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Abstract: The self-healing ability of asphalt–aggregate bonding interfaces can maintain the mechan-
ical properties of asphalt mixtures. However, the interface’s healing ability will also be affected
by moisture and aging. In order to clarify the influence of moisture and aging on the healing abil-
ity of a bonding interface, the effects of healing period and temperature on the self-healing level
of interfacial strength were measured. The healing master curve of the strength was established.
Thereafter, the effects of soaking time, salt solution concentration, and thermal aging on the healing
degree of interfacial strength were measured. Based on digital image processing technology and the
meso-finite element method, the influence of the interface on the healing performance of the mixture
was simulated and analyzed, which was then verified by the beam bend healing test. The results
show that the healing index of bonding strength increases with the ascent of healing temperature and
period. Healing index gradually decreases with the extension of soaking period, and the higher the
concentration of salt in the solution, the worse the healing performance of interfacial strength. After
asphalt aging, the healing potential of the interface is weakened. There is a good linear relationship
between the healing level of an asphalt–aggregate interface and the level of strength and fracture
energy of the mixture. However, the actual healing level of an asphalt mixture is obviously lower
than that of the interface, due to the addition of mineral filler. This paper provides a method for
predicting the recovery performance of asphalt pavement.

Keywords: asphalt–aggregate interface; self-healing level; moisture and aging; healing potential of
asphalt mixture; finite element simulation

1. Introduction

The self-healing ability of materials entails that the materials can heal the damage
and cracks when micro-cracks and local damage occur inside of the materials, so that the
material’s performance can be partially or fully recovered [1–5]. For asphalt pavement,
cracks, pits, and other diseases may reduce the service life of the pavement and increase
the maintenance cost. These diseases are mainly caused by the decay of asphalt adhesion,
which is caused by asphalt aging, moisture damage, and other factors. Zhu et al. [1] found
that the self-healing of asphalt at medium and high temperatures made the failed asphalt–
aggregate interface adhere again, showing a self-healing characteristic of the interface,
which makes an asphalt mixture with micro-cracks heal to a certain extent and recover its
strength, and then prevents the cracks from expanding. Guo et al. [2] indicated that the
strength and pre-peak failure energy of an asphalt mixture can be recovered to more than
80% after healing for 15 min at 90 ◦C. Therefore, the self-healing ability of asphalt concrete
is helpful to improve the durability of pavement and prolong its service life [6–11].

In order to conveniently evaluate the adhesive strength between the asphalt and
aggregate, the bitumen bond strength (BBS) test is gradually introduced to measure the
adhesive property of an asphalt–aggregate interface [12]. Johannes et al. [13] carried out
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the bonding performance test of asphalt materials through a BBS experiment and evaluated
the moisture damage resistance of asphalt in chip seal by using the bonding strength.
Copeland et al. [14] investigated the influence of aging on asphalt adhesion through the
BBS test. The correlation between the bonding strength of bitumen and rutting test results
was determined. Hoki et al. [15] evaluated the effect of film thickness and soaking time
on the bonding strength of interfaces using the BBS test. They indicated that the bonding
strength declines with the increase in film thickness and soaking time. Guo et al. [16]
studied the influence of water soaking, salt solution soaking, and freeze–thaw cycles on
the bonding strength of the asphalt–aggregate interface by the BBS test, and established a
coupled damage model considering soaking time, solution concentration, and freeze–thaw
cycles to predict the bonding strength of an interface. The results showed that the BBS test
can accurately measure the bonding strength between the asphalt and aggregate quickly,
and reflect the bonding level between asphalt and the aggregate of an asphalt mixture.

In recent years, Hu et al. [17] studied the tensile strength of the bonding interface
and self-healing ability of high-viscosity modified asphalt. Their results showed that the
modifier reduced the self-healing ability of asphalt, and high-temperature immersion would
lead to the decrease in adhesion and healing ability. A high-viscosity modifier enhances the
polarity of modified asphalt and increases the thickness of structural asphalt by absorbing
the light components, thus improving the bonding performance. Huang et al. [18] indicated
that the moisture damage mechanism of asphalt pavement was mainly induced by the
cohesion and adhesion damage of the asphalt–aggregate interface.

