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Abstract: It is crucial to detect Pb2+ accurately and rapidly. This work proposes an ultra-sensitive
optical fiber surface plasmon resonance (SPR) sensor functionalized with glutathione (GSH) for
label-free detection of the ultra-low Pb2+ concentration, in which the refractive index (RI) sensitivity
of the multimode-singlemode-multimode (MSM) hetero-core fiber is largely enhanced by the gold
nanoparticles (AuNPs)/Au film coupling SPR effect. The GSH is modified on the fiber as the sensing
probe to capture and identify Pb2+ specifically. Its working principle is that the Pb2+ chemically
reacts with deprotonated carboxyl groups in GSH through ligand bonding, resulting in the formation
of stable and specific chelates, inducing the variation of the local RI on the sensor surface, which
in turn leads to the SPR wavelength shift in the transmission spectrum. Attributing to the AuNPs,
both the Au substrates can be fully functionalized with the GSH molecules as the probes, which
largely increases the number of active sites for Pb2+ trapping. Combined with the SPR effect, the
sensor achieves a sensitivity of 2.32 × 1011 nm/M and a limit of detection (LOD) of 0.43 pM. It also
demonstrates exceptional specificity, stability, and reproducibility, making it suitable for various
applications in water pollution, biomedicine, and food safety.

Keywords: optical fiber; surface plasmon resonance; glutathione; Pb2+ detection; gold nanoparticles

1. Introduction

Lead pollution is abundant in the atmosphere, water, and soil, resulting in significant
environmental pollution [1–3]. Additionally, it poses a threat to human health through
the ecosystem, causing severe damage to the neurological, hematopoietic, and digestive
systems [4–6]. The World Health Organization recommends that the lead content in
drinking water should not exceed 10 ppb, and the U.S. Environmental Protection Agency
sets the maximum allowable lead concentration in food at 72 nmol/L [7,8]. Therefore, there
is an urgent need to develop effective technology for detecting lead ions (Pb2+).

Currently, the typical techniques employed for detecting Pb2+ mainly include flu-
orescence [9,10], electrochemical [11,12], colorimetric [13], and atomic absorption meth-
ods [14,15]. While these detection methods can effectively analyze the substances qualita-
tively and quantitatively, they suffer from limitations including low sensitivity, insufficient
detection limitation, high detection cost, and complex operational procedures. Hence, it is
highly significant to develop a Pb2+ detection method that possesses high sensitivity, and
high accuracy as well as simple structure and low cost. In comparison to the aforemen-
tioned detection techniques, optical fiber sensing technology finds extensive application in
areas such as temperature, strain, refractive index (RI), biosensing, and chemical sensing
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owing to its high sensitivity, immunity to electromagnetic interference, small size, low cost,
ease of integration, and operational versatility [16–18].

Recently, a lot of optical fiber sensors have been designed and reported for Pb2+

detection, and by designing and optimizing both the micro-structure fiber and sensitive
materials, optical fiber structures are primarily utilized to enhance sensor sensitivity. Addi-
tionally, the design of sensitive materials can further improve sensitivity while ensuring
sensor specificity to the detector. Firstly, the reported microstructured optical fibers mainly
include the Fiber Bragg grating (FBG) [19–22], D/U-type fiber [23–25], tapered fiber [26–28],
de-cladding fiber [29], interferometric fiber [30,31], and end-reflective fiber [32]. These
micro-structured fibers necessitate chemical or mechanical etching to remove the cladding,
resulting in reduced durability and stability and complex manufacturing. Beyond that,
their sensitivity is often required for further improvement. Recently, an optical fiber sur-
face plasmon resonance (SPR) sensor utilizing multimode-singlemode-multimode (MSM)
hetero-core fiber was reported. The sensor exhibits high sensitivity to changes in RI
(3313.15 nm/RIU), along with excellent stability, durability, simple fabrication, and rela-
tively low cost [33].

In addition, the selection of the appropriate sensitive material directly influences the
detection accuracy of the sensor. Specific recognition and capture of Pb2+ is accomplished
through the modification of various sensitive materials on the surface of the optical fiber.
Several Pb2+-sensitive materials have been investigated, including chelating agents [34],
molecularly imprinted polymers (MIPs) [35], nanomaterials [36], and biological materi-
als [37]. Among these materials, chelating agents are commonly employed as sensitive
materials for optical fiber Pb2+ sensors. They are favored due to their easy preparation and
processing, low cost, and their ability to selectively form complexes with Pb2+, resulting
in high sensitivity and selectivity compared to the other types of materials. However,
certain chelating agents used in optical fiber Pb2+ sensors, such as Dimercaptosuccinic acid
(DMSA) [38], Dimercaprol (BAL) [39], and Thioacetic acid (TAA) [40], are toxic, particularly
to water or human samples, leading to contamination and potential harm. Glutathione
(GSH) is a tripeptide compound consisting of glutamic acid, cysteine, and glycine. Both
glutamic acid and cysteine contain carboxyl groups (-COOH), and the oxygen atoms within
these groups can act as ligands, forming coordination bonds with Pb2+. The Pb2+ chemi-
cally binds to the deprotonated carboxyl groups in the amino acids through ligand bond
formation, leading to the formation of stable and specific chelates [41]. Simultaneously, the
three amino acids are linked together by peptide bonds, forming a linear GSH molecule.
The linear structure of GSH provides it with a certain degree of flexibility and variability,
enabling it to adapt to various spatial configurations and interactions, thereby specifically
facilitating the formation of ligand bonds with lead ions. Furthermore, GSH is non-toxic,
odorless, easy to prepare, and exhibits excellent biocompatibility. Consequently, combined
with the high RI sensitivity of the SPR fiber, it is possible to develop various sensors with
high sensitivity and excellent selectivity by different functionalization according to the
corresponding detection targets.

