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Abstract: Zinc hydroxyfluoride (ZnOHF) is a newly found resistive semiconductor used as a gas-
sensing material with excellent selectivity to NO2 because of its unique energy band structure. In
this paper, Al3+ doping and UV radiation were used to further improve the gas-sensing performance
of ZnOHF. The optimized 0.5 at.% Al-ZnOHF sample exhibits improved sensitivity to 10 ppm
NO2 at a lower temperature (100 ◦C) under UV assistance, as well as a short response/recovery
time (35 s/96 s). The gas-sensing mechanism demonstrates that Al3+ doping increases electron
concentration and promotes electron transfer of the nanorods by reducing the bandgap of ZnOHF,
and the photogenerated electrons and holes with high activity under UV irradiation provide new
reaction routes in the gas adsorption and desorption process, effectively promoting the gas-sensing
process. The synergistic effect of Al3+ and UV radiation contribute to the enhanced performance
of Al-ZnOHF.

Keywords: gas sensors; Al3+-doped; ZnOHF; NO2; UV assistance

1. Introduction

As a typical pollution gas, nitrogen dioxide (NO2) seriously threatens human health
and the environment [1,2]. Exposure to NO2 with a concentration of over 200 µg/m3 in
the short term or over 40 µg/m3 in the long term will pose a serious threat to the normal
operation of the respiratory system [3]. Additionally, NO2 is also the main source of
acid rain and photochemical smog. Hence, the development of gas sensors for efficiently
detecting the concentration of NO2 in the atmosphere is highly significant and essential.
In the research on NO2 sensors, resistance gas sensors stand out among different kinds of
gas sensors due to their excellent sensitivity, selectivity, and stability [4–6], as well as their
relatively low cost and easy operation [7]. As the core part of sensors, the sensing materials
directly determine the performance of gas sensors.

Zinc hydroxyfluoride (ZnOHF) is a new type of semiconductor discovered in recent
years which has gradually attracted the attention of researchers in various fields, such as
photocatalysts [8,9], ultrasonic degradation [10] and solar cells [11], for its unique crystal
and energy band structure [12,13]. In our previous research, we found that ZnOHF is an
excellent gas-sensing material with good selectivity to NO2 gas [14]. The unique energy
band structure of ZnOHF inhibits the adsorption and dissociation of oxygen molecules on
its surface, and the little absorbed oxygen species on the surface of ZnOHF lead to its wide
detection range to NO2, which makes ZnOHF a good candidate for NO2 detection among
resistive semiconductors. However, the gas sensors based on ZnOHF still have room for
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improvement in performance; for example, the operating temperature of ZnOHF-based
gas sensors is still high, and its sensitivity still has a certain gap compared with many
other NO2-sensing materials. Therefore, further improvement for ZnOHF to obtain better
sensing performance is necessary.

Light-activated gas sensors have been widely studied as an effective improvement
method in recent years. Under the assistance of light irradiation, there will be more
electrons and holes with high activity generated on the surface of materials, which is
beneficial to the adsorption and desorption of target gases [15,16]. Wang et al. [17] found
that ZnO nanoplates exhibited a great enhancement in sensitivity and recovery time in
NO2 detection under intermittent UV irradiation. This phenomenon can be explained by
the competitive adsorption of NO2 and O2 and the modulating action of gas adsorption.
Zhang and his group [18] grew TiO2 nanoplates in situ with a highly active crystal plane
on MXene (Ti3C2Tx) and obtained greatly enhanced gas-sensing performance to NH3
under UV light. The density functional theory revealed that this composite structure
exhibits the highest adsorption affinity to NH3 with UV light assistance. Additionally,
Tai’s group [19] also applied gamma-ray in NO2 detection, and they found that it can
effectively enhance the sensitivity of ZnO nanorods at room temperature by constructing
lots of defects. Bang et al. [20] presented a proton-beam irradiation method to engineer
surface-point defects on ZnO in order to improve the preferential adsorption on the surface
compared to water molecules so that it can detect NO2 with less humidity interference. As
a kind of photocatalyst, ZnOHF has excellent photochemical properties, including suitable
band gaps and strong light absorbance, which makes it possible to act as a better gas sensor
of NO2 under UV radiation [21,22].

