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Abstract: In this study, the direct shear test and model pullout test results are presented to assess the
impact of soil fines content and shear resistance characteristics of the pile–soil interface on the pullout
resistance of drilled shafts. The direct shear test on the soil–pile interface was conducted based on the
pile surface simulated using sandpaper with three roughness types (#24, #40, and #400) and varying
fines content. The direct shear test results of soil showed that the internal friction angle decreased by
about 29% and the cohesion increased by about 110% when the fine powder content increased from
5% to 30%. Specifically, in the case of soil–sandpaper (#24), the interface friction angle decreased by
about 31%, and the adhesion increased by about 16%. The sandpaper with a roughness of #40 and
#400 also showed a similar trend. Normalizing the shear strength parameters from the direct shear
test demonstrated an intersection between the normalized curves of the friction angle and cohesion
(or adhesion) within a specific fines content range. This suggests that shear strength parameters
play a significant role based on fines content. Analyzing the normalized index using model pullout
test results indicated the necessity to evaluate the contribution of friction angle and cohesion (or
adhesion) of the shear surface, taking into account the fines content of the soil for predicting pile
pullout resistance.

Keywords: soil–pile interface; shear resistance; interface friction angle; adhesion; pullout resistance

1. Introduction

Pile foundation is a fundamental structure designed to support various loads in
situations where the upper structure’s load cannot be sustained by soft ground. This
construction method is employed to transmit loads to a deep supporting layer when direct
foundation installation is challenging due to a high groundwater level or when a high
concentrated load is present.

Pile foundation is categorized into steel, PHC, and drilled shafts based on the material
used, and it is engineered to withstand the compressive load from the upper structure.
However, for pile foundations subjected to pullout loads, the friction resistance at the
pile–soil interface becomes crucial for structural stability. Evaluating the shear resistance
characteristics of the pile–soil interface is particularly vital for the pullout resistance of
drilled shafts, predominantly composed of concrete. Given that dynamic loads result-
ing from earthquakes can accelerate the pullout of pile foundations along with ground
deformation, assessing the pullout resistance is a crucial evaluation factor.

In the realm of seminal investigations pertaining to the pullout behavior of pile
foundations, refs. [1,2] have proposed calculation formulas for pullout forces. These
formulas are grounded in the analysis that attributes the pullout resistance of piles to the
skin friction manifesting at the pile–soil interface. Building upon the Meyerhof theory,
ref. [3] introduced an experimental formula derived from model tests, incorporating the
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concept of the limit depth. Furthermore, ref. [4] contributed significant research findings
encompassing the stability and design of piles, with a specific focus on the pullout resistance
characteristics of drilled shafts. Ref. [5] proposed a formula to predict the ultimate bearing
capacity of uplift piles in combined soil and rock mass.

In recent years, various experimental and numerical analysis studies have been con-
ducted on the behavior of pile foundation and the evaluation of material–soil interface
characteristics considering climate change and various structure construction conditions.
Ref. [6] evaluated the friction resistance of the sleeve installed at the bottom of piles through
laboratory experiments to improve the bearing capacity of the pile foundation installed in
sandy soil. Ref. [7] analyzed the change in the vertical load transmitted to a single pile and
the validity of the bearing capacity calculation method through 3D numerical analysis and
experiments when the pile is subjected to vibratory loads. Ref. [8] conducted load tests on
the medium-sized steel pile foundation and concrete pile foundation constructed in marine
clay and evaluated the time change–bearing capacity relationship based on the results.
Refs. [9,10] analyzed the effect of grouting on the improvement in the shear strength of the
pile–soil interface and the soil around the pile foundation. Ref. [11] conducted research on
the influence of grouting in the soil around the pile foundation on the end bearing capacity
of the pile foundation.