Sun et al. [7] indicated that the healing of asphalt–aggregate interface includes the
cohesion healing and adhesion healing. Recently, Xu et al. [19] pointed out that asphalt
aging caused the oxidation reaction, and the index of carbonyl and sulfoxide functional
groups increased, which eventually led to a decrease in the self-healing performance of the
binder. Zhou et al. [20] investigated the self-healing performance of five kinds of modified
asphalt using the BBS test, and analyzed the influence of moisture and modifier on the
interface’s healing ability. The results showed that the self-healing ability of different asphalt
types was also different, and the void at the aggregate’s surface had a direct influence on
the molecular selectivity and the healing ability of the interface. The self-healing process
of the bonding interface was scanned using CT technology. Higher temperatures and dry
conditions are beneficial to the self-healing of asphalt, while moisture is not conducive
to the short-term or long-term healing of asphalt, but it can improve the healing rate at
the middle stage [21,22]. In 2021, Huang et al. [23] carried out a bonding interface healing
test and a four-point bending fatigue test, evaluated the healing performance of asphalt–
aggregate bonding interfaces, and analyzed the correlation between the healing level of the
interface and the fatigue healing performance of the mixture. Their results showed that
there was a good linear correlation between the healing level of the bonding interface and
the healing potential of the mixture.

Based on the above analysis and experimental investigation, it can be inferred that
aging and moisture would affect the healing ability of the asphalt–aggregate interface,
and the healing ability of the interface would influence the healing performance of the
asphalt mixture. In fact, the pavement bears the actions of rainfall, high temperature,
ultraviolet rays, and so on. The bonding strength and healing ability of the asphalt–
aggregate interface will gradually decrease, which directly affects the self-healing ability of
the mixture. However, the healing process of the asphalt mixture includes the adhesion
healing of the interface and the cohesion healing inside of the asphalt mortar [24]. Although
the current research has demonstrated the influence of single factors on the self-healing
property of the interface, an understanding of the relationship between the healing level
of the interface and the healing potential of the mixture was necessary to improve the
mixture durability. It is difficult to quantitatively analyze this relationship solely through
experiments. Fortunately, finite element simulation technology provides a convenient way
to explore this relationship.
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The research goal of this work is to determine the influence law of soaking and aging
on the healing ability of the asphalt–aggregate interface, and to explore the relationship
between the interface’s healing ability and the recovery degree of the mixture’s performance.
In view of this goal, the relationships among healing time, healing temperature, and healing
index of the asphalt–aggregate interface were measured first in this paper. Based on the
principle of time–temperature equivalence, the self-healing master curve of the interfacial
strength is established, and the effects of different factors, including soaking time, salt
solution concentration, and aging degree, on the healing characteristics of the asphalt–
aggregate interface are investigated. The finite element simulation was carried out in order
to evaluate the healing performance of the asphalt mixture. The influence of the healing
ability of the asphalt–aggregate interface on the self-healing potential of the asphalt mixture
was analyzed and verified. The research algorithm is described in Figure 1.
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Figure 1. Research algorithm.

2. Materials and Methods
2.1. Materials

The asphalt used in this experiment was AH-70# petroleum asphalt, which has a
penetration grade of 70. Its basic properties are presented in Table 1. Basalt aggregates were
selected to prepare the asphalt mixture, and the apparent gravity and moisture uptake ratio
of the aggregates are listed in Table 2. The gradation named AC-13, which is recommended
by China technical specifications JTG D50-2017 [25], was selected for the experiment, as
presented in Figure 2. According to the Marshall test results, the optimal asphalt content of
the mixture was 5.0%, the apparent gravity of the mixture was 2.447 g/cm3, and the air void
in the asphalt mixture was 4.1%. A plane specimen with a size of 30 cm × 30 cm × 5 cm
was prepared to cut into the beams of 30 cm × 5 cm × 5 cm, and a notch of 5 mm in depth
and 3 mm in width was cut at the bottom of the mid-span of the beam.

Table 1. Properties of AH-70# asphalt.