In this work, an MSM hetero-core fiber modified with gold nanoparticles (AuNPs) and
GSH is proposed for Pb2+ detection. Specifically, the sensing surface is formed by coating
the single-mode fiber (SMF) with a layer of Au, onto which AuNPs and GSH molecules
are self-assembled. The GSH molecule serves as a highly chelating sensitive material for
Pb2+ detection. The modification of AuNPs enhances the SPR effect, thereby amplifying the
optical sensing signal. A significant change in the SPR peak of the transmission spectrum
occurs when there is a local RI change on the sensing surface of the SMF, caused by
varying concentrations of Pb2+ in the medium being measured. The proposed sensor is
characterized by a simple structure, easy fabrication, real-time monitoring, high sensitivity,
low limit of detection (LOD), as well as good specificity, and excellent stability in the
detection of Pb2+.
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2. Working Principle

Figure 1a shows a schematic diagram of the structure and experimental setup of the
proposed optical fiber Pb2+ sensor. The structure consists of a multimode fiber (MMF) as the
signal transmission area and an SMF (15 mm) as the sensing area. The light signal emitted
from the light source enters the core of the MMF and is transmitted into the SMF through
total reflection in the core. Due to the large difference in diameter between the core of the
SMF and the core of the MMF, the light signal emitted from the core of the MMF partially
leaks into the cladding of the SMF, and total reflection occurs at the interface between the
cladding of the SMF and the Au film and leads to the excitation of the evanescent wave
(EW) [42]. The EW enters into the Au film and the AuNPs on the surface of the SMF, at the
interface between the Au film and the medium to be measured, and the surface plasma
wave (SPW) is excited, while at the interface between the AuNPs and the medium to be
measured, the localized surface plasma wave (LSPW) is also excited. When the frequency
of the EW matches that of the SPW and the LSPW, resonance occurs between photons and
electrons, leading to the SPR effect and the localized surface plasmon resonance (LSPR)
effect. The energy at the wavelengths corresponding to the EW is then coupled to the
SPW and the LSPW, resulting in the attenuation of the reflected light signal. This signal
is subsequently emitted from the core of the SMF. The output transmission spectrum can
be recorded when the SPR/LSPR effect is excited on the fiber. Pb2+ in the medium to
be measured forms specific and stable chelates with GSH on the surface of the optical
fiber through ligand bonding (the specific binding mechanism of GSH to Pb2+ is shown
in Figure 1b and Figure S1), which leads to a change in the local RI of the sensing region,
causing a shift in the wavelength corresponding to the EW (Figure 1c). By detecting the one-
to-one correspondence between the resonance wavelength and the Pb2+ concentration, the
Pb2+ concentration can be determined. The LSPR effect induced by AuNPs also transfers
a portion of the energy to the Au film on the optical fiber’s surface. This augmentation
of the SPR effect on the Au film contributes to enhancing the sensitivity of the proposed
sensor [43].
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coated with a 5 nm thick chromium layer followed by a 60 nm thick Au layer using a 
magnetron sputter coater. The MSM hetero-core fiber structure coated with a 60 nm thick 
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Figure 1. Schematic and working principle of the AuNPs/GSH-modified SPR optical fiber sensor.
(a) Schematic of the AuNPs/GSH-modified SPR optical fiber sensor; (b) schematic structure of the
sensing part of the AuNPs/GSH modified-SPR optical fiber sensor; (c) working principle of the
AuNPs/GSH-modified SPR optical fiber sensor.

The principle of the Pb2+ detection sensor is summarized in Equation (1) [44]. In this
equation, it is illustrated that when lead ions bind to the GSH located on the gold film
surface, a small change in the GSH’s RI occurs. Consequently, the SPR effect is altered,
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leading to a shift in the position of the SPR resonance peaks. This systematic shift is
then observed across the entire MSM spectrum. Ultimately, it manifests as changes in the
wavelengths recorded in the monitored transmission spectrum.

∆λmax = m∆n{1−exp(−2d
ld
)} (1)

The amount of wavelength change (∆λmax) in fiber optic SPR sensors can be calculated
using the RI sensitivity (m), the change in RI (∆n) caused by the adsorbent material on
the sensing region’s surface, the thickness of the adsorbent layer (d), and the length of
electromagnetic field decay (ld) on the optical fiber’s surface. Therefore, the concentration
of Pb2+ solutions can be used as the detection target.