Ion doping is a promising approach in gas-sensing performance improvement. On
the one hand, doping ions with different quantities of charges can effectively adjust the
carrier concentration and energy band structure of semiconductors [23,24]. On the other
hand, due to the difference in diameters between doping ions and original ions, ion doping
can create lots of lattice imperfections. Some imperfections can act as efficient adsorption
sites of oxygen molecules or target gas molecules, thus improving their gas-sensing per-
formance [25]. Qin and his colleague [26] synthesized metal–organic-frameworks-derived
Mn-doped Co3O4 porous nanosheets, which exhibited better CO-sensing performance
than pure Co3O4 because of the oxygen vacancies generated in the ion doping process.
Mokrushin et al. [27] doped Eu and Pr ions into ZnO powders and found that it not only
improved the sensitivity but also obtained great humidity resistance performance. Cr3+-
doped In2O3 was prepared by Sun et al. [28], and this material shows high sensitivity, a
low detection limit, and short response/recovery time in NH3 sensing due to the increase
in active sites and reduced material resistance. Al3+ ion is one of the common doping
ions utilized in zinc-based materials’ modification. Since Al3+ has a higher charge than
Zn2+, Al3+ doping can increase electron concentration, which will benefit the gas-sensing
process [29,30]. Moreover, Al3+ has a similar diameter to Zn2+, indicating that Al3+ doping
will not seriously damage the crystal structure of the host ZnOHF [31,32].

Herein, Al-ZnOHF nanorods with optimized Al3+ concentrations were prepared
through a simple hydrothermal method. The NO2-sensing performance of Al3+-doped
samples is significantly improved compared with pure ZnOHF under UV irradiation with
a wavelength of 395 nm and a strength of 6 mW/cm2. Additionally, especially, the 0.5 at.%
Al-ZnOHF sample exhibits the best gas-sensing properties. The NO2-sensing mechanism
analysis revealed that the bandgap narrowing and improvement in UV absorbance after
Al3+ doping are the main reasons for its performance enhancement.

2. Materials and Methods
2.1. Chemicals

All chemicals utilized in this work, including zinc acetate (Zn(CH3COO)2•2H2O),
ammonium fluoride (NH4F), aluminum nitrate (Al(NO3)3•9H2O), and hexamethylenete-
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tramine (HMT), were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China) and were of analytical grade, which can be used without any purification.

2.2. Synthesis of Al3+-doped ZnOHF

Al-ZnOHF nanorods with different molar ratios of Al3+ (0 at.%, 0.1 at.%, 0.2 at.%,
0.5 at.%, and 1 at.%) were synthesized via a simple hydrothermal method. Initially, 0.65 g
Zn(CH3COO)2•2H2O, 0.42 g HMT and 0.051 g NH4F were dissolved in 15 mL of distilled
water successively with continuous stirring to form a homogeneous solution. Different
amounts of Al(NO3)3•9H2O were then added to the mixture with continuous stirring. After
stirring for another 0.5 h, the solution was transferred into 20 mL Teflon-lined autoclaves
and heated at 368 K for 2 h. The products were collected, purged with distilled water and
ethyl alcohol, and then dried at 340 K for 6 h.

2.3. Characterizations

The crystal structures of samples were tested through X-ray powder defection (XRD,
DMAX-2500PC, Regaku, Japan) equipped with Cu-Kα (λ = 1.542 Å) radiation with a step
size of 0.02◦ and a scan rate of 10◦/min in the range of 10–90◦. The surface morphologies
and micro-structure characterizations were carried out by scanning electron microscopy
(SEM, SU-70, Hitachi, Japan) operated at an accelerating voltage of 15 kV and transmission
electron microscopy (TEM, JEM 2100, JEOL Ltd., Akishima, Japan) operated at 200 kV. X-ray
photoelectron spectrometer (XPS, AXIS Supra, Kratos, Japan) measurement (equipped with
monochromatic Al-Kα radiation, hυ = 1486.6 eV) was utilized to analyze the valence state
of elements and the chemical environment of atoms on the surface of samples. The UV-vis
diffuse reflection spectrum (UV-vis DRS) was recorded on Agilent Cary 300/PE lambda
750S (America) ultraviolet spectrophotometer and was used to test UV absorption and
bandgap of the samples.