Items Values Test Methods

Penetration (25 ◦C, 0.1 mm) 75 ASTM D5
Softening point (◦C) 47.8 ASTM D36
Ductility (15 ◦C, cm) >100 ASTM D113
Flashing point (◦C) 285 ASTM D92
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Table 2. Properties of aggregates.

Sieve Size (mm) 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

Apparent gravity (g/cm3) 2.716 2.723 2.681 2.679 2.694 2.708 2.713 2.713 2.712 2.712
Water absorption (%) 0.49 0.57 0.63 0.52 - - - - - -
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2.2. Healing Test of Asphalt–Aggregate Bonding Interface

A disc specimen, with a diameter of 4.2 cm, was prepared by coring the stone plate
with a water drill, and its surface was polished with sandpaper to ensure that the roughness
of the interface was consistent. The moisture inside of the disc specimen was removed by
drying at 105 ◦C for 12 h. Thereafter, the disc specimen was placed in an oven at 135 ◦C
for 4 h, taken out, and asphalt was dropped onto the center of the disc specimen, covered
with another disc specimen, and compacted. The asphalt was required to evenly coat the
specimen interface, and the thickness of the asphalt film was controlled at 0.1 mm. Based
on the specific test method of reference [16], the “aggregate–asphalt–aggregate” bonded
sample was finally made, as presented in Figure 3. Thereafter, the sample was cooled at
room temperature, and the tensile test was carried out after it was kept at 20 ◦C for 6 h. In
this paper, the electronic universal testing machine from cangzhou city of hebei province
was used for the pull-off test, with a loading rate of 1 mm/min, and the test was stopped
when the specimen was destroyed. Three parallel samples were set for each group test.
The specific process is presented in Figure 4.
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After the test, the damaged specimens were stacked and healed at 10 ◦C, 40 ◦C, 60 ◦C,
and 80 ◦C. After the healing, the second pull-off test was carried out, and four parallel
specimens were prepared for each group. The healing index of the interfacial strength was
obtained in order to evaluate the healing performance of the interface. The healing index
can be calculated using the following equation.

HI =
σ2

σ1
(1)

where, HI is the healing index of the interfacial strength; σ1 and σ2 are the tensile strengths
before and after healing, respectively, MPa.

In seasonally frozen areas, snow-melting agents are often used to remove the snow.
In order to investigate the influence of salt solutions on the self-healing performance of
the interface, a salt solution was prepared by using Cacl2 to simulate the influence of salt
corrosion on the healing performance of the interface. The asphalt was also aged using
the rolling thin film oven test (RTFOT) method, and the influence of aging degree on the
interface’s healing performance was discussed.

2.3. Beam Bend Healing Test of Asphalt Mixture

The healing of the bonding interface leads to the mechanical performance recovery of
the asphalt mixture. In order to determine the self-healing ability of the asphalt mixture, the
healing performance of the asphalt mixture in an outdoor, high-temperature environment
was measured using the beam bend healing test. The bending test was carried out using the
aforementioned beam specimen, and the support space was 200 mm ± 0.5 mm. The beam
specimen was kept at 10 ◦C for more than 4 h, and then the bending failure test was carried
out. The vertical loading rate was 1 mm/min. During the test, the deformation and load
on the bottom of the mid-span were recorded in real time. The experimental procedure is
presented in Figures 5 and 6. In the first bend test, the test was stopped when the mid-span
vertical deformation reached 2 mm. Subsequently, the damaged beam was placed outdoors
for 48 h of healing. The healing temperature of the beam specimen was between 23 ◦C and
45 ◦C, with an average temperature of 28 ◦C. The typical temperature field on the beam’s
surface is presented in Figure 7. After 48 h of healing, the second bending test was carried
out after beam conditioning at 10 ◦C for 4 h, and the test procedure was consistent with the
first bending test. Three parallel samples were set for each group test.
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After finishing the test, the healing degree of the mixture was evaluated using the frac-
ture strength and fracture energy. It can be determined according to the following equations.