Ref. [12] estimated that the liquefaction of the soil around piles has a significant
impact on dynamic interactions between the soil and piles and proposed an interface
model considering the pile–soil interface friction angle. They verified the validity of the
proposed model through a comparison with centrifuge test results. Ref. [13] conducted
an experimental study to evaluate the axial resistance effect of piles that resist pullout.
Ref. [14] reported that the pullout resistance of the piles constructed in soil significantly
decreases as the groundwater level increases. Ref. [15] reported that the resistance of pile
foundation under the pullout load is affected by the relative density of sand. Ref. [16]
proposed a load transfer mechanism model predicated on friction resistance at the pile–soil
interface for pullout-resistant piles in multi-layered soil. Ref. [17] emphasized the necessity
of incorporating friction resistance into evaluations of ultimate pullout resistance based on
model test outcomes. Ref. [18] conducted tensile load tests on model piles with varying
surface roughness in sandy soil, stressing the importance of considering surface roughness
for calculating pile bearing resistance. Ref. [19] investigated the correlation of pile–soil
interface for screw piles, noting that soil shear strength and geometric variables of the
screw must be considered for the ultimate bearing capacity. Ref. [20] presented a method
for calculating the ultimate skin resistance of screw piles, validated through model and
field tests. Ref. [21] evaluated screw pile performance under axial loads through laboratory
tests, digital image correlation (DIC), and discrete element modeling (DEM), examining
the influence of soil conditions on pile performance. Ref. [22] analyzed the load transfer
characteristics of the pile–rock interface, establishing a model for calculating pile bearing
capacity based on friction resistance. Ref. [23] developed and verified a prediction model
for the socket shaft resistance of piles in rock layers in the Dubai area.

Further contributing to this body of knowledge, Ref. [24] employed finite element
analysis to assess the pullout performance of helical piles, proposing a formula for helical
pile pullout resistance. Ref. [25] evaluated factors influencing pullout resistance in clay soil
where undrained cohesion increases linearly with depth. Ref. [26] assessed the reliability
of algorithms predicting pile pullout behavior, while ref. [27] evaluated adhesion through
friction resistance at the pile–soil interface according to various design standards, drawing
insights from field cases.

Ref. [28] systematically assessed friction resistance at the material–soil interface, eluci-
dating friction coefficients through shear tests involving diverse materials and soil types.
Ref. [29] delved into friction resistance evaluations via sand and concrete friction ex-
periments conducted under cyclic loads. In a significant large-scale endeavor, ref. [30]
conducted direct shear tests, proposing shear resistance and shear coefficients for the
concrete–soil interface. Their contribution extended to the formulation of a rigid plastic
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model to elucidate interface deformation. Ref. [31] specifically measured the friction angle
at the soil–pile interface, correlating it with estimations of pile bearing capacity. Addressing
the broader context of the soil–structure interaction, ref. [32] underscored the pivotal role
of the soil–structure interface model. They introduced a model incorporating various
parameters to discern the mechanical characteristics of the soil–structure interface. The
model’s validity was established through meticulous comparisons with direct shear test
results. In a related exploration, ref. [33] conducted shear tests, suggesting a correlation
between the occurrence rate of peak interface friction and the particle size of sand in the
interface between sand with varying roughness values and steel plates. Acknowledging
the multifaceted nature of the soil–structure interface, ref. [34] emphasized the necessity for
comprehensive studies, considering varying soil conditions, test characteristics (e.g., test
devices), and analytical parameters (e.g., applied models). Ref. [35] reported that the
resistance characteristics of the shear surface formed along the pile–soil interface are con-
tingent upon the pile surface roughness, initial soil density, and resistance stress of the pile.
Ref. [36] contributed direct shear test results to illuminate the shear characteristics of the
pile–soil interface, recognizing the pivotal influence of concrete–soil interface characteristics
on pile skin friction resistance. Meanwhile, ref. [37] investigated failure loads for the soft
soil–concrete interface, assessing friction behavior and stiffness alterations. Addressing
sand–concrete interface mechanics, ref. [38] systematically evaluated the effects of relative
density and roughness of sand on the mechanical characteristics of the sand–concrete inter-
face. Studies have been conducted on the strength characteristics of mixed soil. Ref. [39]
reported that at the same granular void ratio of mixed soil, plastic fines generally decrease
the undrained strength, and non-plastic fines increase the undrained strength. Ref. [40]
investigated the possibility of estimating shear strength using an established method for
binary mixtures to overcome the difficulties of undisturbed sampling.

Drilled shafts are recognized for their effectiveness in pullout resistance compared to
other pile types. When installed in soil, they can achieve economic efficiency by ensuring
adequate friction resistance from the pile skin. Consequently, numerous drilled shafts with
varying diameters have been employed to attain both end bearing capacity and friction
bearing capacity based on the soil characteristics at construction sites. However, previous
studies have been insufficient in evaluating the shear resistance at the pile–soil interface
and establishing the correlation between shear resistance and pullout resistance based on
soil components.