2.4. Gas-Sensing Properties Test

The preparation method of gas-sensing units was explained as follows. First, the
as-prepared samples were dispersed into distilled water with a weight ratio of 1:5 and
treated with ultrasound for 10 min. Additionally, the slurry was dropped on the Al2O3
substrate, which has four Pt wires as the electrodes, and was dried at 80 ◦C. After repeating
this step 2–4 times, the substrate was annealed at 200 ◦C for 3 h and then the electrodes
were welded on the pedestal to form a gas-sensing unit. After that, the sensor was aged
at 4 V for 7 days before the gas-sensing test. The gas-sensing properties of gas sensors
based on various samples were tested via a WS-30B gas sensitivity instrument (Zhengzhou
Winsen Electronics Co., Ltd., Zhengzhou, China) at an environmental temperature of 25 ◦C
and humidity of 20–30%. The UV light was provided by LED light with wavelength of
395 nm (Ceaulight Co., Beijing, China). The response value of sensors (S) is calculated as
S = Rg/Ra for oxidizing gases and S = Ra/Rg for reducing gases, where Ra and Rg are the
resistance of the sensor in air and target gases, respectively. Additionally, the response and
recovery times are defined as the times from gas input or pumped out until the response
value changes to 90% of its maximum value.

3. Results and Discussion
3.1. Characterization

Figure 1 shows the XRD patterns of Al-ZnOHF with different amounts of aluminum
ions. The diffraction peaks of each sample could be approximately matched with the
standard data of orthorhombic-phase ZnOHF (JCPSD No: 74-1816). After the addition of
Al3+, the central position of diffraction peaks changed significantly. It can be seen in the
magnified region around the strongest peak (Figure 1b) that the peak trended to a higher
angle with the increase in Al3+ concentration at first, indicating that the Al3+ with the size of
0.0535 nm may occupy some positions of the Zn2+ with the size of 0.074 nm. Additionally,
then, the peak turned back to the lower angle (1 at.% Al-ZnOHF), indicating that the Al3+
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dopes into the interstitial void of the ZnOHF lattice, which results in the broadening of the
interplanar crystal spacing.
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Figure 1. (a) The XRD spectra and (b) magnified region of the strongest peak of all Al-ZnOHF
samples.

Figure 2a,b shows the SEM images of pure ZnOHF. The basic structure of pure ZnOHF
is nanorods, and the ends of these nanorods are gathered together to constitute flower-like
structures with sizes ranging from 3 to 5 µm. SEM graphs of samples with different Al3+

dopings are exhibited in Figure 2c–f. After Al3+ doping, the flower-like structures of pure
ZnOHF change into irregular bundles, which also consist of nanorods. With the increase
in the amount of Al3+, the length of bundles gradually shortened and thickened, and the
morphology gradually changed to microbelts. Additionally, lots of small nanoplates also
appeared, and the quantity gradually increased with the increase in Al3+ content. Finally,
when the Al3+ doping amount reached 1 at.%, the morphology of the sample was mainly
composed of long microbelts and plenty of nanoplates.