σ(t) =
3LF(t)
2bh2 (2)

ε(t) =
6td(t)

L2 (3)

GF =
∫ ε f

0
σεdε (4)
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HIS =
Rhealed

R0
(5)

HIGF =
GFhealed

GF0
(6)

where, σ(t) represents the tensile stress at the bottom of the mid-span, MPa. ε(t) is the
tensile strain at the bottom of the mid-span. ε f is the failure strain corresponding to 2 mm
vertical deformation, F(t) is the applied load, N; L represents the support space, mm. b and
h are the width and height of the beam, respectively, mm. d(t) is the deformation at the
mid-span of the beam, mm. HIs is the strength recovery index, R0 and Rhealed are the failure
strength before and after healing, respectively, MPa. G0 and GFhealed are the failure energy
before and after healing, respectively, J. HIGF indicates the healing index of failure energy.

2.4. Mesoscopic Finite Element Simulation for Asphalt Mixture

The healing of the asphalt–aggregate interface will directly affect the healing per-
formance of the mixture. However, the beam bend healing test can only analyze the
self-healing ability of the mixture from the macroscopic perspective, and cannot establish
the relationship between the interface healing level and the self-healing potential of the
mixture. Herein, the meso-finite element method was adopted in order to reveal this rela-
tionship. A finite element (FE) beam model of the asphalt mixture was established, based
on digital image processing technology, in order to consider the realistic mesostructure of
the asphalt mixture. The modeling procedure is presented in Figure 8.
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Figure 8. Reconstruction process of the 2D finite element model for the asphalt mixture.

The cohesive zone model (CZM) has been widely used to investigate the interface
debonding process in the material fracture field. Therefore, the bilinear cohesive zone
model was selected in order to describe the constitutive relation of the bonding interface.
The tractor-separation curve is presented in Figure 9.
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Figure 9. Tractor-separation curve of the CZM. Where σmax represents the maximum stress, MPa;
δ0 is the deformation of the CZM element when the ultimate strength is reached. k represents the
stiffness, MPa; G represents the failure energy of the CZM.

When the traction stress satisfies the following relationship, the cohesive element
begins to be damaged. {

〈Tn〉
T0

n

}2
+

{
Ts

T0
s

}2
= 1 (7)

where < and > are Macaulay brackets, which indicates that the compression stress will not
cause damage to the cohesive element. T0

n and T0
s are traction stresses in normal direction

and shear direction, respectively. Tn and Ts are pure normal traction and pure shear traction,
respectively, at the beginning of damage. Once the failure starts, the material goes into a
softening state. This process is quantified by defining a damage variable D, as presented in
Equation (8).

D =
δ f (δmax − δ0)

δmax(δ f − δ0)
(8)

where δ0, δmax, and δ f are the effective displacement at the beginning of damage, the
maximum effective displacement obtained during loading, and the effective displacement
at the point of complete failure, respectively. In this paper, the power-law failure criterion
based on energy is used to describe the fracture evolution in mixed mode:{

Gn

Gc
n

}2
+

{
Gt

Gc
t

}2
= 1 (9)

where Gc
n and Gc

t are the fracture energy in normal and shear directions, respectively. Gn
and Gt are the dissipated energy generated in the normal and shear direction, respectively,
during the loading procedure. In the meshing stage, the three-node plane stress element,
called CPS3, was applied to mesh the asphalt mortar, and the four-node quadrilateral
linear plane stress element, called CPS4R, was used to mesh the coarse aggregate. The FE
model was discretized by free mesh, and the side length of the element was 0.5 mm. A
self-compiled program developed by MATLAB was adopted in order to edit the initial
‘inp file’ generated by ABAQUS. In this process, the zero-thickness CZM element was
inserted into the mortar and the interface, one after the other. The completed CZM model
is presented in Figures 10 and 11.
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Figure 11. CZM elements inside of the asphalt mortar.

The boundary and loading points of the beam are presented in Figure 12. The support
spacing of the finite element model was 20 cm. The parameters of the CZM element, asphalt
mortar, and aggregate are listed in Tables 3–5. The parameters in Tables 3 and 4, from the
results of Liu [26], were adopted as the initial values, and then the trial calculation was
conducted. The final values were determined when the difference between the experimental
and the simulated load-displacement curve before the peak was at its minimum. The
parameters in Table 5 are consistent with the results of E [27].
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Table 3. Elastic parameters for the aggregate and asphalt mortar.

