915. [CrossRef]
- 127. Cheng, X.; You, Y.H.; Fu, J.F.; Hu, T.Z.; Liu, W.; Su, X.L.; Yan, Y.G.; Tang, X.F. Self-Propagating High-Temperature Synthesis and Thermoelectric Performances of CuSnSe₃. *J. Alloys Compd.* **2018**, *750*, 965–971. [CrossRef]
- 128. Cheng, X.; Zhu, B.; Yang, D.W.; Su, X.L.; Liu, W.; Xie, H.Y.; Zheng, Y.; Tang, X.F. Enhanced Thermoelectric Properties of Cu₂SnSe₃-Based Materials with Ag₂Se Addition. ACS Appl. Mater. Interfaces 2022, 14, 5439–5446. [CrossRef]
- Wei, S.T.; Wang, B.Y.; Zhang, Z.P.; Li, W.H.; Yu, L.; Wei, S.K.; Ji, Z.; Song, W.Y.; Zheng, S.Q. Achieving High Thermoelectric Performance through Carrier Concentration Optimization and Energy Filtering in Cu₃SbSe₄-Based Materials. *J. Mater.* 2022, *8*, 929–936. [CrossRef]
- Nandihalli, N.; Gregory, D.H.; Mori, T. Energy-Saving Pathways for Thermoelectric Nanomaterial Synthesis: Hydrothermal/Solvothermal, Microwave-Assisted, Solution-Based, and Powder Processing. *Adv. Sci.* 2022, 9, e2106052. [CrossRef]
- 131. Shi, X.L.; Tao, X.Y.; Zou, J.; Chen, Z.G. High-Performance Thermoelectric SnSe: Aqueous Synthesis, Innovations, and Challenges. *Adv. Sci.* 2020, *7*, 1902923. [CrossRef]
- Balow, R.B.; Tomlinson, E.P.; Abu-Omar, M.M.; Boudouris, B.W.; Agrawal, R. Solution-Based Synthesis and Characterization of Earth Abundant Cu₃(As,Sb)Se₄ Nanocrystal Alloys: Towards Scalable Room-Temperature Thermoelectric Devices. *J. Mater. Chem.* A 2016, 4, 2198–2204. [CrossRef]
- Xiong, Q.H.; Xie, D.D.; Wang, H.; Wei, Y.Q.; Wang, G.W.; Wang, G.Y.; Liao, H.J.; Zhou, X.Y.; Lu, X. Colloidal Synthesis of Diamond-Like Compound Cu₂SnTe₃ and Thermoelectric Properties of (Cu_{0.96}InTe₂)_{1-x}(Cu₂SnTe₃)_x Solid Solutions. *Chem. Eng. J.* 2021, 422, 129985. [CrossRef]
- 134. Wang, B.Y.; Wang, Y.L.; Zheng, S.Q.; Liu, S.C.; Li, J.; Chang, S.Y.; An, T.; Sun, W.L.; Chen, Y.X. Improvement of Thermoelectric Properties of Cu₃SbSe₄ Hierarchical with In-Situ Second Phase Synthesized by Microwave-Assisted Solvothermal Method. *J. Alloys Compd.* 2019, 806, 676–682. [CrossRef]
- 135. Huang, L.L.; Zhang, J.; Zhu, C.; Ge, Z.H.; Li, Y.Y.; Li, D.; Qin, X.Y. Synergistically Optimized Electrical and Thermal Properties by Introducing Electron Localization and Phonon Scattering Centers in CuGaTe₂ with Enhanced Mechanical Properties. *J. Mater. Chem. C* 2020, *8*, 7534–7542. [CrossRef]
- Wang, W.L.; Feng, W.L.; Ding, T.; Yang, Q. Phosphine-Free Synthesis and Characterization of Cubic-Phase Cu₂SnTe₃ Nanocrystals with Optical and Optoelectronic Properties. *Chem. Mater.* 2015, 27, 6181–6184. [CrossRef]
- Zhang, D.W.; Lim, W.Y.S.; Duran, S.S.F.; Loh, X.J.; Suwardi, A. Additive Manufacturing of Thermoelectrics: Emerging Trends and Outlook. ACS Energy Lett. 2022, 7, 720–735. [CrossRef]
- 138. Oztan, C.; Welch, R.; LeBlanc, S. Additive Manufacturing of Bulk Thermoelectric Architectures: A Review. *Energies* **2022**, *15*, 3121–3137. [CrossRef]