This study aims to address this gap by comprehensively evaluating the impact of fines
content in soil and the shear resistance characteristics of the pile–soil interface on the pullout
resistance of drilled shafts. The assessment is conducted through a rigorous examination
utilizing both the direct shear test and model pullout test results, as elucidated by [41].

2. Materials and Methods
2.1. Pullout Resistance of Pile

The assessment of pile pullout resistance primarily relies on pullout load tests, com-
pressive loading tests, and empirical formulas. Among these, pullout load test results
are generally considered the most reliable. In cases where pullout resistance cannot be
directly obtained through load tests, an alternative approach involves evaluating pullout
resistance based on the skin friction of the pile, often determined through compressive
loading tests. Both of these methodologies necessitate on-site field tests. However, in
situations where field tests pose logistical challenges, the evaluation of pullout resistance
resorts to laboratory model tests. The pullout coefficient, derived from a pullout resistance
calculation formula, is then applied in the design process. Essentially, the ultimate pullout
resistance of a pile is expressed as the sum of pure pullout resistance and the weight of the
pile. Ref. [1] posited that the pure pullout resistance of a pile in soil hinges on the friction
force between the soil and the pile surface. Consequently, the calculation formula for pile
pullout resistance, as represented by Equation (1), underscores the critical importance of
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shear resistance, encompassing adhesion and the friction angle, at the pile–soil interface in
deriving the pullout coefficient from this equation:

Pu =
(
Ca + p′o Ku tanδ

)
As, (1)

where Pu is the pullout resistance, Ca is the pile–soil interface adhesion, p′o is the effective
vertical stress, Ku is the pullout coefficient, δ is the pile–soil interface friction angle, and As
is the area of the pile surface.

2.2. Laboratory Experiment

In this study, the direct shear test, aimed at assessing the shear strength at the pile–soil
interface, was conducted to evaluate the impact of fines content in soil and the shear
resistance at the pile–soil interface on the pullout resistance of the pile. Additionally, the
correlation between the shear resistance characteristics determined through the direct shear
test and the findings of the model pullout test conducted earlier was analyzed [41].

2.2.1. Engineering Properties of Soils

The soils utilized in both the direct shear test and the model pullout test comprised Ju-
munjin standard sand and fine-grained soil. The grain size distribution curves of Jumunjin
standard sand and fine-grained soil are illustrated in Figure 1, while Table 1 provides a
summary of soil properties categorized by soil type. In accordance with the Unified Soil
Classification System (USCS), Jumunjin standard sand and fine-grained soil were classified
as poorly graded sand (SP) and low-compression silt (ML), respectively.
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Figure 1. Grain size distribution curve of soils: (a) Jumunjin standard sand; (b) fine-grained soil.

Table 1. Soil properties.

Soil Classification Properties

Jumunjin standard sand

Gs 2.63
Cu 2.1
Cg 1.1

U.S.C.S. SP

Fine-grained soil

LL (%) 39.4
PL (%) 31.3
PI (%) 8.1

U.S.C.S. ML

In this study, a series of lab-scale tests were conducted to assess the impact of fines
content in soil on the pullout resistance of piles. Specifically, Atterberg limit tests were
performed to evaluate the engineering properties of soil based on the fines content. The
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Atterberg limit test for a mixture of sand and fine-grained soil was performed with soil
samples that passed through a No. 40 sieve (standard sieve size 0.425 mm), which contained
a certain percentage of fine sand. Figure 2 and Table 2 present the Atterberg limit test results
and the soil classification outcomes according to the plasticity chart. The fines content
means the percentage of fine-grained soil that passes the 200 sieve of about 85% or more
contained in the sand. In addition, the fines content was applied as the weight ratio of the
fine-grained soil contained in the sand.

The test outcomes reveal that when the fines content was 5%, the soil was classified as
SP, aligning with the Jumunjin standard sand. As the fines content increased to a range of
10 to 18%, the soil was categorized as SC-SM, and for a fines content of 19% or higher, it
was classified as SC.
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Figure 2. Atterberg limit test results according to fines content of soils.

Table 2. Soil classification according to the Atterberg limit.

