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Abstract: The viscoelastic relaxation spectrum is vital for constitutive models and for insight into the
mechanical properties of materials, since, from the relaxation spectrum, other material functions used
to describe rheological properties can be uniquely determined. The spectrum is not directly accessible
via measurement and must be recovered from relaxation stress or oscillatory shear data. This paper
deals with the problem of the recovery of the relaxation time spectrum of linear viscoelastic material
from discrete-time noise-corrupted measurements of a relaxation modulus obtained in the stress
relaxation test. A two-level identification scheme is proposed. In the lower level, the regularized
least-square identification combined with generalized cross-validation is used to find the optimal
model with an arbitrary time-scale factor. Next, in the upper level, the optimal time-scale factor is
determined to provide the best fit of the relaxation modulus to experiment data. The relaxation time
spectrum is approximated by a finite series of power–exponential basis functions. The related model
of the relaxation modulus is proved to be given by compact analytical formulas as the products of
power of time and the modified Bessel functions of the second kind. The proposed approach merges
the technique of an expansion of a function into a series of independent basis functions with the
least-squares regularized identification and the optimal choice of the time-scale factor. Optimality
conditions, approximation error, convergence, noise robustness and model smoothness are studied
analytically. Applicability ranges are numerically examined. These studies have proved that using
a developed model and algorithm, it is possible to determine the relaxation spectrum model for a
wide class of viscoelastic materials. The model is smoothed and noise robust; small model errors are
obtained for the optimal time-scale factors. The complete scheme of the hierarchical computations is
outlined, which can be easily implemented in available computing environments.

Keywords: viscoelasticity; relaxation time spectrum; linear relaxation modulus; hierarchical identification
algorithm; regularized least-squares identification; time-scale factor optimal selection; modified Bessel
functions of the second kind; singular value decomposition

1. Introduction

Numerous mathematical rheological models are used to describe the mechanical prop-
erties of viscoelastic materials [1–3]. The Maxwell and Kelvin–Voight models are, probably,
the best-known rheological models. However, deeper insight into the complex behavior of
viscoelastic materials is provided by the relaxation spectrum [2,4,5]. The relaxation spec-
trum is vital for constitutive models and for insight into the properties of a material, since,
from the relaxation spectrum, other material functions used to describe rheological proper-
ties can be uniquely determined [4,6,7]. It is commonly used to describe, analyze, compare,
and improve the mechanical properties of polymers [4,8,9], concrete [10], asphalt [11], rub-
ber [12], wood [13], glass [14], dough [15], polymeric textile materials [16], geophysics [17]
and biological materials [18]. The spectrum is not directly measurable; therefore, it must
be recovered from oscillatory shear or stress relaxation data [2,5]. A number of different
methods and algorithms have been proposed during the last five decades for the recovery

Materials 2023, 16, 3565. https://doi.org/10.3390/ma16093565 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16093565
https://doi.org/10.3390/ma16093565
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-0715-7225
https://doi.org/10.3390/ma16093565
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16093565?type=check_update&version=3


Materials 2023, 16, 3565 2 of 34

of the relaxation spectrum of a viscoelastic material from oscillatory shear data. These
works, using different models, approaches and computational techniques, have included
contributions by Baumgaertel and Winter [19], Honerkamp and Weese [20], Malkin [21],
Malkin et al. [22], Stadler and Bailly [23], Davis and Goulding [24], Davis et al. [25] and
Cho [26]. These studies, but also many others, have created new directions of research on
discrete and continuous relaxation spectra identification based on dynamic moduli data,
and have been conducted ever since [8,11,27].

However, a classical way of studying viscoelasticity is also the stress relaxation test,
where time-dependent shear stress is studied for the step increase in strain [1–3,28]. For
some materials, for example, highly hydrated biological plants, the stress relaxation test
is much easier to perform and is more suitable than dynamic oscillatory shear tests [3,29].
There are only a few papers that deal with spectrum determination from time measurements
of the relaxation modulus. Additionally, some of them only address specific materials. The
first works came from the turn of the 1940s and 1950s. Alfrey and Doty [30] proposed
a simple differential model, being, in fact, the first-order Post–Widder formula [31] for
the inverse Laplace transform; for details, see the newer edition [32]. Ter Harr [33] ap-
proximated the spectrum of relaxation frequencies by the modulus multiplied by time
inverse of the relaxation frequency, which can be thought as the Post–Widder inversion
formula of the zero order. After many years, Bažant and Yunping [34] and Goangseup and
Bažant [35] introduced a two-stage approach of approximating the stress (or retardation)
data via multiple differentiable models of the relaxation modulus (creep compliance) and,
next, by applying the Post–Widder formula to designate the related relaxation (retardation)
spectrum model. The effectiveness of this approach depends, among other aspects, on the
function applied to approximate the relaxation modulus. In [34], a logarithmic–exponential
model of the relaxation modulus is proposed, for which the authors state the third-order
Post–Widder approximation to be satisfactory.

The relaxation spectrum modeling based on the known pairs of Laplace transforms
was initiated by Macey [36], who described the relaxation modulus of viscoelastic ceramic
material by the modified Bessel function of the second kind and zero order, which corre-
sponds to the exponential–hyperbolic model of the spectrum. To describe the mechanical
properties of polyisobutylene, Sips [37] introduced a simple relaxation spectrum model
given by the difference of two exponential functions and a related logarithmic model of the
modulus. This model was augmented to consider a long-term modulus by Yamamoto [38]
and applied to test the rheological properties of the plant cell wall.

Both the algorithms based on the Post–Widder formula and those using the pairs of
Laplace transforms assumed rather narrow classes of models. Thus, the scope of their
effective applicability is limited to similar, not much wider classes of ‘real’ relaxation
characteristics. A wider range of applicability has been offered by the models based on
the expansion of an unknown spectrum into a series of basis functions (or polynomials)
forming a complete basis in a function space, for example, in the space of real-valued
square-integrable functions. Stankiewicz [39] and Stankiewicz and Gołacki [18] derived
algorithms of the optimal regularized identification of relaxation and retardation spectra in
the classes of models generated by different special functions, where various rules were
applied for the choice of regularization parameters.

However, articles [18,39] were based on such a definition of the relaxation spectrum,
according to which, the modulus was directly given by the Laplace integral of the spectrum.
This spectrum definition is not often used in the literature. Therefore, computationally
efficient algorithms to determine the relaxation spectrum applied to time measurements
of the relaxation modulus are still desirable. Recently, for the dominant definition of the
relaxation spectrum in the literature, a class of algorithms for relaxation spectrum recovery,
which combines the technique of an expansion of a function into a series in an orthonormal
basis with the least-squares regularized identification, has been derived by Stankiewicz [40].
Legendre, Laguerre, Chebyshev and Hermite functions were used as the basis functions
for the spectrum model. In [40], the problem of determining the spectrum of relaxation
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frequencies was considered. The complementary problem of determining the spectrum of
relaxation times based on the stress relaxation data is both analytically and numerically
more difficult than the determination of the spectrum of relaxation frequencies, because
the relaxation time occurs in the denominator of the exponential function in the spectrum
definitional formula. This very task is the subject of this article. Previous studies [18,39,40]
have suggested that by selecting an appropriate time-scale factor, a better fit of the model
to the measurement data can be obtained.

The objective of the present paper was to develop a model and an identification
algorithm for the determination of the continuous relaxation time spectrum based on
discrete-time measurements of the relaxation modulus, which, taking into account the
ill-posedness of the original problem of the spectrum recovery and the idea of the optimal
selection of the time-scale factor, will provide: (a) good approximation of the relaxation
spectrum and modulus also due to the best choice of the time-scale factor; (b) smoothness
of the spectrum fluctuations, even for noise-corrupted measurements; (c) noise robustness;
(d) applicability to a wide range of viscoelastic materials; (e) ease of the implementation of
the model and identification algorithm in available computing packages. The idea of the
optimal choice of time-scale factor is used here for the first time in the context of relaxation
spectrum identification. The goal of this work was the synthesis of the respective model
and identification scheme and the analysis of their properties. A further purpose was the
numerical verification of the model and algorithm for double-mode Gauss-like distribution
used to describe the viscoelastic properties of various materials, in particular different
polymers, wood and glass.

A new hierarchical algorithm of noise robust approximation of the continuous spec-
trum of relaxation times by finite series of power–exponential basis functions is proposed.
The components of the relaxation modulus model are given by compact analytical formulas
described by the product of power of time and the modified Bessel function of the second
kind. The main properties of the basis functions of relaxation spectrum and modulus mod-
els have been studied; positive definiteness, upper bounds, monotonicity and asymptotic
properties have been examined. Ranges of applicability for different time-scale factors
are determined. Since the problem of relaxation spectrum identification is an ill-posed
inverse problem, the regularized least-squares identification technique is applied combined
with generalized cross-validation to guarantee the stability of the scheme. The quadratic
identification index refers to the measured relaxation modulus. The task of determining
the best “regularized” model is solved at the lower level of the identification scheme. The
appropriate choice of the time-scale factor on the upper level of the scheme ensures the
best fit of the relaxation modulus to experimental data.

The optimality conditions are derived both for the identification problem solved at the
lower level and the task of the optimal choice of the time-scale factor at the upper level of
the scheme. It is proved that the smoothness of the vector of the optimal model parameters
implies smoothness of the fluctuations of the relaxation spectrum model. A direct formula
and upper and lower bounds for the square integral norm of the smoothed spectrum model
are derived. The accuracy of the spectrum model for noisy measurements of the relaxation
modulus is studied, and the linear convergence to the model that we would obtain for the
noise-free measurements is proved.

To design a numerical algorithm based on the scheme, the computations should be
arranged hierarchically in a two-level scheme, i.e., for each iteration of the minimization
procedure at the upper level, the whole numerical procedure must be realized for the
lower-level task. The complete computational procedure for determining the best model is
described. The singular value decomposition technique is applied to simplify the algebraic
computations. The identification scheme can be easily implemented in available computing
environments. The numerical studies, especially the strong smoothing of the relaxation
spectrum models in the example of a double-mode Gauss-like spectrum, with a simulta-
neous very good fit to the experimental data of the relaxation modulus models, suggests
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the need to explore the applicability of the regularized weighted least-squares [41] in the
lower-level identification task. This will be the subject of further work.

In Appendix A, the proofs and derivations of some mathematical formulas are given.
Some tables have been moved to Appendix B to increase the clarity of the article.

2. Materials and Methods
2.1. Relaxation Time Spectrum

The uniaxial, non-aging and isothermal stress–strain equation for a linear viscoelastic
material is represented by a Boltzmann superposition integral [2]:

σ(t) =
∫ t

−∞
G(t− u)

.
ε(u)du, (1)

where u is the past time variable in the range −∞ to the present time t. In Equation (1),
variables σ(t) and ε(t) denote, respectively, the stress and strain at time t, and G(t) is the
linear relaxation modulus. Modulus G(t) is given by [2,5]:

G(t) =
∫ ∞

0

H(τ)

τ
e−t/τdτ, (2)

where H(τ) characterizes the distributions of relaxation times τ. The continuous relaxation
spectrum H(τ) is a generalization of the discrete Maxwell spectrum [2,5] to a continuous
function of the relaxation times τ.

The problem of relaxation spectrum identification is the problem of solving a system
of Fredholm integral equations of the first kind (2) obtained for discrete-time measurement
data. In this paper, time measurements of the relaxation modulus are considered. This
problem is ill-posed in the Hadamard sense [42], i.e., small changes in measured relaxation
modulus can lead to arbitrarily large changes in the determined relaxation spectrum. As a
remedy, some reductions in the set of admissible solutions or the appropriate regularization
of the original problem are used. Both the techniques are applied here.