To further analyze the microstructure of the obtained samples, TEM and HRTEM
images of pure ZnOHF and 0.5 at.% Al-ZnOHF are shown in Figure 3. As shown in
Figure 3a,b, pure ZnOHF exhibits a regular nanorods-assembled flower-like structure. The
HRTEM image (Figure 3c) shows that the diameter of nanorods is about 14 nm. Additionally,
the lattice fringe spacing of pure ZnOHF could be measured as 0.25 nm, corresponding
to the (1 1 1) crystal plane of ZnOHF. After Al3+ doping, the morphology of samples
changed greatly (Figure 3d,e), which is in accord with the SEM images. Instead of forming
a flower-like structure, the nanorods were clustered into bundles and scattered irregularly.
The HRTEM image of 0.5 at.% Al-ZnOHF (Figure 3f) exhibits that the diameter of nanorods
slightly increased to 25 nm. Its lattice fringe spacing was calculated to be 0.42 nm, a little
smaller than that of the (1 1 0) crystal plane. Hence, Al3+ doping changed the exposed
surface crystal plane of samples and reduced the crystalline interplanar spacing.

The surface chemical properties of 0.5 at.% Al-ZnOHF were determined via X-ray
photoelectron spectroscopy (XPS). As shown in Figure 4a, all 3 main elements (Zn, O, F)
can be easily found in the wide XPS spectrum of both pure ZnOHF and 0.5 at.% Al-ZnOHF,
and there is also a tiny peak at about 75 eV in the spectra of 0.5 at.% Al-ZnOHF, which can
be matched with the Al element. The Zn 2p spectrum in Figure 4b shows that there are
2 peaks centered at 1021.8 eV and 1044.8 eV, corresponding to the Zn2+ orbits, 2p3/2 and
2p1/2, respectively [33]. The peaks of F 2p (Figure 4c) of these 2 samples are centered at
about 684.8 eV, matching well with F− in the crystal lattice [34]. By comparison, the peaks
of Zn and F of these two samples are approximately the same, meaning that Al3+ doping
does not change the chemical environment of Zn and F atoms. The difference between these
two samples at the high-resolution XPS regions of Al 2p and O 1s is shown in Figure 4d–e.
The 0.5 at.% Al-ZnOHF exhibits a significant peak at about 75.2 eV, which can be indexed
with Al3+ [35], while pure ZnOHF just shows a gentle background curve in this region
(Figure 4d). This difference confirmed that Al ions were successfully doped into ZnOHF.



Materials 2023, 16, 3577 5 of 15

The O 1s peaks of both pure ZnOHF and 0.5 at.% Al-ZnOHF can be deconvoluted into
two Gaussian peaks, which are matched with lattice oxygen and adsorbed oxygen species,
respectively (Figure 4e) [14,36]. It is significant that the proportion of adsorbed oxygen
species of 0.5 at.% Al-ZnOHF is higher than that of pure ZnOHF, confirming that Al3+

doping promotes the surface adsorption of oxygen. In addition, the peaks of the 2 oxygen
species exhibit a slight blueshift after Al3+ doping (Olatt. move from 532.0 eV to 531.6 eV and
Oads. move from 532.8 eV to 532.2 eV). This phenomenon may be ascribed to the weaker
adsorption capacity for electrons of Al3+ than that of Zn2+. When Al3+ substitutes the Zn2+

in the lattice, the electron density increases due to the construction of the Al-O bond [37–39].
Therefore, Al3+ doping can decrease the binding energy of electrons of oxygen species and
obtain adsorbed oxygen with higher activity.
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3.2. Gas-Sensing Properties