Fines Content (%) PI (%) LL (%) PL (%) Soil Classification

5 4 24 20 SP
10 4 25 21 SP-SM
15 5 28 23 SC-SM
16 6 29 23 SC-SM
17 6 29 23 SC-SM
18 7 30 23 SC-SM
19 8 31 23 SC
20 8 31 23 SC
25 11 35 24 SC
30 12 37 25 SC

2.2.2. Direct Shear Tests

This study involved a direct shear test on soil, with variations in fines content. Ad-
ditionally, a direct shear test was performed on the soil–pile interface, considering the
simulated pile surface created using sandpaper with three distinct roughness levels (#24,
#40, and #400), along with variations in fines content. The direct shear test of mixed soil
(DS-OO) was performed in 10 cases, and the shear resistance evaluation of the soil–pile in-
terface (DSSP-OO) was performed in a total of 7 cases with the fines content at 5% intervals.
The specifics of the test variations are presented in Table 3.
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Table 3. Direct shear test cases.

Test Classification Test Condition

Soils Soil–Sandpaper Fines Content
(%)

Normal Stress
(kPa)

DS-00

Sandpaper type
#24, #40, #400

DSSP-00 0

50
100
150

DS-05 DSSP-05 5
DS-07 7
DS-10 DSSP-10 10
DS-13 13
DS-15 DSSP-15 15
DS-17 17
DS-20 DSSP-20 20
DS-25 DSSP-25 25
DS-30 DSSP-30 30

Note (test classification): DS-OO: direct shear test—fines content. DSSP-OO: direct shear test with sandpaper—
fines content.

As shown in Figure 3, the direct shear test used a large-scale direct shear test device
equipped with a large-scale shear box (size 0.3 m (B) × 0.3 m (L)) to sufficiently demonstrate
the shear resistance of the soil–pile interface. The direct shear test device consists of separate
upper and lower shear boxes, a vertical load loading device, and a measurement device to
check stress and deformation. In order to simulate the pile surface in the direct shear test, a
block model with sandpaper attached was placed in the lower shear box. Three types of
sandpaper (#24, #40, #400) were used to evaluate the shear characteristics according to the
surface roughness of the pile. ‘#’ is a symbol representing the grit of the sandpaper surface,
and the ‘number’ is the number of particles attached to a unit area (1in × 1in). The diameters
of grit 24, 40, and 400 are 0.764 mm, 0.425 mm, and 0.035 mm, respectively. In other words,
this means that sandpaper with small numbers is relatively rough. Figure 4a,b show the
sandpaper attached to the block and the sandpaper surface of three types, respectively.
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diagram of direct shear box.

As shown in Figure 5, the direct shear test method can be summarized as follows:
(i) Place a block with sandpaper attached that simulates the pile surface in the lower shear
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box. (ii) Mix Jumunjin standard sand and fine-grained soil considering the weight ratio.
(iii) Place and compact the soil sample in 3 layers (60 mm/layer) in the upper shear box.
(iv) Install a vertical loading device (with rubber membrane) on the model ground and
install a measurement device to check shear stress and deformation. (v) After applying
vertical loading with air pressure within the rubber membrane, shear and measure using
a strain control of 1 mm/min. For reference, the mixed soil for the model ground was
mixed using a stirring device for a long time to ensure that the Jumunjin standard sand
and fine-grained soil were evenly distributed.
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2.2.3. Pullout Tests of Model Pile Wrapped in Sandpaper

Furthermore, this study undertook an analysis of the correlation between the shear
resistance characteristics obtained from the direct shear test and the results derived from a
previous model pullout test [41]. While the model pullout test is extensively detailed in the
aforementioned prior study, a brief overview is provided herein.

In the model pullout test, the outcomes are influenced by both the dimensions of the
experimental setup and the size and conditions of the model pile. To determine the size
of the experimental setup that can consider the influence range of the surrounding soil
and the model pile size when vertical and pullout loads are applied to the pile, a previous
study was referenced [42]. A soil box with a diameter of 0.28 m and a height of 0.56 m
was prepared. Its inner wall was treated with chrome to mitigate friction. The model pile,
designed for the pullout test, possessed a diameter of 0.05 m and a length of 0.4 m. To



Materials 2024, 17, 124 8 of 15

simulate a drilled shaft, the model pile, crafted from steel, was uniformly encased with
sandpaper, ensuring a consistent friction resistance at the model pile–soil interface. Figure 6
shows the pullout test device and model pile.

The model soil was created considering the fines content and relative density of the
soil, with the drawing speed of the model pile set at 1 mm/min. The model soil according
to relative density was created by inversely calculating the required unit weight for each
relative density condition using the results of the maximum and minimum dry unit weight
tested for each fines content.