2.2. Models

Assume that H(τ) ∈ L2(0, ∞), where L2(0, ∞) is the space of real-valued square-
integrable functions on the interval (0, ∞). It is known that the set of the linearly indepen-
dent functions

{
e−ατ , τe−ατ , τ2e−ατ , . . .

}
form a basis of the space L2(0, ∞) [43] (p. 125);

here, α is a positive time-scaling factor. Since the maximum

max
τ≥0

hk(τ, α) =

(
k
α

)k
e−k

of the function hk(τ, α) = τke−ατ grows rapidly with k, it is convenient to expand the
relaxation spectrum into a series of scaled basis functions

hk(τ, α) =
(ατ

k

)k
e−ατ+k, k = 1, 2, . . . , (3)

with the first function
h0(τ, α) = e−ατ , (4)

as follows:
H(τ) = ∑∞

k=0 gkhk(τ, α), (5)

where gk are real model coefficients.
It is practical to replace the infinite summation in Equation (5) with a finite one of K

first terms, i.e., to approximate the spectrum H(τ) by a model of the form

HK(τ, α) = ∑K−1
k=0 gkhk(τ, α), (6)
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where the lower index is the number of model summands. Then, according to (2), the
respective model of the relaxation modulus is described by:

GK(t, α) =
∫ ∞

0

HK(τ, α)

τ
e−t/τdτ = ∑K−1

k=0 gkφk(t, α), (7)

where the functions

φk(t, α) =
∫ ∞

0

hk(τ, α)

τ
e−t/τdτ. (8)

For computational purposes, function h0(τ, α) is defined by (4). However, since most
mathematicians agreed that 00 = 1 [44], the general Formula (3) can also be applied in
further analysis for k = 0.

The basis functions φk(t, α) (8) of the modulus model (7) are given by a compact
analytical formula specified by the following theorem proved in Appendix A.1.

Theorem 1. Let α > 0, k ≥ 0 and t > 0. Then, the basis functions φk(t, α) (8) are given by:

φk(t, α) = 2ek

(√
αt
k

)k

Kk

(
2
√

αt
)

, (9)

where Kk(x) is the modified Bessel function of the second kind [45,46] of integer order k.

The first Function (9) is as follows

φ0(t, α) = 2K0

(
2
√

αt
)

. (10)

The modified Bessel functions of the second kind, and especially K0(x) [47], have
many applications in science and engineering, for example, in physics to describe the
flow of magneto-hydrodynamic (MHD) viscous fluid in a Darcy-type porous medium [48],
in engineering to derive a closed analytical form of the model of a axial-flux permanent
magnet machine with segmented multipole-Halbach PM array [49] and to describe the per-
unit-length internal impedance of two-layer cylindrical conductors [50]. The applications of
the Bessel functions in the description of the dynamic response of a mono-pile foundation
in homogeneous soil and varied layered soil–rock conditions under horizontal dynamic
loads [51], to obtain a fully coupled poroelastic solution for spherical indentation into a
half space with an impermeable surface when the indenter is subjected to step displace-
ment loading [52] and to express a distribution of the traveling distance in heterogeneous
populations [53] come from material science and ecology.

Five first basis functions hk(τ, α) (3) are shown in Figure 1 for two different values
of the time-scaling factor α. Figure 2 shows the related functions φk(t, α) (9). The basis
functions hk(τ, α) and φk(t, α) are dimensionless. It is seen from Figure 1 that the maximum
of each scaled basis function hk(τ, α) (3) and (4) is equal one; however, the relaxation time
tmax corresponding to the maximum, for a given parameter α, depends on the index k
according to the formula tmax = k/α; i.e., grows with k. This means that increasing the
number of model components K will allow for good modeling of multimodal spectra,
which is confirmed by the example presented in the final part of the paper. Reducing
the time-scale factor α shifts the spectrum maxima towards larger relaxation times. From
Figure 2, it is seen that the Debye decay monotonicity of basis functions for the relaxation
modulus model is in good agreement with the courses of the relaxation modulus obtained
in an experiment for real materials; for example: concrete [10] (Figure 13), rubber [12]
(Figure 2), elastic polyacrylamide hydrogels [28] (Figures 2a,b, 4a, A5, A7 and A8a), sugar
beet [18] (Figure 1) and several foods [3] (Figures 3–39).
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2.2.1. Positive Definiteness of the Basis Functions

The basis functions of the relaxation spectrum and modulus models are positive
definite. For the functions hk(τ, α) (3) and (4), these properties are obvious. Since, according
to the property A.1 in [54], the Bessel functions of the second kind Kv(x) are positive for
x > 0 and real v, the positive definiteness of the functions φk(t, α) (9) and φ0(t, α) (10)
directly result.

2.2.2. Asymptotic Properties of the Basis Functions

For x → 0, the following asymptotic formula is found in the literature [45]:

Kk(x) ∼ 1
2

Γ(k)
( x

2

)−k
, (11)

for modified Bessel functions of the order k > 0. Thus, for t→ 0, Formulas (11) and (9) imply

φk(t, α) ∼ Γ(k)
( e

k

)k
,

which means that for t near zero, the values of basis functions φk(t, α) decrease with
increasing index k; see Figure 2.
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For argument x → ∞ , the asymptotic exponential formula holds [54]

Kk(x) ∼
√

π

2x
e−x . (12)

From (9) and (12), the next asymptotic formula follows for large t and k ≥ 1

φk(t, α) ∼
√

π

kk

(√
αt
)k− 1

4 e−2
√

αt+k , (13)

while for t→ ∞ and the first basis function, we have

φ0(t, α) ∼
√

π√
αt

e−2
√

αt . (14)

The multiplication by power function
(√

αt
)k− 1

4 in (13) causes that the greater k is,
the slower the basis function φk(t, α) decreases, which is seen in Figure 2. The first basis
function φ0(t, α) decreases faster than the exponential function, which is also confirmed by
the analysis of the course of the basis functions in Figure 2.

By the asymptotic Formulas (13) and (14), the basis functions tend to 0 as t→ ∞ ; i.e.,
for an arbitrary, α > 0 and k = 0, 1, 2, . . .

lim
t→∞

φk(t, α) = 0. (15)

2.2.3. Upper Bounds for the Basis Functions

In [54], Corollary 3.4, the following inequality is proved:

K0(x) <
√

π

2x
e−x,

whence

φ0(t, α) = 2K0

(
2
√

αt
)
<

√
π√
αt

e−2
√

αt . (16)

From Theorem 3.1 in [54], for k ≥ 1 we have

Kk(x) <
2k−1Γ(k)

xk+1 .

This inequality applied into (9) gives the following upper bound

φk(t, α) < 2ek

(√
αt
k

)k
2k−1Γ(k)(
2
√

αt
)k+1 =

ek

2kk
Γ(k)√

αt
. (17)

Note that having in mind the positive definiteness of the basis functions φk(t, α), the
limit (15) for the first function φk(t, α) yields from (16), while, for any k ≥ 1, can be derived
from (17).

2.2.4. Monotonicity of the Basis Functions

As indicated above, the basis functions hk(τ, α) (3) for k ≥ 1 have a global maxi-
mum equal to 1 for the relaxation time τ = kα−1, while the first function h0(τ, α) (4) is
monotonically decreasing.

Since the basis function φk(t, α) (9) is the product of a monotonically decreasing Bessel
function Kk(x) [54] of increasing argument 2

√
αt and a monotonically increasing power
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function
(√

αt
)k

, its monotonicity is not obvious. By applying the differentiation formula,
we obtain [54] (Equation (A.13)):

d
dx

[xvKv(x)] = −xvKv−1(x) (18)

which holds for any real-valued order v, to (9), gives for integer k ≥ 1

d
dt
[φk(t, α)] = −4α

( e
2k

)k(
2
√

αt
)k−1

Kk−1

(
2
√

αt
)

,

whereas, having in mind the positive definiteness of the Bessel function Kk−1

(
2
√

αt
)

for
all t > 0, we immediately conclude that the function φk(t, α) is monotonically decreasing;
see Figure 2. For the first basis function φ0(t, α) (10), the next differentiation formula is [54]
(Equation (A.14)):

d
dx

[Kv(x)] = −1
2
[Kv−1(x) + Kv+1(x)], (19)

which is satisfied for any real v, implies

d
dt
[φ0(t, α)] = −

√
α

t

[
K−1

(
2
√

αt
)
+ K1

(
2
√

αt
)]

,

which shows that φ0(t, α) is also a monotonically decreasing function.

2.2.5. Ranges of Applicability

In the models, the parameter α > 0 is a time-scaling factor. The following rule holds:
the lower the parameter α, the greater the relaxation times. The above is illustrated by
Figures 1 and 2. Through the optimal choice of the scaling factor, the best fit of the model
to the experimental data is achieved, which will be the subject of study in Section 3.2.

Following [40], on the basis of the relaxation modulus course, the range of applicability
is specified as the time t, for which the first K basis functions φk(t, α) no longer permanently
exceed; i.e., for any θ > t, ε = 0.5% of its maximum value. Specifically,

tapp(α) = max
0≤k≤K−1

min
t>0
{t : |φk(θ, α)| ≤ 0.005·φkmax(α) for any θ ≥ t}, (20)

where
φkmax(α) = max

t≥0
|φk(t, α)|.

Similarly, in [40], the range of applicability specified directly for the relaxation times τ
was defined on the basis of the variability in the basis functions hk(τ); i.e.,

τapp(α) = max
0≤k≤K−1

min
τ>0
{τ : |hk(ϑ, α)| ≤ 0.005·hkmax(α) for any ϑ ≥ τ}, (21)

with hkmax(α) defined by
hkmax(α) = max

τ≥0
|hk(τ, α)|.

The times tapp(α) (20) and τapp(α) (21) for different values of α are summarized in
Table 1 for K = 5 and K = 12. The same data for K = 6, . . . , 11 are given in Table A1 in
Appendix B.
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Table 1. Ranges of the applicability of the model for various time-scale parameters for K = 5 and
K = 12.

Time-Scale Factor α [s]
K = 5 K = 5 K = 12 K = 12

Range 1 of Relaxation
Times τapp(α) [s]

Range 1 of Times
tapp(α) [s]

Range 1 of Relaxation
Times τapp(α) [s]

Range 1 of Times
tapp(α) [s]

0.0001 144,305.22 282,360.6 255,824.35 662,077.1
0.001 14,430.52 28,236.06 25,582.435 66,207.71
0.01 1443.05 2823.61 2558.243 6620.77
0.1 144.305 282.36 255.824 662.08
1 14.43 28.236 25.5824 66.208
10 1.4431 2.824 2.5582 6.621

100 0.1443 0.282 0.2558 0.662
1 The upper bounds tapp (20) and τapp(α) (21) of the applicability intervals

[
0, tapp(α)

]
and

[
0, τapp(α)

]
are given.

A review of the data from these tables shows that for any fixed α, both τapp(α) and
tapp(α) grow almost linearly with the number of model summands K.

2.3. Least-Squares Regularized Identification

Identification consists of the selection, within the chosen class of models given by (6)
and (7), of such a model that ensures the best fit to the measurement results. Suppose a
certain identification experiment (stress relaxation test [2,3]) resulted in a set of measure-
ments of the relaxation modulus

{
G(ti) = G(ti) + z(ti)

}
at the sampling instants ti ≥ 0,

i = 1, . . . , N, where z(ti) is the measurement noise. It is assumed that the number of
measurements N ≥ K. As a measure of the model (7) accuracy, the quadratic index is taken

QN(gK, α) = ∑N
i=1

[
G(ti)− GK(ti, α)

]2, (22)

where gK =
[
g0 · · · gK−1

]T is an K-element vector of unknown coefficients of the
models (6) and (7). The identification index (22) is rewritten in the compact form as

QN(gK, α) = ‖GN −ΦN,K(α)gK‖
2
2, (23)

where

ΦN,K(α) =

φ0(t1, α) · · · φK−1(t1, α)
...