The gas-sensing properties of ZnOHF with various amounts of Al3+ doping were tested
under different temperatures (Figure 5a). Due to the low thermal stability of ZnOHF at high
temperatures (it decomposes into ZnO and HF at over 300 ◦C) [14], the test temperature
should be controlled under 300 ◦C. Significantly, the best operating temperatures of all
samples are 160 ◦C. The response value of Al3+-doped samples shows various levels of
increase compared with pure ZnOHF. Especially, gas sensors based on 0.5 at.% Al-ZnOHF
obtained the highest response (49.43) to 10 ppm NO2, 2.42 times higher than that of pure
ZnOHF. In addition, the dynamic response curves of sensors based on 0.5 at.% Al-ZnOHF
and pure ZnOHF to 10 ppm NO2 are shown in Figure 5b. It is worth noting that the
response time of 0.5 at.% Al-ZnOHF (50 s) is a little shorter than that of pure ZnOHF (112 s),
but both of them exhibit extremely long recovery times or even cannot recover back to
the previous resistance. The resistance of samples at different temperatures is shown in
Figure S1a. It is evident that with the increase in the Al3+ doping amount, the resistance of
samples rises at first, probably due to the destruction of the regular morphology of pure
ZnOHF after ion doping, which is not conducive to electron conduction. Additionally, the
resistance reduces when the Al3+ doping amount continuously increases because of the
increase in carrier concentration. The extremely high resistance of samples also seriously
restricts the gas-sensing test at low temperatures.
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To solve this problem, UV-light radiation was utilized in the gas-sensing process. It
can be seen in Figure S1b that the resistance of all samples significantly decreases under UV
radiation, and the Al3+-doped samples obtained a higher reduction rate with higher UV
absorbance. The gas-sensing properties of samples under UV light with the wavelength
of 395 nm and strength of 6 mW/cm2 at different temperatures were tested, as illustrated
in Figure 5c. It is significant that the best operating temperature of 0.1, 0.2, and 0.5 at.%
Al-ZnOHF is 100 ◦C, while that of 1 at.% Al-ZnOHF is 80 ◦C, indicating that the operating
temperature decreased after UV radiation. Specifically, the sensor based on 0.5 at.% Al-
ZnOHF exhibited the highest response, with a value of 110.83 to 10 ppm NO2, which is
approximately 4 times higher than that of pure ZnOHF (25.29). Additionally, the best
response values of 0.1 at.%, 0.2 at.%, and 1 at.% Al-ZnOHF are 51.32, 64.55, and 35.22,
respectively. Therefore, as the concentration of Al3+ goes up, the best operating temperature
of samples exhibits a downtrend, and the sensitivity of ZnOHF increases initially and then
decreases. Compared with the test results without UV light, the response of 0.5 at.% Al-
ZnOHF to 10 ppm NO2 under UV light exhibit over 2-fold promotion, while the responses
of other samples only increased a little. As shown in Figure 5d, the response/recovery times
of pure ZnOHF and 0.5 at.% Al-ZnOHF were 83 s/128 s and 35 s/96 s, respectively. Both of
them were significantly reduced compared with that in the dark environment. Therefore,
the 0.5 at.% Al-ZnOHF sample obtains a high response and fast response/recovery speed
at 100 ◦C with UV assistance.

The dynamic sensing curve of 0.5 at.% Al-ZnOHF to NO2 with various concentrations
is shown in Figure 6a. With the increase in the gas concentration, the response value
continuously rises, and the response/recovery time exhibits no apparent change. It is
worth noting that the detection limit of 0.5 at.% Al-ZnOHF is 0.25 ppm, with a response
value of 2.18, which is higher than that of pure ZnOHF, as shown in Figure S2a (1.57 to
0.25 ppm NO2). Additionally, the dynamic response curve of these two samples in the dark
(Figure S2b,c) exhibits that the detection limits of pure ZnOHF and 0.5 at.% Al-ZnOHF in
dark are 0.5 ppm. Therefore, UV light effectively reduces the detection limit of Al-ZnOHF
samples. The relationship between NO2 concentration and the response value of pure
ZnOHF and 0.5 at.% Al-ZnOHF is shown in Figure 6b, respectively. Significantly, the
logarithm of gas concentration and response value of both samples shows an excellent
linear relationship with high reliability. Additionally, the slope of the fitted curve of 0.5 at.%
Al-ZnOHF is higher than that of pure ZnOHF. This phenomenon means that when exposing
a sensor based on 0.5 at.% Al-ZnOHF to NO2; a slight change in gas concentration will
lead to a more dramatic change of response value than that of pure ZnOHF, which can be
explained by the following equation.

d[S]
d[C]

=
S
C

dln[S]
dln[C]

Therefore, the gas sensor based on 0.5 at.% Al-ZnOHF can detect NO2 more sensitively
and accurately than pure ZnOHF.