- 139. Li, R.X.; Li, X.; Xi, L.L.; Yang, J.; Singh, D.J.; Zhang, W.Q. High-Throughput Screening for Advanced Thermoelectric Materials: Diamond-Like Abx(2) Compounds. *ACS Appl. Mater. Interfaces* **2019**, *11*, 24859–24866. [CrossRef]
- Xiong, Y.F.; Jin, Y.Q.; Deng, T.T.; Mei, K.L.; Qiu, P.F.; Xi, L.L.; Zhou, Z.Y.; Yang, J.; Shi, X.; Chen, L.D. High-Throughput Screening for Thermoelectric Semiconductors with Desired Conduction Types by Energy Positions of Band Edges. J. Am. Chem. Soc. 2022, 144, 8030–8037. [CrossRef]
- 141. Xi, L.L.; Pan, S.S.; Li, X.; Xu, Y.L.; Ni, J.Y.; Sun, X.; Yang, J.; Luo, J.; Xi, J.; Zhu, W.H.; et al. Discovery of High-Performance Thermoelectric Chalcogenides through Reliable High-Throughput Material Screening. J. Am. Chem. Soc. 2018, 140, 10785–10793. [CrossRef]
- 142. Recatala-Gomez, J.; Suwardi, A.; Nandhakumar, I.; Abutaha, A.; Hippalgaonkar, K. Toward Accelerated Thermoelectric Materials and Process Discovery. ACS Appl. Energy Mater. 2020, 3, 2240–2257. [CrossRef]
- 143. Wang, T.; Zhang, C.; Snoussi, H.; Zhang, G. Machine Learning Approaches for Thermoelectric Materials Research. *Adv. Funct. Mater.* **2019**, *30*, 1906041. [CrossRef]
- 144. Sparks, T.D.; Gaultois, M.W.; Oliynyk, A.; Brgoch, J.; Meredig, B. Data Mining Our Way to the Next Generation of Thermoelectrics. *Scr. Mater.* **2016**, *111*, 10–15. [CrossRef]
- 145. Deng, T.T.; Wei, T.R.; Huang, H.; Song, Q.F.; Zhao, K.P.; Qiu, P.F.; Yang, J.; Chen, L.D.; Shi, X. Number Mismatch between Cations and Anions as an Indicator for Low Lattice Thermal Conductivity in Chalcogenides. *npj Comput. Mater.* **2020**, *6*, 81. [CrossRef]
- Cheng, N.S.; Liu, R.H.; Bai, S.; Shi, X.; Chen, L.D. Enhanced Thermoelectric Performance in Cd Doped CuInTe₂ Compounds. J. Appl. Phys. 2014, 115, 163705. [CrossRef]
- 147. Zhang, J.; Qin, X.Y.; Li, D.; Xin, H.X.; Song, C.J.; Li, L.L.; Wang, Z.M.; Guo, G.L.; Wang, L. Enhanced Thermoelectric Properties of Ag-Doped Compounds CuAg_xGa_{1-x}Te₂ (0 ≤ x ≤ 0.05). J. Alloys Compd. 2014, 586, 285–288. [CrossRef]

- Ahmed, F.; Tsujii, N.; Mori, T. Thermoelectric Properties of CuGa_{1-x}Mn_xTe₂: Power Factor Enhancement by Incorporation of Magnetic Ions. J. Mater. Chem. A 2017, 5, 7545–7554. [CrossRef]
- Kucek, V.; Drasar, C.; Kasparova, J.; Plechacek, T.; Navratil, J.; Vlcek, M.; Benes, L. High-Temperature Thermoelectric Properties of Hg-Doped CuInTe₂. J. Appl. Phys. 2015, 118, 125105. [CrossRef]
- Shen, J.W.; Chen, Z.W.; Lin, S.Q.; Zheng, L.L.; Li, W.; Pei, Y.Z. Single Parabolic Band Behavior of Thermoelectric P-Type CuGaTe₂. J. Mater. Chem. C 2016, 4, 209–214. [CrossRef]
- Xie, H.Y.; Li, Z.; Liu, Y.; Zhang, Y.K.; Uher, C.; Dravid, V.P.; Wolverton, C.; Kanatzidis, M.G. Silver Atom Off-Centering in Diamondoid Solid Solutions Causes Crystallographic Distortion and Suppresses Lattice Thermal Conductivity. J. Am. Chem. Soc. 2023, 145, 3211–3220. [CrossRef]