The pullout load and displacement were measured using load cells and LVDTs until
the model pile exhibited a pullout displacement of 40 mm. Table 4 shows the various cases
considered in the model pullout test.
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Figure 6. Overview of pullout test [41]: (a) photo and schematic diagram of device; (b) model pile
with sandpaper.

Table 4. Pullout test cases of model pile [41].

Cases Fines Content
(%)

Relative Density
(%)

Buried Depth of Pile
(m)

P-05-40
5

40

0.33

P-05-60 60
P-05-80 80

P-07-40
7

40
P-07-60 60
P-07-80 80

P-10-40
10

40
P-10-60 60
P-10-80 80

P-15-40
15

40
P-15-60 60
P-15-80 80

P-20-40
20

40
P-20-60 60
P-20-80 80
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3. Results and Discussion
3.1. Shear Resistance of Soils and Pile–Soil Interface
3.1.1. Test Results

Figure 7 and Table 5 show the results obtained from the direct shear test. First, the soil
test results revealed a decrease in the internal friction angle and an increase in cohesion
with a rise in fines content. As the fines content was elevated from 5% to 30%, the internal
friction angle of the soil exhibited a reduction of about 29%, while apparent cohesion
experienced an increase of approximately 110%.

The soil–sandpaper direct shear test results were categorized based on sandpaper
roughness types. With a roughness of #24 (high roughness), there was a tendency for the
interface friction angle to decrease, accompanied by an increase in adhesion due to the
elevated fines content. Specifically, the interface friction angle exhibited a reduction of
approximately 31%, while the adhesion increased by approximately 16%. This pattern
persisted with sandpaper roughness values of #40 and #400. At #40 (medium roughness),
the interface friction angle decreased by about 34%, and the adhesion increased by 15%. At
#400 (low roughness), the interface friction angle experienced a reduction of approximately
52%, coupled with an 8% increase in adhesion.

In essence, an increase in fines content within the soil led to an escalated reduction
rate in the interface friction angle and a diminished rate of increase in adhesion.
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Table 5. Shear strength parameters.

Fines Content
(%)

Cases DS (Soils) Case DSSP (Soil–Sandpaper)

Internal
Friction Angle

(ϕ, ◦)

Cohesion
(c, kPa)

Interface Friction Angle
(δ, ◦)

Adhesion
(Ca, kPa)

#24 #40 #400 #24 #40 #400

0 37.1 0.0 30.7 30.5 28.6 15.3 14.7 12.6
5 34.2 1.6 27.9 27.9 23.4 15.5 14.8 12.8
7 31.1 1.7

10 28.5 1.8 26.8 25.5 22.7 15.6 15.5 13.4
13 26.4 1.9
15 26.3 1.9 25.9 24.5 21.6 16.3 16.1 13.8
17 25.6 2.0
20 25.3 2.5 23.7 21.7 16.7 16.6 16.4 14.1
25 25.1 3.0 22.3 20.7 15.2 17.6 16.6 15.2
30 24.3 3.4 21.0 20.1 14.6 17.8 17.6 16.5

3.1.2. Shear Resistance Characteristics of Soil–Pile Surface Interface with Fines Content

The direct shear test results were employed to investigate the impact of fines content on
the shear resistance at the soil–pile surface interface. To assess the fines content’s influence
on strength parameters under various interface conditions, the 5–30% fines content range
was applied for analysis.

As depicted in Figure 8, regression curves were fitted using power equations to express the
soil’s internal friction angle and the friction angle at the soil–pile surface interface. The cohesion
of the soil and adhesion at the soil–pile surface interface were characterized using quadratic
functional equations. These equations were employed to ensure the reliability of predictions.

Comparison of shear resistance at the soil–pile surface interface and the shear resis-
tance characteristics of the soil under identical fines content conditions revealed intriguing
patterns. Figure 8a illustrates that, for the same fines content, soil exhibits low cohesion but
a high internal friction angle. Conversely, regardless of sandpaper roughness conditions,
adhesion was consistently high, even when the shear resistance at the soil–pile surface inter-
face displayed a relatively low interface friction angle. For instance, when the fines content
stood at 5%, the interface friction angle constituted approximately 75 to 90% of the internal
friction angle. However, adhesion values were notably elevated, ranging from 810 to 980% of
cohesion. This observation underscores the substantial dependence of soil shear resistance on
the internal friction angle. Importantly, both the interface friction angle and adhesion must be
considered when assessing shear resistance at the soil–pile surface interface.
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In their study, Ref. [41] provided a quantitative identification of the internal friction angle
and cohesion characteristics of soil based on fines content, presenting Equations (2) and (3)
that enable normalization using regression equations. In the present study, this methodol-
ogy was adopted to formulate normalized index equations for the shear strength parameter
at the soil–pile surface interface, represented by Equations (4) and (5).