. . .
...

φ0(tN , α) · · · φK−1(tN , α)

, GN =

G(t1)
...

G(tN)

 (24)

and ‖·‖2 denotes the square norm in the real Euclidean space RN . Thus, the optimal
identification of the relaxation spectrum in the class of models defined by (6) and (7) consists
of determining the model parameter gK through solving the following optimization task:

min
gK∈RK

‖GN −ΦN,K(α) gK‖
2
2. (25)

The matrix ΦN,K(α) is usually ill-conditioned. In consequence, the problem (25) is ill
posed in the sense of Hadamard [42]. The parameter gK minimizing identification index (23)
is not unique, and even the normal (with the lowest Euclidean norm) solution of (25) is a
non-continuous and unbounded function of the measurement vector GN . Therefore, when
the data are noisy, even small changes in GN would lead to arbitrarily large artefacts in
optimal model parameters gK. To deal with the ill-posedness, Tikhonov regularization [55],
replacing the original ill-posed problem (25) by a nearby problem with a modified square
functional of the form:

min
gK∈RK

‖GN −ΦN,K(α) gK‖
2
2 + λ‖gK‖

2
2, (26)
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where λ > 0 is a regularization parameter, can be used. The regularized task (26) is well-
posed; that is, the solution always exists, is unique and continuously depends on both
the matrix ΦN,K and on the measurement data GN . The parameter vector solving (26) is
given by:

gλ
K(α) =

(
ΦT

N,K(α)ΦN,K(α) + λIK,K

)−1
ΦT

N,K(α)GN , (27)

where IK,K is the K-dimensional identity matrix.
Following [40], the generalized cross-validation GCV [42,56] is applied, according to

which, the best regularization parameter is [42,56]:

λGCV(α) = min
{

λ : λ = arg min
λ≥0

VGCV(λ, α)

}
, (28)

where the GCV functional is defined by [56]

VGCV(λ, α) =
‖Ξ(λ, α)GN‖

2
2

tr[Ξ(λ, α)]2
, (29)

with the matrix

Ξ(λ, α) = IN,N −ΦN,K(α)
(

ΦT
N,K(α)ΦN,K(α) + λIK,K

)−1
ΦT

N,K(α). (30)

Here, Ξ(λ, α)GN is the residual vector for the regularized solution (27); tr[Ξ(λ, α)]
denotes the trace of the symmetric matrix Ξ(λ, α). The optimization problem in (28) has a
unique solution, and the resulting parameter gλGCV(α)

K (α) differs the least from the normal
solution of the problem (26) that we would obtain for the ideal (not noise-corrupted)
measurements of the relaxation modulus [56].

3. Results and Discussion

In this section, the necessary optimality condition for the regularized identification
task with GCV’s choice of regularization parameter is given in the form of an algebraic
nonlinear equation. Next, the problem of the choice of the optimal scale factor is stated,
and the respective necessary optimality condition is derived. A hierarchical two-level
identification scheme with the optimal choice of the scale factor is proposed. The numerical
realization and the application of a singular value decomposition technique are discussed.
A complete computational procedure is outlined. The analysis of the smoothing of the
model and model accuracy for noisy measurements of the relaxation modulus is presented.

3.1. Necessary Optimality Condition

The GCV functional (29) is a differentiable function of the regularization parameter λ.
The necessary optimality condition for the minimization task solved in (28) is derived in
Appendix A.3.

Theorem 2. The optimal regularization parameter λGCV(α) solves the following equation:

GT
N(Ψ(α) + λIN,N)

−3GNtr
[
(Ψ(α) + λIN,N)

−1
]
= GT

N(Ψ(α)+

λIN,N)
−2GN tr

[
(Ψ(α) + λIN,N)

−2
]
.

(31)

where
Ψ(α) = ΦN,K(α)Φ

T
N,K(α). (32)
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In Appendix A.4, the following formula:

∂VGCV(λ,α)
∂λ =

−2GT
N(Ψ(α)+λIN,N)−3 GN tr

[
(Ψ(α)+λIN,N)−1

]
+2GT

N(Ψ(α)+λIN,N)−2GN tr[(Ψ(α)+λIN,N)−2][
tr
[
(Ψ(α)+λIN,N)−1

]]3
(33)

is developed, describing the derivative of the GCV functional (29) minimized in (28) directly
as a function of matrices GN and Ψ(α).

3.2. Choice of the Time-Scale Factor

The optimal regularization parameter λGCV(α) and matrix ΦN,K(α) depend on the
time-scale factor. Therefore, the optimal model parameter

ĝλGCV
K (α) = gλ

K(α)
∣∣∣
λ=λGCV(α)

(34)

and the optimal identification index

QNopt(α) = QN

(
ĝλGCV

K (α), α
)
= ‖GN −ΦN,K(α)ĝ

λGCV
K (α)‖

2
2 (35)

also depend on α. By the optimal choice of the scaling factor, the best fit of the model to
the experimental data can be achieved. By (27), (30) and (34), and having (A9) in mind, the
index QNopt(α) (35) is expressed by the following formula:

QNopt(α) = λ2
GCV(α)G

T
N(Ψ(α) + λGCV(α)IN,N)

−2GN . (36)

The smaller the index QNopt(α), the smaller the model error results. Thus, the problem
of the choice of the best time-scale factor αopt takes the form

min
α>0

QNopt(α) = QNopt
(
αopt

)
. (37)

Before we state the necessary optimality condition of the task (37), we prove the
following result concerning the basis functions φk(t, α) as the functions of the time-scale
factor. The proof is given in Appendix A.5.

Theorem 3. Let α > 0 and t > 0. Then, for k ≥ 1, derivatives of the basis functions φk(t, α) (9)
with respect to the parameter α are given by:

d
dα

[φk(t, α)] = −e
(

t
k

)(
k− 1

k

)k−1
φk−1(t, α). (38)

For k = 0, the following formula holds:

d
dα

[φ0(t, α)] = − 1
eα

φ1(t, α) . (39)

Thus, positive definite functions φk(t, α) are monotonically decreasing functions of α
for any fixed t > 0.

The following necessary optimality condition is derived in Appendix A.6:

Theorem 4. The optimal time-scale factor αopt satisfies the following equation:

λGCV(α)G
T
NY(α)−1ΩN,K(α)Y(α)

−2GN = dλGCV(α)
dα GT

NY(α)−2GN−
λGCV(α)

dλGCV(α)
dα GT

NY(α)−3GN ,
(40)
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where derivative dλGCV(α)
dα is given by the equation

dλGCV(α)
dα

{
3GT

NY(α)−4GNtr
[
Y(α)−1

]
−GT

NY(α)−3GNtr
[
Y(α)−2

]
−2GT

NY(α)−2GN tr
[
Y(α)−3

]}
=

2GT
NY(α)−2ΩN,K(α)Y(α)

−1GN tr
[
Y(α)−2

]
+

2GT
NY(α)−2GN tr

[
ΩN,K(α)Y(α)

−3
]
−

2GT
NY(α)−3ΩN,K(α)Y(α)

−1GNtr
[
Y(α)−1

]
−

GT
NY(α)−2ΩN,K(α)Y(α)

−2GNtr
[
Y(α)−1

]
−GT

NY(α)−3GNtr
[
ΩN,K(α)Y(α)

−2
]
,

(41)

with symmetric matrices
Y(α) = Ψ(α) + λGCV(α)IN,N , (42)

ΩN,K(α) =
d

dα
Ψ(α) = ΘN,K(α)Φ

T
N,K(α) + ΦN,K(α)Θ

T
N,K(α). (43)

where Ψ(α) is defined by (32) and

ΘN,K(α) =
d

dα ΦN,K(α) =

−


1
eα φ1(t1, α) et1φ0(t1, α) · · · e

(
t1

K−1

)(
K−2
K−1

)K−2
φK−2(t1, α)

...
...

. . .
...

1
eα φ1(tN , α) etNφ0(tN , α) · · · e

(
tN

K−1

)(
K−2
K−1

)K−2
φK−2(tN , α)

.
(44)

3.3. Two-Level Identification Scheme

To find the optimal time-scale factor αopt and the optimal model of the relaxation time
spectrum, the following two-level scheme is applied:

3.3.1. Lower Level

Given time-scale factor α > 0, find regularization parameter λGCV(α) solving the GCV
minimization task (28).

3.3.2. Upper Level

Find the time-scale factor αopt > 0 minimizing identification index QNopt(α) (36), i.e.,
solving optimization task (37). Take

ĝK = ĝλGCV
K

(
αopt

)
, (45)

where ĝλGCV
K

(
αopt

)
is defined by (34) as a parameter of the best model of the relaxation

time spectrum.
Having the optimal model parameter ĝK, the optimal model of the relaxation spectrum

is determined according to the formula resulting directly from (6):

HKopt(τ) = HK
(
τ, αopt

)
= ∑K−1

k=0 ĝkhk
(
τ, αopt

)
, (46)

where ĝk are elements of the vector ĝK.
To design numerical realization of the scheme, we need:

1. A numerical procedure for solving the lower-level GCV minimization task (28);
2. An iterative scheme for solving the upper-level problem (37) of choosing the best

time-scale factor.
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For any given parameter α, the GCV function VGCV(λ, α) (29) is differentiable with
respect to λ. Partial derivative ∂VGCV(λ,α)

∂λ is given by (33) as a function of the experiment
data GN and the matrix Ψ(α) (32), which depends on the time instants ti used in the
relaxation experiment and on the time-scaling factor. An arbitrary gradient optimization
method can be implemented to solve the GCV minimization task (28). Additionally, an
arbitrary gradient method can be used to solve optimization problem (37); the derivative of
the index QNopt(α) (36) is described by Formula (A24) derived in Appendix A.6. However,
the optimal parameter αopt can be also found by solving the necessary optimality condition
from Theorem 4, i.e., the two scalar algebraic Equations (40) and (41), in fact.

3.4. Algebraic Background of the Identification Scheme

Formulas (27)–(30), fundamental for lower-level optimization task (28), are elegant
but generally unsuitable for computational purposes. Following [40], the singular value
decomposition (SVD) technique [57] will be applied. Let SVD of the N × K dimensional
matrix ΦN,K(α) take the form [57]:

ΦN,K(α) = U(α)Σ(α) V(α)T , (47)

where Σ(α) = diag
(

σ1(α), . . . , σr(α)(α), 0, . . . , 0
)

εRN,K is a diagonal matrix containing the

non-zero singular values σ1(α), . . . , σr(α)(α) of the matrix ΦN,K(α), matrices V(α) ∈ RK,K

and U(α) ∈ RN,N are orthogonal and r(α) = rank[ΦN,K(α)] < N. Taking advantage of
the diagonal structure of Σ(α) and orthogonality of the matrices V(α) and U(α), it may be
simply proved that the parameter gλ

K(α) (27) is given by

gλ
K(α) = V(α)Λλ(α) U(α)T GN , (48)

where K× N diagonal matrix Λλ(α) is as follows:

Λλ(α) = diag

 σ1(α)

[σ1(α)]
2 + λ

, . . . ,
σr(α)(α)[

σr(α)(α)
]2

+ λ

, 0, . . . , 0

. (49)

Using SVD (47) and introducing N dimensional vector Y(α) = U(α)T GN , the GCV
function (29) is also expressed by a convenient analytical formula:

VGCV(λ, α) =

[
∑

r(α)
i=1

λ2[yi(α)]
2

([σi(α)]
2+λ)

2 + ∑N
i=r(α)+1 [yi(α)]

2

]
[

N − r(α) + ∑
r(α)
i=1

λ

([σi(α)]
2+λ)

]2 , (50)

as a function of the singular values σi(α) and elements yi(α) of the vector Y(α).
Similarly, the identification index QNopt(α) (36) minimized in the upper level of the

scheme is expressed using the SVD (47). Since, by virtue of (47) and (32) we have

(Ψ(α) + λGCV(α)IN,N)
−2 = U(α)

[
Σ(α) Σ(α)T + λGCV(α)IN,N

]−2
U(α)T ,

the index Q̂N(α) is expressed as

QNopt(α) = λ2
GCV(α)

∑r(α)
i=1

[yi(α)]
2(

[σi(α)]
2 + λGCV(α)

)2 + ∑N
i=r(α)+1 [yi(α)]

2

. (51)
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3.5. Computational Algorithm for Model Identification

To design a numerical algorithm of the scheme, the communication between the levels
should also be resolved. The computations must be arranged hierarchically in a two-level
structure, i.e., for each iteration of the minimization procedure at the upper level, the whole
numerical procedure must be realized for the lower-level GCV task (28). The complete
computational procedure for determining the optimal model is given below.