- 152. Li, Y.L.; Zhang, T.S.; Qin, Y.T.; Day, T.; Jeffrey Snyder, G.; Shi, X.; Chen, L.D. Thermoelectric Transport Properties of Diamond-Like Cu_{1-x}fe1_{+x}S₂ Tetrahedral Compounds. *J. Appl. Phys.* **2014**, *116*, 203705. [CrossRef]
- 153. Liu, Y.; García, G.; Ortega, S.; Cadavid, D.; Palacios, P.; Lu, J.Y.; Ibáñez, M.; Xi, L.L.; De Roo, J.; López, A.M.; et al. Solution-Based Synthesis and Processing of Sn- and Bi-Doped Cu₃SbSe₄ nanocrystals, Nanomaterials and Ring-Shaped Thermoelectric Generators. J. Mater. Chem. A 2017, 5, 2592–2602. [CrossRef]
- 154. Chang, C.H.; Chen, C.L.; Chiu, W.T.; Chen, Y.Y. Enhanced Thermoelectric Properties of Cu₃SbSe₄ by Germanium Doping. *Mater. Lett.* **2017**, *186*, 227–230. [CrossRef]
- 155. Chetty, R.; Bali, A.; Mallik, R.C. Thermoelectric Properties of Indium Doped Cu₂CdSnSe₄. Intermetallics 2016, 72, 17–24. [CrossRef]
- Ohta, M.; Jood, P.; Murata, M.; Lee, C.H.; Yamamoto, A.; Obara, H. An Integrated Approach to Thermoelectrics: Combining Phonon Dynamics, Nanoengineering, Novel Materials Development, Module Fabrication, and Metrology. *Adv. Energy Mater.* 2018, 9, 1801304. [CrossRef]
- 157. Kucek, V.; Drasar, C.; Navratil, J.; Plechacek, T.; Benes, L. Thermoelectric Properties of Ni-Doped CuInTe₂. J. Phys. Chem. Solids 2015, 83, 18–23. [CrossRef]
- 158. Zhong, Y.H.; Wang, P.D.; Mei, H.Y.; Jia, Z.Y.; Cheng, N.P. Elastic, Vibration and Thermodynamic Properties of Cu_{1-x}Ag_xInte₂ (x = 0, 0.25, 0.5, 0.75 and 1) Chalcopyrite Compounds via First Principles. *Semicond. Sci. Technol.* **2018**, *33*, 065014. [CrossRef]
- Wei, T.R.; Li, F.; Li, J.F. Enhanced Thermoelectric Performance of Nonstoichiometric Compounds Cu_{3-x}SbSe₄ by Cu Deficiencies. J. Electron. Mater. 2014, 43, 2229–2238. [CrossRef]
- Heinrich, C.P.; Day, T.W.; Zeier, W.G.; Snyder, G.J.; Tremel, W. Effect of Isovalent Substitution on the Thermoelectric Properties of the Cu₂ZnGeSe_{4-x}S_x Series of Solid Solutions. J. Am. Chem. Soc. 2014, 136, 442–448. [CrossRef]
- Li, J.H.; Tan, Q.; Li, J.F. Synthesis and Property Evaluation of CuFeS_{2-x} as Earth-Abundant and Environmentally-Friendly Thermoelectric Materials. J. Alloys Compd. 2013, 551, 143–149. [CrossRef]
- 162. Goto, Y.; Naito, F.; Sato, R.; Yoshiyasu, K.; Itoh, T.; Kamihara, Y.; Matoba, M. Enhanced Thermoelectric Figure of Merit in Stannite-Kuramite Solid Solutions Cu_{2+x}Fe_{1-x}SnS_{4-y} (x = 0–1) with Anisotropy Lowering. *Inorg. Chem.* 2013, 52, 9861–9866. [CrossRef]
- 163. Huang, Y.L.; Shen, X.C.; Wang, G.W.; Zhang, B.; Zheng, S.K.; Yang, C.C.; Hu, X.; Gong, S.K.; Han, G.; Wang, G.Y.; et al. High Thermoelectric Performance and Compatibility in Cu₃SbSe₄–CuAlS₂ Composites. *Energy Environ. Sci.* 2023, 16, 1763–1772. [CrossRef]