Ni(∅) = 1 −
(
∅(max) −∅( f .c.)

∅(max) −∅(min)

)
,
(

0 ≤ Ni(∅) ≤ 1
)

(2)

Ni(c) = 1 −
(

c(max) − c( f .c.)

c(max) − c(min)

)
,
(

0 ≤ Ni(c) ≤ 1
)

(3)

Ni(δ) = 1 −
(

δ(max) − δ( f .c.)

δ(max) − δ(min)

)
,
(

0 ≤ Ni(δ) ≤ 1
)

(4)

Ni(ca) = 1 −
(

ca(max) − ca( f .c.)

ca(max) − ca(min)

)
,
(

0 ≤ Ni(ca) ≤ 1
)

(5)

The shear strength parameters corresponding to fines content are depicted in normal-
ized curves, utilizing Equations (2)–(5), as illustrated in Figure 9. Notably, the intersection
between the normalized curves of the friction angle and cohesion (or adhesion) was identi-
fied within the fines content range of 14–17%, irrespective of the shear surface characteristics
based on the material. This observation signifies that shear resistance is influenced by the
friction angle and cohesion (or adhesion), contingent upon the fines content.

Materials 2024, 17, x FOR PEER REVIEW 13 of 16 

(a) (b) 

(c)  (d) 

Figure 9. Relationship of fines content and normalized index based on shear strength parameters: 
(a) soils; (b) soil–sandpaper (#24); (c) soil–sandpaper (#40); (d) soil–sandpaper (#400).

3.2. Influence of Fines Content on the Pullout Resistance Performance of Pile 
The impact of fines content on pile pullout resistance was assessed using the out-

comes derived from the model pullout test conducted by [41]. In the model pullout test, 
fines contents ranging from 5% to 20% were incorporated into the model soil, consistent 
with the soil utilized in this study. For fines content exceeding 19%, the soil classification 
resulted in SC, enabling the evaluation of shear resistance characteristics based on fines 
content. 

The key findings from the model pullout test by [41] can be succinctly summarized. 
Irrespective of the relative density and fines content, the maximum pullout resistance was 
attained when the pile’s pullout displacement ranged between 3 and 6 mm. Following the 
achievement of the maximum pullout resistance, the residual strength was sustained even 
as the pullout resistance diminished. Notably, the magnitude of the residual strength re-
mained consistent, irrespective of variations in relative density and fines content. Figure 
10 provides a visual representation of the model pullout test results.  

Figure 9. Cont.



Materials 2024, 17, 124 12 of 15

Materials 2024, 17, x FOR PEER REVIEW 13 of 16 

(a) (b) 

(c)  (d) 

Figure 9. Relationship of fines content and normalized index based on shear strength parameters: 
(a) soils; (b) soil–sandpaper (#24); (c) soil–sandpaper (#40); (d) soil–sandpaper (#400).

3.2. Influence of Fines Content on the Pullout Resistance Performance of Pile 
The impact of fines content on pile pullout resistance was assessed using the out-

comes derived from the model pullout test conducted by [41]. In the model pullout test, 
fines contents ranging from 5% to 20% were incorporated into the model soil, consistent 
with the soil utilized in this study. For fines content exceeding 19%, the soil classification 
resulted in SC, enabling the evaluation of shear resistance characteristics based on fines 
content. 

The key findings from the model pullout test by [41] can be succinctly summarized. 
Irrespective of the relative density and fines content, the maximum pullout resistance was 
attained when the pile’s pullout displacement ranged between 3 and 6 mm. Following the 
achievement of the maximum pullout resistance, the residual strength was sustained even 
as the pullout resistance diminished. Notably, the magnitude of the residual strength re-
mained consistent, irrespective of variations in relative density and fines content. Figure 
10 provides a visual representation of the model pullout test results.  