Material Elastic Modulus (MPa) Poisson’s Ratio

Aggregate 20,000 0.2
Asphalt mortar 800 0.5

Table 4. Model parameters for cohesion before healing.

Interface Type Fracture Strength (MPa) Fracture Energy (J·m2)
Normal

Direction
Tangent

Direction
Normal

Direction
Tangent

Direction

Interface of aggregate–mortar 0.6 1 500 500
Interface of mortar 1 2 500 500

Table 5. Parameter table for Prony series viscoelastic coefficients of the asphalt mortar.

i 1 2 3 4 5

gi 0.542 0.166 0.1 0.098 0.034
Ti 0.048 0.631 6.711 48.78 613.497

3. Results and Discussion
3.1. Effects of Healing Period and Temperature on Healing Level of Interface Strength

The healing level of the interface was measured using the bitumen bond strength
test at different temperatures and healing periods, and the healing index of the bonding
interface was calculated based on the tensile strength, as presented in Figure 13.

As presented in Figure 13, the healing index of the bonding interface gradually in-
creases with the extension of healing time. The higher the healing temperature is, the
shorter the recovery period of the strength will be. For the same healing period, the higher
the healing temperature is, the better the recovery of the strength is. The self-healing degree
of the interface strength between the asphalt and aggregate obviously depends on the
healing time and temperature. In order to obtain a good healing effect, it is feasible to
prolong the healing time or increase the temperature. This is mainly because asphalt is
a typical viscoelastic material. The higher the temperature is, the lower the viscosity of
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the asphalt, and the more active its molecular movement is. The accelerated molecular
movement is helpful to enhance the healing of the asphalt film at the interface.
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3.2. Master Curve of Healing Index

In this work, the Compertz model, as presented in Equation (10), was selected to
describe the trend of the healing index, and the parameters of the healing model can be
determined through the nonlinear least square method on the data in Figure 13.

HI(t) = a exp(b exp(c × lgt)) (10)

where a, b, and c are model parameters. Referring to the change in HI, the parameters
should follow the conditions: b < 0, c < 0; the parameters of the HI model are listed in
Table 6.

Table 6. Parameters of the HI model.

Parameters 10 ◦C 40 ◦C 60 ◦C 80 ◦C

a 1.000 1.000 1.000 1.000
b −9.047 −10.140 −20.500 −12.050
c −0.460 −0.792 −1.079 −0.994

SSE 0.003 0.006 0.003 0.000
R2 0.969 0.976 0.991 1.000

RMSE 0.057 0.056 0.036 0.006

It can be observed from Table 6 that the correlation coefficients (R2) of nonlinear fitting
are all above 0.96, which indicates that the Compertz model has good applicability, and it
can accurately describe the change law of the healing index. A low RMSE indicates that
there is little difference between the predicted value and the measured value. According to
the development trend of the healing index in Figure 12, the healing index is influenced
by both temperature and healing time. When the temperature is below 60 ◦C, the healing
period is in the range of 100 s–1,000,000 s, while when the temperature reaches 80 ◦C, the
healing time is sharply shortened, and when the healing time is 30,000 s, the healing index
is close to 1. Thus, both b and c first increase and then decrease, which is caused by the
cross influence of temperature and healing time.

In order to evaluate the interface healing ability at different temperatures, the temper-
ature shift factor is calculated based on the reference temperature of 60 ◦C. A trial method
is proposed to determine the initial value of the temperature shift factor considering the
prediction accuracy of the master curve. On this basis, the glass transition temperature Tg
and the reference temperature TS can be determined by Equation (11).
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lgαT =
−C1 × (T − TS)

C2 + T − TS
(11)

where C1 = 8.86 and C2 = 101.6.
There is a conversion relationship between the reference temperature and the glass

transition temperature, as calculated by Equation (12).