- Zhang, Y.B.; Xi, L.L.; Wang, Y.W.; Zhang, J.W.; Zhang, P.H.; Zhang, W.Q. Electronic Properties of Energy Harvesting Cu-Chalcogenides: P-D Hybridization and D-Electron Localization. *Comp. Mater. Sci.* 2015, 108, 239–249. [CrossRef]
- Do, D.; Ozolins, V.; Mahanti, S.D.; Lee, M.S.; Zhang, Y.S.; Wolverton, C. Physics of Bandgap Formation in Cu-Sb-Se Based Novel Thermoelectrics: The Role of Sb Valency and Cu D Levels. *J. Phys. Condens. Matter* 2012, 24, 415502. [CrossRef]
- 166. Ai, L.; Ming, H.W.; Chen, T.; Chen, K.; Zhang, J.H.; Zhang, J.; Qin, X.Y.; Li, D. High Thermoelectric Performance of Cu₃SbSe₄ Obtained by Synergistic Modulation of Power Factor and Thermal Conductivity. ACS Appl. Energy Mater. 2022, 5, 13070–13078. [CrossRef]
- 167. Wang, B.Y.; Zheng, S.Q.; Chen, Y.; Wang, Q.; Li, Z.; Wu, Y.; Li, J.; Mu, Y.; Xu, S.; Liang, J. Realizing Ultralow Thermal Conductivity in Cu₃SbSe₄ via All-Scale Phonon Scattering by Co-Constructing Multiscale Heterostructure and Iiib Element Doping. *Mater. Today Energy* 2021, 19, 100620. [CrossRef]
- 168. Li, C.; Song, H.L.; Cheng, Y.; Qi, R.J.; Huang, R.; Cui, C.Q.; Wang, Y.F.; Zhang, Y.; Miao, L. Highly Suppressed Thermal Conductivity in Diamond-Like Cu₂SnS₃ by Dense Dislocation. *ACS Appl. Energy Mater.* **2021**, *4*, 8728–8733. [CrossRef]
- Deng, S.; Jiang, X.; Chen, L.; Zhang, Z.; Qi, N.; Wu, Y.; Chen, Z.; Tang, X. The Reduction of Thermal Conductivity in Cd and Sn Co-Doped Cu₃SbSe₄-Based Composites with a Secondary-Phase Cdse. *J. Mater. Sci.* 2020, *56*, 4727–4740. [CrossRef]
- 170. Sharma, S.D.; Bayikadi, K.; Raman, S.; Neeleshwar, S. Synergistic Optimization of Thermoelectric Performance in Earth-Abundant Cu₂ZnSnS₄ by Inclusion of Graphene Nanosheets. *Nanotechnology* **2020**, *31*, 365402. [CrossRef]
- 171. Zhao, L.J.; Yu, L.H.; Yang, J.; Wang, M.Y.; Shao, H.C.; Wang, J.L.; Shi, Z.Q.; Wan, N.; Hussain, S.; Qiao, G.J.; et al. Enhancing Thermoelectric and Mechanical Properties of P-Type Cu₃SbSe₄-Based Materials via Embedding Nanoscale Sb₂Se₃. *Mater. Chem. Phys.* 2022, 292, 126669. [CrossRef]
- Hu, Z.Q.; Liang, X.L.; Dong, D.M.; Zhang, K.R.; Li, Z.; Song, J.M. To Improve the Thermoelectric Properties of Cu₂GeSe₃ via Gese Compensatory Compositing Strategy. J. Alloys Compd. 2022, 921, 166181. [CrossRef]
- 173. Sun, F.H.; Dong, J.F.; Tang, H.; Zhuang, H.L.; Li, J.F. ZnO-Nanoparticle-Dispersed Cu_{11.5}Ni_{0.5}Sb₄S_{13-δ} Tetrahedrite Composites with Enhanced Thermoelectric Performance. *J. Electron. Mater.* **2018**, *48*, 1840–1845. [CrossRef]

- 174. Sun, F.H.; Dong, J.F.; Tang, H.; Shang, P.P.; Zhuang, H.L.; Hu, H.; Wu, C.F.; Pan, Y.; Li, J.F. Enhanced Performance of Thermoelectric Nanocomposites Based on Cu₁₂Sb₄S₁₃ Tetrahedrite. *Nano Energy* **2019**, *57*, 835–841. [CrossRef]
- 175. Hu, H.H.; Sun, F.H.; Dong, J.F.; Zhuang, H.L.; Cai, B.; Pei, J.; Li, J.F. Nanostructure Engineering and Performance Enhancement in Fe₂O₃-Dispersed Cu₁₂Sb₄S₁₃ Thermoelectric Composites with Earth-Abundant Elements. ACS Appl. Mater. Interfaces 2020, 12, 17852–17860. [CrossRef] [PubMed]