Step 0: Perform the experiment—stress relaxation test [1–3,28]—and record the measure-
ments G(ti), i = 1, . . . , N, of the relaxation modulus at times ti ≥ 0.
Step 1: Determine the optimal regularization parameter λGCV

(
αopt

)
in the following two-

level computations.

Step 1.0: Choose the initial point α0 for the numerical procedure applied to solve the
upper-level task (37).
Step 1.1: Let αm be the m-th iterate in the numerical procedure chosen to solve the
upper-level task (37). For α = αm, solve the lower-level minimization task (28) accord-
ing to the chosen numerical optimization procedure and determine the regularization
parameter λGCV(α

m). The algebraic formula VGCV(λ, α) (50) is applied.
Step 1.2: Using λGCV(α

m), compute, according to the numerical procedure selected
to solve the upper-level task (37), with the index QNopt(α) described by (51), the new
parameter αm+1, which is the next approximation of αopt. If for αm+1 the stopping rule
of the chosen numerical procedure is satisfied, i.e.,∣∣∣αm+1 − αm

∣∣∣ ≤ ε1

or ∣∣∣QNopt

(
αm+1

)
−QNopt(α

m)
∣∣∣ ≤ ε2,

where ε1 and ε2 are preselected small positives, put αopt = αm as the optimal time-scale
factor, λGCV(α

m) as λGCV
(
αopt

)
, and go to Step 2. Otherwise, return to Step 1.1 and

continue the computations for α = αm+1.

Step 2: Compute the vector of the optimal model parameters ĝK according to (45) and the
best model of the relaxation spectrum HKopt(τ) given by (46).

Remark 1. The appealing feature of the scheme is that only the values of λGCV(α
m), not the

related parameters vector ĝλGCV
K (αm) (34), are used for αm in successive iterations of the numerical

procedure solving the upper-level task (37).

Remark 2. The regularization parameter λGCV(α
m) resulting from the lower-level minimization

task (28) in each iteration of the upper level is the solution of the GCV problem (28) for current αm.
Thus, the respective vector ĝλGCV

K (αm) (34) can be treated as an approximate solution of the overall
identification problem.

Remark 3. The selection of the initial time-scaling factor α0 in Step 1.0 may be based on the data
concerning model applicability summarized in Tables 1 and A1 or α0 can be selected by comparison,
for different values of α, the first basis function φk(t, α) (9), with the experiment results

{
G(ti)

}
.

Remark 4. The SVD (47) of the matrix ΦN,K(α), of computational complexity O
(

NK2) [57],
must be computed only once for successive αm generated in Step 1.1. SVD is accessible in the form
of optimized numerical procedures in most commonly used computational packets.

The above procedure and communication between the levels are illustrated in Figure 3.
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relaxation model.

3.6. Analysis

Recently, a class of robust algorithms of the approximation of the continuous spectrum
of relaxation frequencies by finite series of orthonormal functions has been developed and
analyzed in detail in [40]. However, these results were derived using the orthogonality
of the basis functions, so they are not applicable here. Therefore, both the analysis of the
smoothing of the model and model accuracy for noisy measurements of the relaxation
modulus must be carried out anew here.

3.6.1. Smoothness

The purpose of regularization relies on the stabilization of the resulting vector gλ
K(α)

(27). Since the basis functions hk(τ, α) (3) and (4) are such that hk(τ, α) ≤ 1 for any
arguments, the following inequality

max
τ≥0
|HK(τ, α)| ≤∑K−1

k=0 |gk|

holds for an arbitrary time-scale factor, which means that the smoothing of the vector
of model parameters results in the limitation of the respective relaxation spectrum. The
mechanism of the vector gλ

K(α) (27) stabilization via Tikhonov regularization is explained
in many papers, for example, [20,40,55]. The following rule holds: the greater the regular-
ization parameter λ is, the more highly bounded the fluctuations of the vector gλ

K(α) are;
see [40].

The norm ‖HK(τ, α)‖2 is a measure of smoothing of the relaxation spectrum model,
where ‖·‖2 also means the square norm in L2(0, ∞). In Appendix A.7, the following
proposition is proved:
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Proposition 1. For an arbitrary time-scale factor α and arbitrary vector of model parameters gK,
we have

‖HK(τ, α)‖2
2 = gT

KΓ(α)gK =
1

2α
gT

KΓ1gK, (52)

where K× K symmetric real matrices, Γ(α) described by (A39) and Γ1 given by

Γ1 =



1 e
2 · · ·

( e
2
)j j!

jj · · ·
( e

2
)K−1 (K−1)!

(K−1)K−1

e
2 2

( e
2
)2 · · ·

( e
2
)1+j (1+j)!

jj · · ·
( e

2
)K (K)!

(K−1)K−1

...
...

. . .
...

. . .
...( e

2
)k k!

kk

( e
2
)k+1 (k+1)!

kk · · ·
( e

2
)k+j (k+j)!

kk jj · · ·
( e

2
)k+K−1 (k+K−1)!

kk (K−1)K−1

...
...

...
...

. . .
...( e

2
)K−1 (K−1)!

(K−1)K−1

( e
2
)K−1+j (K)!

(K−1)K−1 · · ·
( e

2
)K−1+j (K−1+j)!

(K−1)K−1 jj · · ·
( e

2
)2K−2 (2K−2)!

(K−1)2(K−1)


(53)

are a positive definite; matrix Γ(α) for an arbitrary time-scale factor α > 0.

The matrix Γ1 is independent of the time-scale factor; only the multiplier 1
2α in the

last expression of (52) depends on α. Since for any symmetric non-negative definite
matrix, the eigenvalues and singular values are identical, by virtue of the Rayleigh–Ritz
inequalities [58] (Lemma I):

λmin(X)xTx ≤ xTXx ≤ λmax(X)xTx, (54)

which hold for any xεRm and any symmetric matrix X = XTεRm,m, where λmin(X) and
λmax(X) are minimal and maximal eigenvalues of the matrix X, Equation (52) implies the
following estimations:

1
2α

σmin(Γ1)‖gK‖
2
2 ≤ ‖HK(τ, α)‖2

2 ≤
1

2α
σ1(Γ1)‖gK‖

2
2,

where σ1(Γ1) and σmin(Γ1) denote the largest and the minimal singular values of matrix Γ1
(53). Thus, the next result is derived.

Proposition 2. For an arbitrary time-scale factor α and arbitrary vector of model parameters gK,
the following inequalities hold:

1√
2α

√
σmin(Γ1)‖gK‖2 ≤ ‖HK(τ, α)‖2 ≤

1√
2α

√
σ1(Γ1)‖gK‖2. (55)

The square roots of the singular values σ1(Γ1) and σmin(Γ1) for K = 5, 6, . . . 12 are
summarized in Table 2. However, the lower bound of this norm is useful only for small K
and small time-scale factors.

Table 2. The square roots of the largest σ1(Γ1) and minimal σmin(Γ1) singular values of the matrix Γ1

(53) for K = 4, 5, . . . 12 model summands.

K 4 5 6 7 8 9 10 11 12√
σ1(Γ1) 3.666396 4.325185 4.927061 5.485792 6.010247 6.506534 6.979079 7.431223 7.865567√

σmin(Γ1) 0.206481 0.087523 0.034642 0.013243 0.004953 0.001824 6.6358 × 10−4 2.3925 × 10−4 8.5615 × 10−5

Since
√

σ1(Γ1) grows with K, the greater the number of model summands there are, the
greater the time-scaling factor should be to achieve pre-assumed multiplier 1√

2α

√
σ1(Γ1) in

the estimation (55). In [59], a decreasing sequence of upper bounds for the largest singular
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value of a non-negative definite square matrix is constructed, given by Equation (19) in [59].
This result applied to the K× K matrix Γ1 means that

ψn(Γ1) =
tr(Γ1)

K
+

[
(K− 1)2n−1

(K− 1)2n−1 + 1
tr

[(
Γ1 −

tr(Γ1)

K
IK,K

)2n
]] 1

2n

, (56)

is a decreasing sequence of upper bounds for σ1(Γ1). The right inequality in (55) can be
weakened to the following:

Proposition 3. For an arbitrary time-scale factor α and arbitrary vector of model parameters gK,
the sequence of inequalities hold:

‖HK(τ, α)‖2 ≤
1√
2α

√
ψn(Γ1)‖gK‖2 (57)

for n = 1, 2, . . ., with the coefficients ψn(Γ1) (56).

In Table A2 in the Appendix B, the sequences
√

ψn(Γ1) are summarized for n =
1, 2, . . . , 10 and K = 4, 5, . . . 12 model summands; for comparison, in the last row,

√
σ1(Γ1)

are given. The sequence
√

ψn(Γ1) quickly decreases to
√

σ1(Γ1); already, the sixth to eighth
estimates equal

√
σ1(Γ1). However, it should be remembered that the right inequality in

(55) and (57) only give the upper bounds of the norm ‖HK(τ, α)‖2.
To summarize, the smoothness of the optimal solution gλ

K(α) (27) of discrete regular-
ized problem (26) guarantees that the fluctuations in the respective spectrum of relaxation,
in particular the resulting spectrum of relaxation ĤK(τ) (46), are also bounded. The time-
scale factor α also affects the smoothness of the spectrum model.

3.6.2. Convergence and Noise Robustness

The relaxation spectrum recovery from experimental data is an inverse ill-posed
problem, in which the identification index refers to the measured relaxation modulus, but
not directly to the unknown relaxation spectrum H(τ). Therefore, we cannot estimate
the model error ‖H(τ)− HK(τ, α)‖2 directly. As a reference point for the model HK(τ, α)
(6) and (27), we will consider the model of the spectrum that we would obtain for the
same time-scale factor α and regularization parameter λ on the basis of ideal (undisturbed)
measurements of the relaxation modulus:

H̃K(τ, α) = ∑K−1
k=0 gλ

K(α)hk(τ, α), (58)

where gλ
K(α) is the vector of the regularized solution of (26) given by (compare (27))

gλ
K(α) =

(
ΦT

N,K(α)ΦN,K(α) + λIK,K

)−1
ΦT

N,K(α)GN (59)

for noise-free measurements of relaxation modulus GN =
[
G(t1) · · · G(tN)

]T ; c.f.,
Equation (24). In Appendix A.8, the following estimations are derived:

Proposition 4. For an arbitrary time-scale factor α and arbitrary regularization parameter λ, the
error between the relaxation time spectrum models HK(τ, α) (6) and (27) and H̃K(τ, α) (58) and
(59) is estimated using the following inequality:

‖HK(τ, α)− H̃K(τ, α)‖2 ≤
1√
2α

√
σ1(Γ1)

∑r(α)
i=1

[σi(α)]
4{

[σi(α)]
2 + λ

}4


1
4

‖zN‖2 (60)

where zN =
[
z(t1) · · · z(tN)

]T is the vector of measurement noises.
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According to inequality (60), the accuracy of the spectrum approximation depends
both on the measurement noises and regularization parameter and on the singular values
σ1(α), . . . , σr(α)(α) of the matrix ΦN,K(α) (47) depending on the time-scale factor. By (60),
the spectrum HK(τ, α) tends to the noise-free spectrum H̃K(τ, α) in each relaxation time τ,
at which they are both continuous, linearly with respect to the norm ‖zN‖2, as ‖zN‖2 → 0 .