Repeatability is also an essential feature of gas sensors. The dynamic sensing curve
of 0.5 at.% Al-ZnOHF in 4 cycles was tested. As shown in Figure 6c, the response value
and response/recovery time show no discernible difference in these cycles. Therefore,
the 0.5 at.% Al-ZnOHF sensor exhibits superior repeatability to NO2 gas at 100 ◦C under
UV assistance. Moreover, the response values of 0.5 at.% Al-ZnOHF within one month
remained relatively stable, as shown in Figure 6d, proving its great stability. In order to
understand the interference of other gases in practical application, the gas-sensing test of
the samples to other gases is shown in Figure 6e. Sensors based on both pure ZnOHF and
0.5 at.% Al-ZnOHF exhibit a high response to NO2, while the response values to other
gases are lower than 2, indicating that both samples show excellent selectivity. Compared
with many other zinc-based gas-sensing materials shown in Table 1, the Al-ZnOHF sample
exhibits a great gas-sensing performance (high sensitivity, short response/recovery time,
and low detection limit) at relatively low temperatures.
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Table 1. The NO2-sensing performance of materials in references and this work.

Materials Operating Condition S (Rg/Ra or Ra/Rg) Tres/Trec (s) Detection Limit Ref.

ZnO/SnO2 composite 40 ◦C, UV (395 nm,
34 µW/cm2) 25 (1 ppm) 251/470 100 ppb [40]

Ag-ZnO nanoparticles 25 ◦C, visible light (455 nm,
70 mW/cm2) 2.5 (5 ppm) 200/175 1 ppm [41]

Si-ZnO thin films 75 ◦C, purple-blue (430 nm) 19.1 (400 ppb) 60/180 - [42]

CeO2/ZnO nanorods 120 ◦C 190.6% (5 ppm) 104/417 100 ppb [43]

Fe2O3-ZnO nanostructures 300 ◦C 6.34 (10 ppm) 26/185 1 ppm [44]

3D flower-like ZnOHF 200 ◦C 82.71 (10 ppm) 13/35 0.1 ppm [14]

0.5 at.%Al-ZnOHF 100 ◦C, UV (395 nm,
6 mW/cm2) 110.83 (10 ppm) 35/96 0.25 ppm This

work

In practical application, the relative humidity of the gas testing environment is an
important factor that affects gas-sensing properties at low operating temperatures. Relative
humidity is defined as the ratio of the absolute humidity in the air to the saturated vapor
pressure of water under the same condition. Figure 7a shows the sensing curves of the
0.5 at.% Al-ZnOHF sample at various relative humidities at 100 ◦C. Before the relative
humidity reaches 50%, the response value of 0.5 at.% Al-ZnOHF remains relatively stable.
When the relative humidity continues to rise, the response value shows a somewhat decline
(Figure 7b). However, the response value of the sensor at RH95 was 73.79, still keeping
about 67.0% of that at RH20. Figure 7c illustrates that the higher the relative humidity of
the test environment is, the faster the response value’s decline. In terms of the response
time, with the relative humidity increasing, it rises a little while the recovery time increases
to about 250 s (Figure 7c). Thinking of the low operating temperature of 100 ◦C, Al-ZnOHF
exhibits a relatively great water-resistance performance, especially under relative humidity
lower than RH50.
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Figure 7. (a) The response–recovery curves, (b) the response value change, (c) response/recovery time
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3.3. Gas-Sensing Mechanism

As an n-type semiconductor, the resistance of ZnOHF is mainly controlled by electrons
in the conductive band. According to reference research, the resistance of gas-sensing
material is mainly determined by the electron depletion layer on the surface, including its
resistance and width [45,46]. Under relatively low temperatures, when exposing sensing
material to air without photoactivation, some oxygen molecules adsorb on the surface
and consume electrons to form oxygen ions (O2(ads)

−, 0–150 ◦C), as shown in Reaction (1),
thereby forming an electron depletion layer with high resistance [47]. When UV light is
applied, for one thing, the surface adsorbed oxygen ions react with the photogeneration
holes to release oxygen (Reaction (2)). For another, the physically adsorbed oxygen molecules
capture photogeneration electrons to form new oxygen species with high activity (Reaction (3)).
When these two reactions reach a balance, the surface of the material is coated with
photoactivated oxygen ions [48].