- 176. Muchtar, A.R.; Srinivasan, B.; Tonquesse, S.L.; Singh, S.; Soelami, N.; Yuliarto, B.; Berthebaud, D.; Mori, T. Physical Insights on the Lattice Softening Driven Mid-Temperature Range Thermoelectrics of Ti/Zr-Inserted SnTe-an Outlook Beyond the Horizons of Conventional Phonon Scattering and Excavation of Heikes' Equation for Estimating Carrier Properties. *Adv. Energy Mater.* 2021, 11, 2101122. [CrossRef]
- 177. Bo, L.; Zhang, R.P.; Zhao, H.Y.; Hou, Y.B.; Wang, X.L.; Zhu, J.L.; Zhao, L.H.; Zuo, M.; Zhao, D.G. Achieving High Thermoelectric Properties of Cu₂Se via Lattice Softening and Phonon Scattering Mechanism. ACS Appl. Energy Mater. 2022, 5, 6453–6461. [CrossRef]
- 178. Tan, G.J.; Hao, S.Q.; Hanus, R.C.; Zhang, X.M.; Anand, S.; Bailey, T.P.; Rettie, A.J.E.; Su, X.; Uher, C.; Dravid, V.P.; et al. High Thermoelectric Performance in SnTe-AgSbTe₂ Alloys from Lattice Softening, Giant Phonon-Vacancy Scattering, and Valence Band Convergence. ACS Energy Lett. 2018, 3, 705–712. [CrossRef]
- 179. Hanus, R.; Agne, M.T.; Rettie, A.J.E.; Chen, Z.W.; Tan, G.J.; Chung, D.Y.; Kanatzidis, M.G.; Pei, Y.Z.; Voorhees, P.W.; Snyder, G.J. Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency. *Adv. Mater.* 2019, 31, e1900108. [CrossRef]
- 180. Slade, T.J.; Anand, S.; Wood, M.; Male, J.P.; Imasato, K.; Cheikh, D.; Al Malki, M.M.; Agne, M.T.; Griffith, K.J.; Bux, S.K.; et al. Charge-Carrier-Mediated Lattice Softening Contributes to High *zT* in Thermoelectric Semiconductors. *Joule* 2021, *5*, 1168–1182. [CrossRef]
- Pöhls, J.H.; MacIver, M.; Chanakian, S.; Zevalkink, A.; Tseng, Y.C.; Mozharivskyj, Y. Enhanced Thermoelectric Efficiency through Li-Induced Phonon Softening in CuGaTe₂. *Chem. Mater.* 2022, *34*, 8719–8728. [CrossRef]
- 182. Zhang, Z.X.; Zhao, K.P.; Chen, H.Y.; Ren, Q.Y.; Yue, Z.M.; Wei, T.R.; Qiu, P.F.; Chen, L.D.; Shi, X. Entropy Engineering Induced Exceptional Thermoelectric and Mechanical Performances in Cu₂–_yAg_yTe_{1–2x}S_xSe. *Acta Mater.* **2022**, 224, 117512. [CrossRef]
- Cai, J.F.; Yang, J.X.; Liu, G.Q.; Wang, H.X.; Shi, F.F.; Tan, X.J.; Ge, Z.H.; Jiang, J. Ultralow Thermal Conductivity and Improved Zt of CuInTe₂ by High-Entropy Structure Design. *Mater. Today Phys.* 2021, 18, 100394. [CrossRef]
- 184. Fan, Y.J.; Wang, G.Y.; Zhang, B.; Li, Z.; Wang, G.W.; Zhang, X.; Huang, Y.L.; Chen, K.S.; Gu, H.S.; Lu, X.; et al. Synergistic Effect of CuInSe₂ Alloying on Enhancing the Thermoelectric Performance of CuSnSe₃ Compounds. J. Mater. Chem. A 2020, 8, 21181–21188. [CrossRef]
- 185. Qiu, P.F.; Qin, Y.T.; Zhang, Q.H.; Li, R.X.; Yang, J.; Song, Q.F.; Tang, Y.S.; Bai, S.Q.; Shi, X.; Chen, L.D. Intrinsically High Thermoelectric Performance in AgInSe₂ N-Type Diamond-Like Compounds. *Adv. Sci.* **2018**, *5*, 1700727. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.