TS = Tg + 50 (12)

Generally, the temperature selected in the experiment is fixed. These temperatures
may not cover TS. TS is unknown. Herein, a certain temperature T0 in the actual test
sequence is often selected as the reference temperature, and the healing index at other
temperatures can be moved to the curve of T0 after shifting from the test temperature to the
reference temperature. The temperature shift factor can be determined using Equation (13).

lgαT0 =
−8.86× (T0 − TS)

101.6 + T0 − TS
(13)

The shift factor of any temperature to the reference temperature, defined as lgα′T0, can
be obtained by using Equations (11) and (13).

lgα′T0 = lgαT − lgαT0 = −C1C2
−(T − T0)

(C2 + T − TS)(C2 + T0 − TS)
(14)

According to the measured data of different temperatures, lgα′T0 can be determined
by moving to the reference temperature, with the fixed reference temperature T0 at 60 ◦C,
so that the initial value of the temperature shift factor relative to the reference temperature
can be calculated by Equation (14) when T0 = TS. Thereafter, the temperature shift factor is
optimized by trial calculation, and SSE, R2, and RMSE are used to determine the optimal
temperature shift factor with a minimum error. The results are presented in Table 7.

Table 7. lgα′T0 with 60 ◦C as the reference temperature.

lgα’T0 10 ◦C 40 ◦C 80 ◦C

Initial value 8.58 2.172 −1.457
Optimal value 6.65 1.80 −1.20

Based on the optimal value of lgα′T0 in Table 7, TS is 323.288 K and Tg is 273.288 K.
The temperature shift factor lgαT can be determined according to Equation (11), which is
listed in Table 8. Subsequently, the correlation coefficients R2 and SSE are used as control
indexes to optimize lgαT through the trial calculation. In the optimization process, the
change in SSE is presented in Figure 14. The closer SSE is to zero, the smaller the difference
between the predicted and the experimental HI is. The optimized results are also presented
in Table 8.

Table 8. lgαT for different temperatures.

lgαT 10 ◦C 40 ◦C 60 ◦C 80 ◦C

Initial value 5.79 0.98 −0.78 −2.01
Optimal value 2.32 0.20 −0.08 −0.20

R2 0.991 0.987 0.997 1.000
SSE 0.035 0.008 0.010 0.001

The measured healing indexes of different temperatures were nonlinearly fitted based
on temperature shift factor, as presented in Figure 15. Parameters of the master curve of
the healing index are presented in Table 9.
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Table 9. Parameter values of the optimal HI principal curve model.

Parameters a b c R2 Equation of Master Curve

Value 1.00 −11.70 −0.92 0.988 HI(t) = exp(−11.7 exp(−0.92lgt/lgα))

3.3. Effects of Immersion and Aging on the Healing Level of Interface

Asphalt pavement will be affected by environmental factors, such as rainfall and aging,
in the service stage. The change in asphalt molecular structure will inevitably change the
healing level of the asphalt–aggregate interface. After soaking in water, the healing index
of the bonding strength of the interface is presented in Figure 16.

As can be observed from Figure 16, the healing index of interfacial bonding strength is
higher than those of untreated specimens when the soaking period is shorter than 16.8 h.
This is because the immersion time is short, and a small amount of water enters the bonding
area of the interface [8]. In addition, the specimen is soaked at 20 ◦C, which accelerates
the heat transfer and promotes the healing of interface bonding. Therefore, the healing
degree of bonding strength after short-term soaking is higher than those of untreated ones.
After soaking for more than 6 h, the healing index of the strength decreases gradually.
After 48 h of soaking, the healing index decreased by 34%. This proved that long-term
soaking was unfavorable to the healing potential of the interface. The longer the soaking
time is, the worse the self-healing performance of the interface is. With the extension of
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soaking time, water permeates into the interface to form a water film, which hinders the
diffusion and re-bonding of asphalt molecules on the surface of the aggregate, resulting
in a decline in self-healing level. It can be inferred that moisture has a significant effect
on the healing ability of the asphalt–aggregate bonding interface. Zhou et al. [22] stated
that moisture is not conducive to the short-term and long-term healing of asphalt, but it
can improve the healing rate at the middle stage. The findings in this paper are consistent
with those of Zhou. The middle stage is between approximately 6 and 12 h. Long-term
water intrusion will reduce the self-healing potential of asphalt pavement, and eventually
accelerate damage and cracking.
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In this test, the soaking time was set at 6 h. The change in the healing index is presented
in Figure 17.
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Figure 17. Influence of salt solution on the healing index of bonding strength after 6 h soaking.