O2(gas) + e− → O2(ads)
− (1)

O2(ads)
− + hhν

+ → O2(gas) (2)

O2(gas) + ehν
− → O2(hν)

− (3)

The NO2-sensing process is shown in Figure 8. When exposing Al-ZnOHF sensors to
NO2 without UV light, the NO2 molecules are ionized into NO2

− by capturing conductive
band electrons, leading to an increase in resistance (Reaction (4)) [49]. In comparison,
the UV-activated electrons are more active than those in the dark, making them easier
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to combine with NO2 molecules (Reaction (5)). In addition, another reaction route will
occur under UV light, as shown in Reaction (6). Some NO2 molecules also react with
photoactivated oxygen ions and conductive band electrons to create NO3

− [50]. Therefore,
more NO2 will be adsorbed and reacted on the surface of Al-ZnOHF, and the sensitivity of
the sensors demonstrates enormous improvement.

NO2(gas) + e− → NO2(ads)
− (4)

NO2(gas) + ehν
− → NO2(hν)

− (5)

2NO2(gas) + O2(hν)
− + ehν

− → 2NO3(hν)
− (6)
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Figure 8. The response and recovery process of Al-ZnOHF in dark and with UV assistance.

When NO2 is pumped out, the surface-adsorbed ions are desorbed and release elec-
trons to the conductive band of materials. The difference is that materials under UV
light have a lot of photogenerated holes with high activity, which can efficiently promote
the oxidation of NO2

− and NO3
− (Reactions (7) and (8)), as well as their desorption.

Hence, UV light assistance can effectively accelerate the recovery process and reduce the
recovery time [51,52].

NO2(hν)
− + hhν

+ → NO2(gas) (7)

2NO3(hν)
− + 2hhν

+ → 2NO2(gas) + O2(gas) (8)

In order to figure out the bandgap and UV light absorption of different samples, the
UV-visible diffuse reflectance spectra of Al-ZnOHF with various Al3+ concentrations were
tested (Figure 9a). Significantly, Al-ZnOHF exhibits a higher absorbance than pure ZnOHF,
especially 0.5 at.% Al-ZnOHF. Using the T-plots of (αhν)2 vs. hν of samples (Figure 9b),
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the band gaps can be calculated as 3.31 eV for pure ZnOHF, 3.29 eV for 0.1 at.% Al- ZnOHF,
3.25 eV for 0.2 at.% Al- ZnOHF, 3.20 eV for 0.5 at.% Al-ZnOHF, and 3.40 eV for 1 at.%
Al-ZnOHF. Hence, the introduction of a low content of Al3+ can significantly narrow the
bandgap of ZnOHF, and the 0.5 at.% Al-ZnOHF sample has the minimum bandgap. The UV
absorption and bandgap are the main influencing factors of the generation of photoactivated
electrons and holes, thereby affecting the gas-sensing process [37,53]. Therefore, compared
with other samples, 0.5 at.% Al-ZnOHF exhibits the highest increase in the response value
rate before and after UV light radiation.
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4. Conclusions

In this work, Al-ZnOHF nanorods were synthesized via a simple one-step hydrother-
mal method for highly efficient NO2-sensing detection. Under UV light assistance, the gas
sensitivity of 0.5 at.% Al-ZnOHF was further enhanced, and the response/recovery time
was also significantly shortened. The sample preserved good anti-humidity performance,
especially under RH50. The improvement in the gas-sensing performance of Al-ZnOHF can
be ascribed to the reduced bandgap and increased electron concentration. UV irradiation
generated electrons and holes with high activity, which means that they can react with
target gas effectively and efficiently. The new reaction route during the adsorption and
desorption process also promotes the enhancement in g as-sensing performance. Therefore,
this work prepares an effective gas sensor based on 0.5 at.% Al-ZnOHF for NO2 detection
and provides new insights into modifying ZnOHF-based sensing material with superior
gas-sensing performance.
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