3.7. Example

Consider a viscoelastic material of the relaxation spectrum described by the double-
mode Gauss-like distribution:

H(τ) =

[
β1e−(

1
τ−m1)

2
/q1 + β2e−(

1
τ−m2)

2
/q2

]
/τ, (61)

where the parameters are as follows: β1 = 467 Pa·s, m1 = 0.0037 s−1, q1 = 1.124261× 10−6 s−2 ,
β2 = 39 Pa·s, m2 = 0.045 s−1 and q2 = 1.173× 10−3 s−2. Spectra of this type are tested
at the stage of developing new identification methods, for example, in [23] (Figure 2), [24]
(Figures 9, 11 and 17) and [25] (Figures 2, 3, 6, 7–11 and 14), because they describe the viscoelastic
properties of various materials, in particular: polymers [60] (Figures 4b and 8b), polyacrylamide
gels [28] (Figure A4), glass [61] (Figure 2), wood [13] and sugar beet [18] (Figure 2). It is shown
in Appendix A.9 that the corresponding ‘real’ relaxation modulus is

G(t) =
√

π
2

[
β1
√

q1 e
1
4 t2q1−m1ter f c

(
1
2 tq1−m1√

q1

)
+

β2
√

q2 e
1
4 t2q2−m2ter f c

(
1
2 tq2−m2√

q2

)]
,

(62)

where the complementary error function er f c(x) is defined by [62]:

er f c(x) =
2√
π

∫ ∞

x
e−z2

dz. (63)

In the experiment, N = 5000 sampling instants ti were generated with the constant
period in the time interval T = [0, 1550] seconds selected in view of the course of the
modulus G(t) (62). Additive measurement noises z(ti) were selected independently by
random choice with uniform distribution on the interval [−0.005, 0.005] Pa. The ‘real’
spectrum (61), modulus (62) and the basis functions hk(τ, α), φk(t, α) were simulated
in Matlab R2022a using the special functions besselk and erfc. For the singular value
decomposition procedure, svd was applied. New calculation algorithms of the modified
Bessel function of the second kind are constantly being developed; recently, an algorithm
for parallel calculation was proposed [63].

3.7.1. Optimal Models

For K = 3, 4, . . . , 12, the optimal time-scaling factors αopt were determined via the
proposed two-level identification scheme and are given in Table 3 together with the related
regularization parameters λGCV

(
αopt

)
. Next, the vectors of optimal model parameters

ĝK = ĝλGCV
K

(
αopt

)
(45) were computed and are given in Table A3 in Appendix B; the

elements of these vectors are both negative and positive. The square norms ‖ĝK‖2 and
‖HKopt(τ)‖2 are also enclosed in Table 3 as the measures of the solution smoothness.
The norm ‖HKopt(τ)‖2 of the optimal model HKopt(τ) (46) was determined through (52)
based on ĝK. For the ‘real’ spectrum H(τ) (61), the norm ‖H(τ)‖2 = 19.2562 Pa. The
approximation error between H(τ) (61) and their models HKopt(τ) (46) was estimated via
relative integral error ER1(K), defined by:

ER1(K)2 =
‖H(τ)− HKopt(τ)‖2

2

‖H(τ)‖2
2

=

∫ ∞
0

[
H(τ)− HKopt(τ)

]2dτ∫ ∞
0 H(τ)2dτ

, (64)
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which is expressed in a percentage in the penultimate column of Table 3. For the bimodal
spectrum, the values of this error of the order of 33% are not surprising in the context of the
ill-conditioned inverse problem. To compare the approximations HKopt(τ) (46) obtained
for successive integer K, the square index ER2(K) defined by the distance:

ER2(K) = ‖H(K+1)opt(τ)− HKopt(τ)‖2
2
=
∫ ∞

0

[
H(K+1)opt(τ)− HKopt(τ)

]2
dτ, (65)

is applied; see the last column of Table 3. The optimal indices QNopt
(
αopt

)
(37) are given in

Table 3, too. The optimal models HKopt(τ) (46) and the ‘real’ spectrum H(τ) (61) are plotted
in Figure 4 for K = 3, 4, . . . 12. The analysis of the data from Table 3 and, in particular,
the analysis of Figure 4b–d show that increasing the number of model components above
K = 8 does not significantly affect the course of the model HKopt(τ) and its accuracy. This
is emphasized by the values of the ER1(K) (64) and ER2(K) (65) indices; in particular,
the integral square error ER2(K) between successive HKopt(τ) and H(K+1)opt(τ) spectrum

approximations, which relates to the square norm ‖H(τ)‖2
2 for K ≥ 8 does not exceed

0.046%, and for K ≥ 10, it is of the order of 0.009%.

Table 3. The parameters of the optimal models in the example: optimal time-scale factors αopt, upper
αmin and lower αmax bounds of the interval [αmin, αmax] of suboptimal time-scale factors defined by
inequality (66) for εα = 0.1, regularization parameters λGCV

(
αopt

)
, optimal identification indices

QNopt
(
αopt

)
defined in (37), square norms: ‖ĝK‖2 of the vector of optimal model parameter ĝK

(45) and ‖HKopt(τ)‖2 of the optimal relaxation spectrum model HKopt(τ) (46), relaxation spectrum
approximation error ER1(K) defined in (64) and the distance between successive approximations
HKopt(τ) measured by ER2(K) (65).

K
αopt

[s−1]
αmin
[s−1]

αmax
[s−1]

λGCV(αopt)
[−]

QNopt(αopt)
[Pa2]

‖ĝK‖2
[Pa]

‖HKopt(τ)‖2
[Pa]

ER1(K)
[%]

ER2(K)
[Pa2·s]

3 0.00520 0.00205 0.0080 0.0445 8.63505 × 10−4 0.7055 13.0248 90.459 12.876
4 0.01675 0.0164 0.01745 0.0063 3.43945 × 10−5 7.3485 16.1607 39.160 3.1049
5 0.02025 0.0192 0.0213 0.0071 2.71552 × 10−5 4.6724 17.1465 35.638 2.4592
6 0.02375 0.0220 0.0255 0.0078 2.48511 × 10−5 3.6493 18.0443 33.986 0.7563
7 0.02655 0.0234 0.0290 0.0083 2.48256 × 10−5 2.8846 18.5088 33.364 0.1432
8 0.02865 0.0234 0.0318 0.0089 2.51617 × 10−5 2.3555 18.5679 32.824 0.1692
9 0.03005 0.0241 0.03425 0.0099 2.52412 × 10−5 2.0639 18.3756 32.701 0.0111

10 0.03215 0.0255 0.0367 0.0109 2.51143 × 10−5 1.9058 18.4224 32.631 0.0336
11 0.03390 0.0276 0.03915 0.0122 2.48521 × 10−5 1.8020 18.3498 32.879 0.0327
12 0.03670 0.02935 0.04195 0.0127 2.44452 × 10−5 1.7198 18.4432 32.919 0.0328

In Figure 5, the optimal models of the relaxation modulus GK
(
t, αopt

)
computed for

ĝK (45) according to (7) are plotted, where the measurements G(ti) of the ‘real’ modulus
G(t) (62) are also marked. The optimal models GK

(
t, αopt

)
have been well fitted to the

experimental data, as indicated by the mean-square model errors QNopt
(
αopt

)
/N, which

for 8 ≤ K ≤ 12 vary in the range from 4.889·10−9 Pa2 to 5.0482·10−9 Pa2. Thus, models
GK
(
t, αopt

)
for different K practically coincide with the measurement points and with each

other; see Figure 5.

3.7.2. Optimal and Sub-Optimal Time-Scale Factors

The identification index QNopt(α) (35) minimized in the upper-level task (37) as a
function of time-scale factor α is plotted in Figure 6a–d for K = 6, 8, 10, 12. The optimal
parameters αopt are marked. The analysis of these plots suggests that there is such a
neighborhood of αopt, namely a closed interval [αmin, αmax], that αmin ≤ αopt ≤ αmax
and for each α ∈ [αmin, αmax], the identification index QNopt(α) differs from the minimal
QNopt

(
αopt

)
not more than εα·QNopt

(
αopt

)
, i.e.,

QNopt(α)−QNopt
(
αopt

)
≤ εα·QNopt

(
αopt

)
, (66)

where εα is a small positive number. Inequality (66) means the deterioration of the model
error is not greater than εα percent of the optimal QNopt

(
αopt

)
. Any parameter α from the
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interval [αmin, αmax] is a suboptimal time-scale factor. In Figure 6, εα = 0.1, which means a
10% level of sub-optimality, is assumed, and the values of αmin and αmax are marked on the
small subfigures. They are also given in Table 3. With the increase in the number of model
components, the optimal parameter αopt increases and the range of sub-optimal time-scale
factors shifts. For an exemplary number of model components, K = 9, the optimal model
HKopt(τ) (46) and models HK(τ, α) (6), optimal in the sense of lower-level task (28) for
suboptimal parameters αmin and αmax, are plotted in Figure 7a; the ‘real’ spectrum H(τ)
(61) is presented, too. The corresponding optimal regularization parameters are as follows:
λGCV(αmin) = 0.0167 and λGCV(αmax) = 0.0094. For respective vectors of optimal model
parameters, we have ‖ĝλGCV

K (αmin)‖2 = 2.5114 Pa and ‖ĝλGCV
K (αmax)‖2 = 2.5119 Pa. The

norms of the relaxation spectra are ‖HK(τ, αmin)‖2 = 17.4472 Pa and ‖HK(τ, αmax)‖2 =
20.2069 Pa. In Figure 7b, the ‘real’ modulus G(t) (62) and the models: GK

(
t, αopt

)
(7) and

(45) and GK(t, αmin), GK(t, αmax) computed for ĝλGCV
K (αmin), ĝλGCV

K (αmax) according to (7)
are plotted. However, the relaxation moduli are almost identical (Figure 7b), the spectrum
models differ (Figure 7a), which emphasizes the importance of the time-scale factor optimal
selection. Too strong smoothing of the relaxation spectrum models, with a simultaneous
very good fit to the experimental data of the relaxation modulus models, indicates the need
to modify the quality index in the regularized task (26). For example, the square term ‖gK‖

2
2

in the second component of the objective function can be replaced by the quadratic form
gT

KWgK, and a positive definite weight matrix W or regularized weighted least-squares
approach [41] can be applied. This will be the subject of further work.
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Figure 4. Relaxation time spectrum 𝐻(𝜏) (61) (solid red line) from the example and the corre-
sponding models 𝐻 (𝜏) (46) for 𝐾 summands of the model: (a) 𝐾 = 3,4,5; (b) 𝐾 = 6,7,8; (c) 𝐾 =9,10; (d) 𝐾 = 11,12. 

In Figure 5, the optimal models of the relaxation modulus 𝐺 𝑡, 𝛼  computed for 𝒈  (45) according to (7) are plotted, where the measurements �̅�(𝑡 ) of the ‘real’ modulus 

Figure 4. Relaxation time spectrum H(τ) (61) (solid red line) from the example and the corresponding
models HKopt(τ) (46) for K summands of the model: (a) K = 3, 4, 5; (b) K = 6, 7, 8; (c) K = 9, 10;
(d) K = 11, 12.
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example and the optimal approximated models GK

(
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(7) computed for ĝK (45) for K summands

of the model: (a) K = 3, 6, 8; (b) K = 9, 12.
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Figure 6. The identification index QNopt(α) (35) (solid navy blue line) minimized in the upper level
task (37) from the example for: (a) K = 6, (b) K = 8, (c) K = 10, (d) K = 12 summands of the relaxation
spectrum model (6); on small subfigures, dashed red line of the value (1 + εα)QNopt

(
αopt

)
determines

the interval [αmin, αmax] of suboptimal time-scale factors defined by (66); αopt is the optimal time-scale
factor solving problem (37) for the sub-optimality factor εα = 10%.