Figure 9. Relationship of fines content and normalized index based on shear strength parameters:
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3.2. Influence of Fines Content on the Pullout Resistance Performance of Pile

The impact of fines content on pile pullout resistance was assessed using the outcomes
derived from the model pullout test conducted by [41]. In the model pullout test, fines
contents ranging from 5% to 20% were incorporated into the model soil, consistent with the
soil utilized in this study. For fines content exceeding 19%, the soil classification resulted in
SC, enabling the evaluation of shear resistance characteristics based on fines content.

The key findings from the model pullout test by [41] can be succinctly summarized.
Irrespective of the relative density and fines content, the maximum pullout resistance was
attained when the pile’s pullout displacement ranged between 3 and 6 mm. Following the
achievement of the maximum pullout resistance, the residual strength was sustained even
as the pullout resistance diminished. Notably, the magnitude of the residual strength re-
mained consistent, irrespective of variations in relative density and fines content. Figure 10
provides a visual representation of the model pullout test results.
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The analysis revealed that the pullout resistance of the pile exhibited an increase with
higher relative density under the same fines content conditions. Across all relative density
conditions, the regression curve of pullout resistance displayed a tendency to decrease within
the fines content range of 5 to 13%. However, beyond a fines content of 13%, the pullout
resistance increased, with the rate of increase amplifying alongside higher relative density.

These findings find support in the direct shear test results for each fines content. The
pivotal contributors to the development of pile pullout resistance are the shear strength
parameters of the surrounding soil (internal friction angle and cohesion) and those of
the soil–pile surface interface (interface friction angle and adhesion). As elucidated in
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Figure 9b–d, these contributing factors exhibit opposing effects within the fines content
range of approximately 14 to 17%. This suggests that the pullout resistance characteristics
of piles align more closely with the shear resistance characteristics of the soil–pile surface
interface than with the shear resistance characteristics of the soil. In other words, when
the fines content is below the 14–17% range, the pullout resistance of piles decreases in
tandem with the diminishing interface friction angle. This dependency arises due to the
magnitude of the interface friction angle. Conversely, when the fines content surpasses the
14–17% range, the pullout resistance of piles increases, correlating with the rising influence
of adhesion, which significantly impacts pile pullout resistance.

To reiterate, the evaluation of influential factors such as the friction angle and cohesion
(or adhesion) from the normalized index based on fines content, as utilized in Figure 9,
demonstrates that the fines content of the soil contributes significantly to the pullout
resistance of piles.

4. Conclusions

This study aimed to assess the impact of soil fines content and the shear resistance
characteristics of the pile–soil interface on the pullout resistance of drilled shafts, utilizing
data from the direct shear test and model pullout test. The conclusions drawn from this
investigation can be succinctly summarized as follows:

(1) The direct shear test outcomes revealed that, irrespective of the material characteristics
of the shear surface, the internal friction angle of soil and the soil–sandpaper interface
friction angle decreased with increasing fines content. Conversely, the cohesion of
soil and the adhesion at the soil–sandpaper interface exhibited an upward trend as
the fines content increased. Remarkably, the increase in the rate of adhesion at the
soil–sandpaper interface was approximately ten times higher than that of cohesion. It
was further emphasized that both the interface friction angle and adhesion are crucial
considerations in assessing the shear resistance characteristics at the soil–sandpaper
interface, as compared to the shear resistance of soil.

(2) The shear strength parameters, normalized based on the fines content using the
direct shear test results, revealed an intersection between the normalized curves of
the friction angle and cohesion (or adhesion) within a specific fines content range,
irrespective of the shear surface characteristics of the material. This implies that shear
strength parameters serve as influential factors dependent on fines content.

(3) Analysis of the normalized index results from the model pullout test indicated a
substantial contribution of the soil fines content to the pullout resistance of the pile.
Consequently, predicting the pullout resistance of piles necessitates an evaluation of
the contribution of the friction angle and cohesion (or adhesion) in consideration of
the fines content of the soil, aligning with the methodology employed in this study.

(4) Piles are mostly installed in saturated soil at the bottom of the ground surface. This
research could not consider the conditions of saturated soil because it is difficult to
simulate the conditions of model ground with saturated soil using the direct shear
test device applied in this research. In other words, this research includes test results
due to the limitations of the testing device. Therefore, the research considering the
conditions of saturated soil must continue to be conducted in order to ensure the
reliability of the shear resistance evaluation results of the soil–pile interface.
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