According to the changing trend in Figure 17, the healing index of interfacial bonding
strength decreases with the increase in solution concentration. The self-healing property
declines slowly when the concentration is no more than 5%. Afterwards, the healing index
decreases linearly with the increase in the concentration. Therefore, a high concentration
solution has a negative effect on the healing ability of the interfacial strength. Chlorine
is the main component of snow-melting agents. It is necessary to control the dosage of
chlorine salt when spraying snow-melting agents in winter, which is beneficial to reduce the
concentration of salt solution and the influence of chlorine salt on the healing performance
of asphalt pavement.
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In order to explore the influence of asphalt aging on the healing performance of the
asphalt–aggregate interface, the asphalt was aged using the RTFOT method in a laboratory
setting. The aged asphalt was adopted to make sandwich bonding specimens. The self-
healing index of the asphalt–aggregate interface was then tested, as presented in Figure 18.
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It can be observed from Figure 18 that with the prolongation of aging time, the healing
index decreases linearly. The longer the time over which the asphalt is aged, the lower
its healing index is, and the worse its healing ability is. This is because asphalt includes
saturate, aromatic, resin, and asphaltene components. During the aging process, with
the continuous input of oxygen, light components are gradually oxidized and the small
molecules condense into asphaltene in asphalt, while aromatic and saturated components
decrease, resulting in the change in asphalt colloid structure from a solution gel to a gel
structure. On the other hand, the molecular chain of asphalt is destroyed and reorganized
in the process of oxidation, which increases its relative molecular weight, as well as the
movement resistance of asphalt molecules, and slows down the diffusion rate of asphalt
molecules. Finally, the interface’s healing ability decreases. In addition, the penetration,
ductility, softening point, and viscosity of asphalt before and after aging were also tested,
and the correlation between healing index and these indexes was analyzed, as presented
in Figure 19.

It can be observed from Figure 19a,b that the healing index rises with the increase
in penetration. The healing index first rises rapidly with the ascent of ductility, and then
the growth gradually slows down. It can be observed from Figure 19c,d that the healing
index decreases linearly with the increase in softening point and viscosity. As a result, the
aging of asphalt leads to the decrease in viscosity, the increase in softening point, and the
deterioration of fluidity. However, there is a close relationship between the asphalt’s fluidity
and the healing ability of the interface. Asphalt with a high penetration, low softening
point, and high ductility has excellent healing ability. The changes in these indexes have
macroscopic effects, which are caused by the change in asphalt components and colloid
structure. For this reason, these common indexes may be used as an indirect basis on
which to evaluate the healing potential of the bonding strength at the interface. It must be
indicated that polymer-modified asphalts still require more data to support this statement
in their case.

3.4. Relationship between the Interface Healing Level and Healing Potential of Mixture

To reveal the relationship between the healing index of the interface and the healing
performance of the asphalt mixture, the self-healing performance of the asphalt mixture
was simulated using the meso-finite element method in this paper, and the parameters
for the cohesive zone model of the bonding element were designated to different healing
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levels, as presented in Table 10. The load-displacement curve of the bending beam for the
asphalt mixture was obtained after finite element simulation and presented in Figure 19.
The measured load-displacement curves are also demonstrated in Figure 20.
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Table 10. Model parameters for the CZM element at different healing levels.