Materials 2023, 16, 3565 22 of 34

Materials 2023, 16, x FOR PEER REVIEW 22 of 34 
 

 

determines the interval [𝛼 , 𝛼 ] of suboptimal time-scale factors defined by (66); 𝛼  is the 
optimal time-scale factor solving problem (37) for the sub-optimality factor 𝜀 = 10%. 

 
(a) (b) 

Figure 7. Relaxation time spectra and moduli from the example and the corresponding models for 𝐾 = 9 summands of the model: (a) ‘real’ spectrum 𝐻(𝜏) (61) (solid red line) and the models: opti-
mal 𝐻 (𝜏) (46) and suboptimal 𝐻 (𝜏, 𝛼 ) and 𝐻 (𝜏, 𝛼 ); (b) ‘real’ modulus 𝐺(𝑡) (62) (red 
points), the optimal approximated model 𝐺 𝑡, 𝛼  (7) and (45), the suboptimal models 𝐺 (𝑡, 𝛼 ) and 𝐺 (𝑡, 𝛼 ) computed for 𝒈 (𝛼 ) and 𝒈 (𝛼 ) according to (7). 

4. Conclusions 
In this paper, a new robust hierarchical algorithm for the identification of the relax-

ation time spectrum, which combines the technique of an expansion of a function into a 
series of basis functions with the least-squares regularized identification and the optimal 
choice of the time-scale factor, has been derived. The task of determining the best ‘regu-
larized’ model was solved at the lower level, while the optimal time-scale factor was se-
lected on the upper level of the identification scheme. The continuous spectrum of relax-
ation times was approximated by finite series of power–exponential basis functions, 
while the components of the relaxation modulus model were proven to be described by 
the product of power of time and the modified Bessel function of the second kind. In the 
present paper, the problem of the optimal choice of the time-scale factor to ensure the 
best fit of the model to experimental data has been formulated and solved for the first 
time in the context of the relaxation spectrum identification. 

The necessary optimality conditions both for the optimal regularized least-squares 
identification task and the problem of the optimal selection of the time-scale factor were 
derived in the form of nonlinear algebraic equations. The main properties of the basis 
functions of the relaxation spectrum and modulus models, their positive definiteness, 
convenient upper bounds, monotonicity, asymptotic properties and wide range of ap-
plicability for different time-scale factors indicated the possibility of using the proposed 
model and identification algorithm to determine the spectrum of a wide class of viscoe-
lastic materials. 

The overly strong smoothing of the relaxation spectrum models in the example, 
with a very good fit to the experimental data of the relaxation modulus models, indi-
cates the need to modify the quality index in the lower level identification task. An in-
troduction of a weight matrix in the second component of the objective function or a di-
rect application of regularized weighted least-squares should be investigated. Another 
solution is the selection of such a spectrum model which guarantees the assumed level 
of smoothing and optimal adjustment to the relaxation modulus measurement data. 
These approaches will be the subject of further work. 

The presented scheme of the relaxation spectrum identification can be easily modi-
fied for retardation spectrum recovery from creep compliance measurements obtained in 
the standard creep test. 

Figure 7. Relaxation time spectra and moduli from the example and the corresponding models for
K = 9 summands of the model: (a) ‘real’ spectrum H(τ) (61) (solid red line) and the models: optimal
HKopt(τ) (46) and suboptimal HK(τ, αmin) and HK(τ, αmax); (b) ‘real’ modulus G(t) (62) (red points),
the optimal approximated model GK

(
t, αopt

)
(7) and (45), the suboptimal models GK(t, αmin) and

GK(t, αmax) computed for ĝλGCV
K (αmin) and ĝλGCV

K (αmax) according to (7).

4. Conclusions

In this paper, a new robust hierarchical algorithm for the identification of the relaxation
time spectrum, which combines the technique of an expansion of a function into a series
of basis functions with the least-squares regularized identification and the optimal choice
of the time-scale factor, has been derived. The task of determining the best ‘regularized’
model was solved at the lower level, while the optimal time-scale factor was selected on the
upper level of the identification scheme. The continuous spectrum of relaxation times was
approximated by finite series of power–exponential basis functions, while the components
of the relaxation modulus model were proven to be described by the product of power
of time and the modified Bessel function of the second kind. In the present paper, the
problem of the optimal choice of the time-scale factor to ensure the best fit of the model to
experimental data has been formulated and solved for the first time in the context of the
relaxation spectrum identification.

The necessary optimality conditions both for the optimal regularized least-squares
identification task and the problem of the optimal selection of the time-scale factor were
derived in the form of nonlinear algebraic equations. The main properties of the basis
functions of the relaxation spectrum and modulus models, their positive definiteness, con-
venient upper bounds, monotonicity, asymptotic properties and wide range of applicability
for different time-scale factors indicated the possibility of using the proposed model and
identification algorithm to determine the spectrum of a wide class of viscoelastic materials.

The overly strong smoothing of the relaxation spectrum models in the example, with
a very good fit to the experimental data of the relaxation modulus models, indicates the
need to modify the quality index in the lower level identification task. An introduction of a
weight matrix in the second component of the objective function or a direct application of
regularized weighted least-squares should be investigated. Another solution is the selection
of such a spectrum model which guarantees the assumed level of smoothing and optimal
adjustment to the relaxation modulus measurement data. These approaches will be the
subject of further work.

The presented scheme of the relaxation spectrum identification can be easily modified
for retardation spectrum recovery from creep compliance measurements obtained in the
standard creep test.
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Appendix A

Appendix A.1. Proof of Theorem 1

To prove the theorem, we first derive the following integral formula:

I =
∫ ∞

0
τv−1e−ατe−t/τdτ = 2

(√
t
α

)v

Kv

(
2
√

αt
)

, (A1)

where v ∈ R.
By applying in the integral of the left-hand side of (A1) the substitution

√
α τ =

√
tey

we have:

I =
∫ ∞

−∞

(√
t
α

)v

ey(v−1)e−
√

αt ey
e−
√

αt e−y
eydy,

which can be expressed as

I =

(√
t
α

)v ∫ ∞

−∞
evye−2

√
αt cosh(y)dy. (A2)

Since, bearing in mind that cosh(y) is an even function, the integral in (A2) is rewrit-
ten as

I =

(√
t
α

)v[∫ ∞

0
e−vy e−2

√
αt cosh(y)dy +

∫ ∞

0
evy e−2

√
αt cosh(y)dy

]
,

or equivalently

I = 2

(√
t
α

)v ∫ ∞

0
e−2
√

αt cosh(y)cosh(vy)dy,

whence, by the following integral representation formula for the Bessel functions [45,46]
(Equation (5) on p. 181 in [46]):

Kv(x) =
∫ ∞

0
e−x cosh(y)cosh(vy)dy,

where x > 0 and v ∈ R, Formula (A1) directly follows.
Now, we prove Formula (9). Since, by (3) and (8) the basis functions

φk(t, α) =
(α

k

)k
ek
∫ ∞

0
τk−1e−ατe−t/τdτ

from (A1), we have

φk(t, α) = 2
(α

k

)k
ek

(√
t
α

)k

Kk

(
2
√

αt
)

,

whence, Formula (9) follows. �

Appendix A.2. Algebraic Matrix Properties

In this appendix, a new differential matrix property, used to obtain the optimality
conditions and to simplify numerical computations, is derived. First, for convenience, some
matrix identities and inequalities known in the literature are also provided.
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Appendix A.2.1. Matrix Identities and Inequalities

The following identities hold for arbitrary matrices A, B, C and D [57] (Equations
(6.4.2)), (2.1.1) and (2.1.4), in order:

tr[AB] = tr[BA], (A3)

(AB)−1 = B−1A−1, (A4)

(BC + A)−1 = A−1 −A−1B
(

I + CA−1B
)−1

CA−1, (A5)

provided that respective matrices are invertible.
The following differential properties hold for arbitrary differentiable matrix functions

A(x) and B(x) [57] (Equations (P2.1.2a) and (P2.1.2b), respectively):

∂

∂x
[A(x)B(x)] =

∂A(x)
∂x

B(x) + A(x)
∂B(x)

∂x
, (A6)

∂

∂x

[
A(x)−1

]
= −A(x)−1 ∂A(x)

∂x
A(x)−1, (A7)

assuming that matrix A(x) is invertible.

Appendix A.2.2. New Matrix Property

Let us now prove the following result.

Proposition A1. Let A(x) be a symmetric positive definite m×m matrix function differentiable
with respect to the real argument x. Then

∂tr
[
A(x)−1

]
∂x

= −tr
[

A(x)−1 ∂A(x)
∂x

A(x)−1
]

. (A8)

Proof of Proposition A1. Since the trace of the matrix is a linear function, bearing in mind
definition of the matrix derivative with respect to the scalar argument x [57] (Section 2.1.8),
we have

∂tr
[
A(x)−1

]
∂x

= tr
[

∂

∂x

[
A(x)−1

]]
,

which, in view of (A7), directly yields (A8); the proposition is proved. �

Appendix A.3. Proof of Theorem 2

First, we express Ξ(λ, α) (30) in a more useful equivalent form. By the matrix identity
(A5) for λ > 0, we have

λ
(

ΦN,K(α)Φ
T
N,K(α) + λIN,N

)−1
= IN,N −ΦN,K(α)

(
λIK,K+

ΦT
N,K(α)ΦN,K(α)

)−1
ΦT

N,K(α),

whereas, by (30) and bearing in mind the notation (32), we obtain

Ξ(λ, α) = λ(Ψ(α) + λIN,N)
−1. (A9)
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Since, by (30), the GCV functional VGCV(λ, α) (29) is expressed as

VGCV(λ, α) =
GT

NΞ(λ, α)Ξ(λ, α)GN

tr[Ξ(λ, α)]2
,

its derivative with respect to λ is given by

∂VGCV(λ,α)
∂λ =

∂
∂λ

[
GT

N Ξ(λ,α)Ξ(λ,α)GN

]
tr[Ξ(λ,α)]−2GT

N Ξ(λ,α)Ξ(λ,α)GN
∂tr[Ξ(λ,α)]

∂λ

tr[Ξ(λ,α)]3
. (A10)

Now, we determine the partial derivatives which appear in the nominator of the
right-hand side of (A10). By Formula (A6), we have

∂

∂λ

[
GT

NΞ(λ, α)Ξ(λ, α)GN

]
= 2GT

NΞ(λ, α)
∂Ξ(λ, α)

∂λ
GN . (A11)

Equation (A9) yields

∂Ξ(λ, α)

∂λ
= (Ψ(α) + λIN,N)

−1 + λ
∂

∂λ

[
(Ψ(α) + λIN,N)

−1
]
, (A12)

where the derivative of the inverse matrix can be found due to property (A7), which, when
applied to (A12), results in

∂Ξ(λ, α)

∂λ
= (Ψ(α) + λIN,N)

−1 − λ(Ψ(α) + λIN,N)
−1(Ψ(α) + λIN,N)

−1,

whereas, after algebraic manipulations, we obtain

∂Ξ(λ, α)

∂λ
= (Ψ(α) + λIN,N)

−2Ψ(α). (A13)

Combining (A11), (A13) and (A9) yields

∂

∂λ

[
GT

NΞ(λ, α)Ξ(λ, α)GN

]
= 2λGT

N(Ψ(α) + λIN,N)
−3Ψ(α)GN . (A14)

To find ∂tr[Ξ(λ,α)]
∂λ , expression (A9) is used, which implies

tr[Ξ(λ, α)] = λ tr
[
(Ψ(α) + λIN,N)

−1
]
, (A15)

whence

∂tr[Ξ(λ, α)]

∂λ
= tr

[
(Ψ(α) + λIN,N)

−1
]
+ λ

∂tr
[
(Ψ(α) + λIN,N)

−1
]

∂λ
. (A16)

By Proposition A1 and Equation (A8), we have

∂tr
[
(Ψ(α) + λIN,N)

−1
]

∂λ
= −tr

[
(Ψ(α) + λIN,N)

−2
]
;

therefore, derivative ∂tr[Ξ(λ,α)]
∂λ (A16) takes the form

∂tr[Ξ(λ, α)]

∂λ
= tr

[
(Ψ(α) + λIN,N)

−1
]
− λ tr

[
(Ψ(α) + λIN,N)

−2
]
. (A17)

Now, we can derive the necessary optimality condition. Since, in view of (A9), matrix
Ξ(λ, α) is positive definite for any λ > 0, derivative ∂VGCV(λ,α)

∂λ given by the fraction from
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the right-hand side of (A10) is equal to zero, if and only if its nominator is equal zero to, i.e.,

∂

∂λ

[
GT

NΞ(λ, α)Ξ(λ, α)GN

]
tr[Ξ(λ, α)] = 2GT

NΞ(λ, α)Ξ(λ, α)GN
∂tr[Ξ(λ, α)]

∂λ
. (A18)

By (A18), (A14), (A9), and (A17), we have

2λ2GT
N(Ψ(α) + λIN,N)

−3Ψ(α)GNtr
[
(Ψ(α) + λIN,N)

−1
]
=

2λ2GT
N(Ψ(α) + λIN,N)

−2GN

{
tr
[
(Ψ(α) + λIN,N)

−1
]
− λ tr

[
(Ψ(α) + λIN,N)

−2
]}

,

which is equivalent to

GT
N(Ψ(α) + λIN,N)

−3Ψ(α)GNtr
[
(Ψ(α) + λIN,N)

−1
]
= GT

N(Ψ(α)+

λIN,N)
−2GN

{
tr
[
(Ψ(α) + λIN,N)

−1
]
− λ tr

[
(Ψ(α) + λIN,N)

−2
]}

,
(A19)

whence, by standard algebraic manipulations, Equation (31) follows directly. The theorem
is proved. �

Appendix A.4. Derivation of the Formula (33)

To derive the Formula (33) describing the derivative ∂VGCV(λ,α)
∂λ directly as a function

of the matrices Ψ(α) and GN , let us consider the nominator of the right-hand side of (A10),
i.e., the function

M(λ, α) = ∂
∂λ

[
GT

NΞ(λ, α)Ξ(λ, α)GN

]
tr[Ξ(λ, α)]−

2GT
NΞ(λ, α)Ξ(λ, α)GN

∂tr[Ξ(λ,α)]
∂λ ,

which, by (A14), (A15), (A9) and (A17), is expressed as

M(λ, α) = 2λ2GT
N(Ψ(α) + λIN,N)

−3Ψ(α)GN tr
[
(Ψ(α) + λIN,N)

−1
]
−

2λ2GT
N(Ψ(α) + λIN,N)

−2GN

{
tr
[
(Ψ(α) + λIN,N)

−1
]
− λ tr

[
(Ψ(α) + λIN,N)

−2
]}

.

Through tedious algebraic manipulations, the above expression is rewritten as

M(λ, α) = −2λ3GT
N(Ψ(α) + λIN,N)

−3 GNtr
[
(Ψ(α) + λIN,N)

−1
]
+

2λ3GT
N(Ψ(α) + λIN,N)

−2GNtr
[
(Ψ(α) + λIN,N)

−2
]
.

(A20)

Now, (A10) combined with (A20) and (A15) yields Formula (33).

Appendix A.5. Proof of Theorem 3

We first prove Equation (39) for k = 0; next, Formula (38) is derived.
Based on (10), property (19) and bearing in mind that K1(x) = K−1(x) [54], we have

d
dα

[φ0(t, α)] = −
√

t√
α

[
K−1

(
2
√

αt
)
+ K1

(
2
√

αt
)]

= −2
√

t√
α

K1

(
2
√

αt
)

, (A21)

whence, by (9) and the last equation in (A21), we immediately obtain Equation (39).
Since, for an arbitrary k ≥ 1, the basis function φk(t, α) (9) is expressed as

φk(t, α) = 2
( e

2k

)k(
2
√

αt
)k

Kk

(
2
√

αt
)

,



Materials 2023, 16, 3565 27 of 34

by Formula (18), we immediately have

d
dα

[φk(t, α)] = −2
√

t√
α

ek
(

1
2k

)k(
2
√

αt
)k

Kk−1

(
2
√

αt
)

,

which is rewritten as

d
dα

[φk(t, α)] = −2e
(

t
k

)(
k− 1

k

)k−1
ek−1

( √
αt

k− 1

)k−1

Kk−1

(
2
√

αt
)

,

whence, in view of (9), Formula (38) follows directly, which completes the proof. �

Appendix A.6. Proof of Theorem 4

Let us find the derivative of the function QNopt(α). Based on (36) and property (A6),
and bearing in mind definition (42), we have

dQNopt(α)
dα = 2λGCV(α)

dλGCV(α)
dα GT

NY(α)−2GN+

2λ2
GCV(α)G

T
N

[
d

dα Y(α)−1
]
Y(α)−1GN ,

whereas by property (A7), the next formula follows

dQNopt(α)

dα
= 2

[
λGCV(α)

dλGCV(α)

dα
GT

N − λ2
GCV(α)G

T
NY(α)−1

[
d

dα
Y(α)

]]
Y(α)−2, (A22)

where, by (42):

d
dα

Y(α) =
d

dα
Ψ(α) +

dλGCV(α)

dα
IN,N = ΩN,K(α) +

dλGCV(α)

dα
IN,N . (A23)

Substituting (A23) into (A22), we obtain

dQNopt(α)
dα = 2λGCV(α)

dλGCV(α)
dα GT

NY(α)−2GN−
2λ2

GCV(α)
dλGCV(α)

dα GT
NY(α)−3GN − 2λ2

GCV(α)G
T
NY(α)−1ΩN,K(α)Y(α)

−2GN .
(A24)

Whence, if the parameter αopt solves the minimization task (37), then λGCV
(
αopt

)
is

a solution of the algebraic Equation (40), resulting directly from equating the derivative
dQNopt(α)

dα (A24) to zero. The inspection of (40) shows that two derivatives, ΩN,K(α) =
d

dα Ψ(α) introduced in (A23) and dλGCV(α)
dα , are necessary to define (40) well.

By virtue of (32) and (A6), we obtain

d
dα

Ψ(α) =
d

dα
ΦN,K(α)Φ

T
N,K(α) + ΦN,K(α)

d
dα

ΦT
N,K(α). (A25)

Derivative d
dα ΦN,K(α) of the matrix ΦN,K(α) follows from Theorem 3 and the structure

of ΦN,K(α) (24). By (24), (38) and (39), bearing in mind that 00 = 1, matrix ΘN,K(α) =
d

dα ΦN,K(α) is given by (44). Thus, d
dα Ψ(α) = ΩN,K(α) (A25) is expressed by (43).

The regularization parameter λGCV(α), which is defined by the minimization task (28),
satisfies the necessary condition (31) from Theorem 2; thus, to evaluate derivative dλGCV(α)

dα ,
Equation (31) is used. By (31), bearing in mind the notation (42), we have

GT
NY(α)−3GNtr

[
Y(α)−1

]
= GT

NY(α)−2GN tr
[
Y(α)−2

]
.
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Differentiating both sides of the above equation with respect to α, and bearing in mind
the properties (A7) and (A8), we obtain

GT
NY(α)−3

[
d

dα Y(α)3
]
Y(α)−3GNtr

[
Y(α)−1

]
+ GT

NY(α)−3GNtr
[
Y(α)−1 d

dα Y(α)Y(α)−1
]
=

GT
NY(α)−2

[
d

dα Y(α)2
]
Y(α)−2GN tr

[
Y(α)−2

]
+ GT

NY(α)−2GN tr
[
Y(α)−2 d

dα Y(α)2Y(α)−2
]
,

(A26)

where derivative d
dα Y(α) is given by (A23). By (42) and property (A6), we have

d
dα

Y(α)2 =

[
d

dα
Y(α)

]
Y(α) + Y(α)

d
dα

Y(α), (A27)

and
d

dα
Y(α)3 =

[
d

dα
Y(α)

]
Y(α)2 + Y(α)

d
dα

Y(α)2,

whence

d
dα

Y(α)3 =

[
d

dα
Y(α)

]
Y(α)2 + Y(α)

[
d

dα
Y(α)

]
Y(α) + Y(α)2 d

dα
Y(α). (A28)

By (A28), bearing in mind the that matrices Y(α) and d
dα Y(α) are symmetric, we have

GT
NY(α)−3

[
d

dα
Y(α)3

]
Y(α)−3GN = 2GT

NY(α)−3
[

d
dα

Y(α)
]

Y(α)−1GN + GT
NY(α)−2

[
d

dα
Y(α)

]
Y(α)−2GN . (A29)

Similarly, by (A27), we obtain

GT
NY(α)−2

[
d

dα
Y(α)2

]
Y(α)−2GN = 2GT

NY(α)−2
[

d
dα

Y(α)
]

Y(α)−1GN . (A30)

Including (A29), (A30) and (A27), Equation (A26) is, after algebraic manipulations,
rewritten as

2GT
NY(α)−3

[
d

dα Y(α)
]
Y(α)−1GNtr

[
Y(α)−1

]
+ GT

NY(α)−2
[

d
dα Y(α)

]
Y(α)−2GNtr

[
Y(α)−1

]
+

GT
NY(α)−3GNtr

[
Y(α)−1 d

dα Y(α)Y(α)−1
]
= 2GT

NY(α)−2
[

d
dα Y(α)

]
Y(α)−1GN tr

[
Y(α)−2

]
+

GT
NY(α)−2GN tr

[[
Y(α)−2

[
d

dα Y(α)
]
Y(α)−1 + Y(α)−1

[
d

dα Y(α)
]
Y(α)−2

]]
.

By (A23), the last equation can be expressed as follows:

2GT
NY(α)−3

[
ΩN,K(α) +

dλGCV(α)
dα IN,N

]
Y(α)−1GNtr

[
Y(α)−1

]
+ GT

NY(α)−2[ΩN,K(α)+
dλGCV(α)

dα IN,N

]
Y(α)−2GNtr

[
Y(α)−1

]
+ GT

NY(α)−3GNtr
[
Y(α)−1

[
ΩN,K(α) +

dλGCV(α)
dα IN,N

]
Y(α)−1

]
=

2GT
NY(α)−2

[
ΩN,K(α) +

dλGCV(α)
dα IN,N

]
Y(α)−1GN tr

[
Y(α)−2

]
+ GT

NY(α)−2GN tr
[[

Y(α)−2[ΩN,K(α)+
dλGCV(α)

dα IN,N

]
Y(α)−1 + Y(α)−1

[
ΩN,K(α) +

dλGCV(α)
dα IN,N

]
Y(α)−2

]
],

which, after painstaking algebraic manipulations, yields Equation (41), which completes
the proof. �

Appendix A.7. Proof of Proposition 1

By (6), for any time-scale factor α and any vector of model parameters gK, we have

‖HK(τ, α)‖2
2 =

∫ ∞

0

[
∑K−1

k=0 gkhk(τ, α)
]2

dτ, (A31)

which is rewritten as

‖HK(τ, α)‖2
2 = ∑K−1

k=0 ∑K−1
j=0 gkgjγkj(α). (A32)
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where the functions
γkj(α) =

∫ ∞

0
hk(τ, α)hj(τ, α)dτ, (A33)

for k, j = 0, 1, . . . K− 1.
By virtue of (A33), we have γkj(α) = γjk(α) for any k, j = 0, 1, . . . K− 1. The proof is

based on the following integral formula [64] (Equation (3.351.3)):∫ ∞

0
τne−2ατdτ =

n!