Interface Type Healing
Index

Fracture Strength (MPa) Fracture Energy (J·m2)

Normal
Direction

Tangent
Direction

Normal
Direction

Tangent
Direction

Interface of
aggregate–mortar

0.8 0.48 0.8 400 400
0.6 0.36 0.6 300 300
0.4 0.24 0.4 200 200

Interface of
asphalt mortar

0.8 0.8 1.6 400 400
0.6 0.6 1.2 300 300
0.4 0.4 0.8 200 200

As described in Figure 20, for the first loading condition, the flexural bearing capacity
of the beam is the highest, and the FE simulated and measured values before the peak
are consistent. However, the simulated values begin to deviate from the measured values,
and the load of the FE model degrades faster, while the actual asphalt mixture has good
post-peak bearing capacity. This may be due to the fact that the CZM element did not
consider the influence of asphalt viscosity. Although there are some differences between
the experimental and simulated values, the meso-finite element method is still feasible
in the simulation of the mechanical properties of the asphalt mixture. The finite element
simulation results also show that the flexural bearing capacity of the healed asphalt mixture
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gradually declines with the decrease in the healing index of the interface. Comparing
the measured and simulated results of the asphalt mixture, it can be observed that the
flexural bearing capacity of the asphalt mixture is very close to the condition that the
healing index of the interface is 0.6 when the beam specimens of the asphalt mixture were
healed at 23–45 ◦C (the average temperature was 28 ◦C) for 2 days. It is helpful to save
the waiting time for the healing process, speed up the analysis procedure, and save the
test consumption.
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In order to clarify the relationship between the healing performance of the interface
and the healing potential of the mixture, the healing performance of the interface and the
healing degree of fracture energy or ultimate strength of the mixture were compared, as
presented in Figure 21. In this paper, the average healing temperature of the mixture is
28 ◦C, and the HI of the interface after healing can be calculated by using the master curve.
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As presented in Figure 21, it can be observed that there is an obvious linear correlation
between the healing index of the bonding strength of the asphalt–aggregate interface and
the self-healing performance of the mixture. It can be observed from this relationship
that the self-healing ability of the asphalt–aggregate interface has a direct impact on the
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performance of the asphalt mixture. On the basis of the simulated and the measured
results, the energy recovery of the asphalt mixture after self-healing is the fastest, and the
self-healing amplitude of the strength is slightly lower than the fracture energy. It is proved
that there are significant differences among different indexes for evaluating the healing
potential of the asphalt mixture. The simulation results show that the healing index of
the asphalt mixture will be higher than that of the interface, while the measured results
show that the healing level of the mixture (0.65–0.71) is obviously lower than that of the
interface (0.89). This is mainly because the interface studied in this paper only includes
asphalt and stone, without considering the influence of mineral powder and fillers. In
addition, the bilinear failure criterion of the CZM element and 2D FE simulation also result
in a difference between the test value and the simulation value. Cheng et al. [28] and Varma
et al. [29] stated that mineral powder would increase asphalt viscosity. According to the
relationship in Figure 19d, the increase in viscosity leads to a decrease in the self-healing
ability of the interface. Therefore, the actual healing level of the asphalt mixture is lower
than that of the interface.

4. Conclusions

In this paper, the influence law of time and temperature on the self-healing index of
the asphalt–aggregate bonding interface was measured, the influence degrees of aging,
immersion, and other factors on the self-healing ability of interface strength were discussed,
and the relationship between the self-healing degree of the asphalt–aggregate interface and
the self-healing ability of the mixture was analyzed. Through this research, the following
conclusions can be drawn.

A higher healing temperature and longer healing time can effectively improve the
healing level of the asphalt–aggregate interface.

The Compertz model can accurately describe the change in the healing index over
time. Based on the time–temperature equivalence principle, the main healing curve of
bonding strength can be established.

Immersion, salting solutions, and aging all have adverse effects on the healing proper-
ties of the bonding interface. The longer the immersion time, the worse the healing index
of the interface. With the increase in solution concentration, the healing property of the
interface between the asphalt and aggregate gradually decreases. With the extension of
aging time, the self-healing ability of interface strength decreases linearly. There is a good
correlation between common asphalt indexes and its healing ability.

The healing level of the asphalt–aggregate interface is linearly correlated with the
healing level of the strength and fracture energy of the mixture. The actual healing level of
the asphalt mixture is obviously lower than that of the interface.

It is feasible to simulate and analyze the self-healing of the asphalt mixture using the
finite element method, which is not only green and sustainable, but also convenient. It
should also be noted that more studies are required to verify the accuracy of the FE method.
More experiments on various asphalt mixtures should also be conducted to ensure the
robustness and accuracy of the model proposed in this paper.
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