(2α)n+1 . (A34)

For k = j = 0, definition (A33) and (4) immediately imply

γ00(α) =
∫ ∞

0
e−2ατdτ =

1
2α

. (A35)

For k = 0 and j = 1, . . . K− 1, by virtue of (A33), (3), (4) and (A34), we have

γ0j(α) =

(
eα

j

)j ∫ ∞

0
τ je−2ατdτ =

(
eα

j

)j j!

(2α)j+1 =
1

2α

( e
2

)j j!
jj . (A36)

For k, j = 1, . . . K− 1, through (A33), (3) and (A34), we obtain

γkj(α) = ek+j
(α

k

)k
(

α

j

)j ∫ ∞

0
τk+je−2ατdτ = ek+j

(α

k

)k
(

α

j

)j (k + j)!

(2α)k+j+1 .

The last equation is expressed as

γkj(α) =
1

2α

( e
2

)k+j (k + j)!
kk jj . (A37)

Bearing in mind (A33), Equation (A32) is rewritten as the quadratic form

‖HK(τ, α)‖2
2 = gT

KΓ(α)gK, (A38)

where symmetric K× K matrix Γ(α) =
[
γkj(α)

]
, composed by the functions γkj(α) defined

by (A33), through (A35)–(A37), is as follows

Γ(α) =
1

2α



1 e
2 · · ·

( e
2
)j j!

jj · · ·
( e

2
)K−1 (K−1)!

(K−1)K−1

e
2 2

( e
2
)2 · · ·

( e
2
)1+j (1+j)!

jj · · ·
( e

2
)K (K)!

(K−1)K−1

...
...

. . .
...

. . .
...( e

2
)k k!

kk

( e
2
)k+1 (k+1)!

kk · · ·
( e

2
)k+j (k+j)!

kk jj · · ·
( e

2
)k+K−1 (k+K−1)!

kk (K−1)K−1

...
...

...
...

. . .
...( e

2
)K−1 (K−1)!

(K−1)K−1

( e
2
)K−1+j (K)!

(K−1)K−1 · · ·
( e

2
)K−1+j (K−1+j)!

(K−1)K−1 jj · · ·
( e

2
)2K−2 (2K−2)!

(K−1)2(K−1)


. (A39)

Since matrix Γ(α) can be expressed as Γ(α) = 1
2α Γ1, where Γ1 is given by (53),

Equation (52) is derived.
According to (A38) and (A31), the quadratic form gT

KΓ(α)gK is expressed as

gT
KΓ(α)gK =

∫ ∞

0

[
∑K−1

k=0 gkhk(τ, α)
]2

dτ.

Thus, gT
KΓ(α)gK ≥ 0 for an arbitrary vector gK, and gT

KΓ(α)gK = 0, if and only if
∑K−1

k=0 gkhk(τ, α) = 0 for almost all τ > 0. Since the basis functions hk(τ, α) are independent,
the last equality holds, if and only if gk = 0 for all k = 0, 1, . . . , K− 1, i.e., only if the vector
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gK = 0, which yields the positive definiteness of Γ(α). Whence, Γ1 = 2αΓ(α). is positive
definite, too; this finishes the proof. �

Appendix A.8. Proof of Proposition 4

Since, by (6) and (58), bearing in mind (A32), (A33), (A38) and Γ(α) = 1
2α Γ1, we have

‖HK(τ, α)− H̃K(τ, α)‖2
2 =

1
2α

[
gλ

K(α)− gλ
K(α)

]T
Γ1

[
gλ

K(α)− gλ
K(α)

]
,

in view of the right inequality in (54), the following estimation holds:

‖HK(τ, α)− H̃K(τ, α)‖2
2 ≤

1
2α

σ1(Γ1)‖gλ
K(α)− gλ

K(α)‖
2
2. (A40)

By virtue of (27) and (59), and bearing in mind (48), we obtain

gλ
K(α)− gλ

K(α) = V(α)Λλ(α) U(α)TzN ,

where the orthogonal matrices V(α) and U(α) are defined by SVD (47), and the diagonal
matrix Λλ(α) is given by (49). Thus,

‖gλ
K(α)− gλ

K(α)‖
2
2 = tr

[
U(α)ΛT

λ(α)Λλ(α) U(α)TzNzT
N

]
,

which, using the Schwarz inequality for matrices [57] and the orthogonality of U(α), is
estimated as follows:

‖gλ
K(α)− gλ

K(α)‖
2
2 ≤ tr

[
ΛT

λ(α)Λλ(α)Λ
T
λ(α)Λλ(α)

] 1
2 tr

[
zNzT

NzNzT
N

] 1
2 . (A41)

Since
tr
[
zNzT

NzNzT
N

]
= zT

NzNtr
[
zNzT

N

]
=
[
zT

NzN

]2
= ‖zN‖4

2,

and by the diagonal structure of Λλ(α) (49), we have

tr
[
ΛT

λ(α)Λλ(α)Λ
T
λ(α)Λλ(α)

]
= ∑r(α)

i=1
[σi(α)]

4{
[σi(α)]

2 + λ
}4 ,

inequality (A41) is equivalently rewritten as

‖gλ
K(α)− gλ

K(α)‖
2
2 ≤

∑r(α)
i=1

[σi(α)]
4{

[σi(α)]
2 + λ

}4


1
2

‖zN‖2
2. (A42)

Now, estimations (A40) and (A42) yield inequality (60), and the proposition is proved. �

Appendix A.9. Derivation of the Formula (62)

To derive Equation (62), note that due to (2), the relaxation modulus induced by the
spectrum

H(τ) =

[
e−(

1
τ−m)

2
/q
]

/τ (A43)

is described by

G(t) =
∫ ∞

0
e−(

1
τ−m)

2
/q 1

τ2 e−t/τdτ.
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Through (2) and (A43), applying the substitution 1
τ = x, the above integral is rewrit-

ten as

G(t) = −
∫ 0

∞
e−(x−m)2/qe−txdx =

∫ ∞

0
e−(x−m)2/qe−txdx

and next, as follows:

G(t) = e
1
4 t2q−mt

∫ ∞

0
e
−(x+ 1

2 tq−m)
2

q dx. (A44)

Applying in the integral (A44) the substitution (x+ 1
2 tq−m)√

q = z, the formula describing
relaxation modulus is expressed as

G(t) =
√

q e
1
4 t2q−mt

∫ ∞

( 1
2 tq−m)/

√
q

e−z2
dz =

√
qπ

2
e

1
4 t2q−mter f c

(
1
2 tq−m
√

q

)
, (A45)

where the function er f c(x) is defined by (63). Formula (62) follows directly from the last
expression of the right-hand side of (A45), by comparison of (A43) and (61).

Appendix B

Table A1. Ranges of the applicability of the model for various time-scale parameters for K = 6, . . . 11.

Time-Scale Factor α [s]

Range 1 of Relaxation
Times τapp(α) [s]

Range 1 of Times
tapp(α) [s]

Range 1 of Relaxation
Times τapp(α) [s]

Range 1 of Times
tapp(α) [s]

K = 6 K = 6 K = 7 K = 7

0.0001 161,655.35 337,647.7 178,346.044 392,372
0.001 16,165.53 33,764.77 17,834.606 39,238.5
0.01 1616.55 3376.48 1783.462 3923.85
0.1 161.65 337.65 178.348 392.5
1 16.165 33.765 17.836 39.26
10 1.616 3.376 1.784 3.95

100 0.1616 0.337 0.1783 0.392
α [s] K = 8 K = 8 K = 9 K = 9

0.0001 194,529.30 446,719.4 210,306.21 500,804.6
0.001 19,452.93 44,671.94 21,030.621 50,080.46
0.01 1945.29 4467.19 2103.062 5008.046
0.1 194.53 446.72 210.306 500.81
1 19.453 44.672 21.0306 50.08
10 1.945 4.467 2.1031 5.008

100 0.1945 0.447 0.2103 0.501
α [s] K = 10 K = 10 K = 11 K = 11

0.0001 225,748.07 554,697 240,907.43 608,443.6
0.001 22,574.807 55,469.7 24,090.743 60,844.38
0.01 2257.481 5546.97 2409.074 6084.45
0.1 225.748 554.69 240.907 608.46
1 22.5748 55.469 24.0907 60.86
10 2.2575 5.547 2.4091 6.1

100 0.2257 0.555 0.2409 0.608
1 The upper bounds tapp(α) (20) and τapp(α) (21) of the applicability intervals

[
0, tapp(α)

]
and

[
0, τapp(α)

]
are given.
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Table A2. The square roots of the upper bounds ψn(Γ1) (56) and the square roots of the largest σ1(Γ1)

and minimal σmin(Γ1) singular values of the matrix Γ1 (53) for K = 4, 5, . . . 12 model summands.

K 4 5 6 7 8 9 10 11 12

n
√

ψn(Γ1)

1 3.680199 4.353830 4.974923 5.556319 6.106199 6.630173 7.132299 7.615642 8.082583
2 3.671711 4.330308 4.931579 5.489724 6.013827 6.510086 6.982965 7.435811 7.871217
3 3.667383 4.325690 4.927344 5.485966 6.010365 6.506625 6.979169 7.431342 7.865747
4 3.666555 4.325232 4.927078 5.485799 6.010251 6.506536 6.979081 7.431227 7.865575
5 3.666421 4.325190 4.927062 5.485792 6.010247 6.506534 6.979079 7.431224 7.865568
6 3.666400 4.325186 4.927061 5.485792 6.010247 6.506534 6.979079 7.431223 7.865567
7 3.666397 4.325186 4.927061 5.485792 6.010247 6.506534 6.979079 7.431223 7.865567
8 3.666396 4.325186 4.927061 5.485792 6.010247 6.506534 6.979079 7.431223 7.865567
9 3.666396 4.325186 4.927061 5.485792 6.010247 6.506534 6.979079 7.431223 7.865567

10 3.666396 4.325186 4.927061 5.485792 6.010247 6.506534 6.979079 7.431223 7.865567√
σ1(Γ1) 3.666396 4.325185 4.927061 5.485792 6.010247 6.506534 6.979079 7.431223 7.865567

Table A3. Optimal parameters ĝK = ĝλGCV
K (α̂) (45) of the relaxation spectrum models from Example 1;

the elements of the vectors ĝK are expressed in [Pa].

ĝK

K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12

0.50819 −0.32787 −0.31484 −0.28238 −0.26421 −0.26104 −0.26344 −0.25958 −0.25722 −0.24893
0.48916 3.25406 2.44705 1.86341 1.57535 1.44701 1.38846 1.26949 1.18396 1.042852
−0.01177 −5.37283 −1.74791 −0.21483 0.21735 0.33298 0.38151 0.53024 0.62627 0.77959

3.79955 −1.90531 −1.81625 −1.22415 −0.94252 −0.85336 −0.72742 −0.63340 −0.49513
3.00974 −0.42686 −0.80274 −0.65867 −0.57137 −0.58067 −0.58715 −0.58709

2.49772 0.35990 0.00038 0.018141 −0.06714 −0.11806 −0.19722
1.85736 0.61157 0.39343 0.27044 0.22125 0.12879

1.25669 0.58048 0.40004 0.34372 0.26284
0.75498 0.46114 0.34725 0.26954

0.59592 0.35547 0.25643
0.46177 0.31367

0.49927
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