3. Material and Methods
3.1. Experimental Materials and Chemical Reagents

GSH was purchased from Macklin Biochemical Technology Co., Ltd. (Shanghai,
China). DL-Dithiothreitol (DTT, 99%) was purchased from Aladdin Reagent Co., Ltd.
(Shanghai, China). Phosphate buffered saline (PBS) was purchased from Sigma-Aldrich
Trading Co., Ltd. (Shanghai, China). Sodium citrate (Na3C6H5O7.2H2O), chloroauric
acid tetrahydrate (HAuCl4-4H2O), iron chloride (FeCl3), lead chloride (PbCl2), aluminum
chloride (AlCl3), magnesium chloride (MgCl2), barium chloride (BaCl2), cobalt chloride
(CoCl2), calcium chloride (CaCl2), sodium chloride (NaCl), and mercury chloride (HgCl2)
were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). SMF
(core/cladding diameter, 8/125 µm) and MMF (core/cladding diameter, 50/125 µm) were
purchased from Yangtze Optical Fiber and Cable Co., Ltd. (Wuhan, China). Deionized (DI)
water was used to prepare the solution for this study.

3.2. Fabrication of AuNPs/GSH-Modified SPR Optical Fiber Sensor Probe

Figure 2 illustrates the fabrication process of a Pb2+ detection probe, which is modified
with AuNP/GSH and consists of an MSM hetero-core fiber structure. In this study, the
MSM hetero-core fiber structure is composed of a 15-mm-long SMF connected to two
multimode fibers using a standard fiber fusion splicer and fiber cutter. To investigate the
influence of SMF length on the sensing properties within the MSM heterocore structure,
five distinct MSM architectures were fabricated, each with a different SMF length of 5 mm,
10 mm, 15 mm, 20 mm, and 25 mm. Following comprehensive analysis, it was determined
that the optimal SMF length for the sensor was 15 mm (detailed results are presented in
Figures S2 and S3, Tables S1 and S2). The fibers were subsequently washed multiple times
with ethanol and DI water to eliminate the residual impurities and dust and then dried
in a vacuum oven for further use. The sensing region of the optical fiber was sequentially
coated with a 5 nm thick chromium layer followed by a 60 nm thick Au layer using a
magnetron sputter coater. The MSM hetero-core fiber structure coated with a 60 nm thick
Au film was subsequently fabricated.

To successfully modify the AuNPs on the surface of the sensor, the Au-coated optical
fiber was immersed in a 1 mL DTT solution at room temperature for 1.5 h. DTT acts as
a bridge, with one S-base bond of DTT connected to the Au film through an Au-S bond
and the other S-base bond connected to the AuNPs through an Au-S bond. The DTT-
modified optical fiber was then removed and rinsed multiple times with alcohol and DI
water to eliminate any residual DTT that was not successfully modified on the surface. The
successfully modified DTT optical fiber was then immersed continuously in the prepared
AuNPs solution for 3 h while avoiding exposure to light. AuNPs were synthesized and
their dimensional size (~20 nm) was controlled using a previously reported method (details
of the preparation process can be found in Figure S4). The surface of the fiber was then
modified with the synthesized AuNPs. Subsequently, the AuNPs-modified fiber was
immersed in a GSH solution and shielded from light for 4 h. The S-base bond on GSH was
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used to bind with AuNPs through an Au-S bond. Finally, the optical fiber SPR sensor was
successfully prepared with AuNPs/GSH modification on MSM optical fiber.
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Figure 2. The processes to fabricate the AuNPs/GSH-modified SPR optical fiber sensor.

Additionally, we recorded the real-time stable transmittance spectra of the sensors
after each material modification during the fabrication process. Figure S5 displays the
transmittance spectra of the MSM optical fiber during the Au-film coating and modification
with AuNPs and GSH. The transmittance spectra of the sensor, while modifying different
materials on its surface, indicate noticeable wavelength drift. This observation confirms
the successful modification of Au, AuNPs, and GSH on the surface of the optical fiber.

3.3. Instrument and Characterization

The MMF-SMF-MMF optical fiber was fabricated by using the fusion splicer (FSM-60s,
Fujikura Ltd., Tokyo, Japan). The Au film was deposited onto the SMF section by magnetron
sputtering (Bestec GmbH, Berlin, Germany). The absorption spectra of the sample solutions
were characterized by the UV-Visible spectrophotometer (AvaSpec-ULS2048L, Avantes
Co., Ltd., Beijing, China). The surface of the sensor and the AuNPs on the SMF were
observed by scanning electron microscopy (SEM) (Zeiss G300, Carl Zeiss AG, Oberkochen,
Baden-Wurttemberg, Germany). The elemental distribution on the surface of the fabricated
sensor before and after the detection of Pb2+ was also analyzed by energy dispersive
spectroscopy (EDS, Zeiss Sigma HD, Germany) and X-ray photoelectron spectrometer (XPS,
Thermo ESCALAB 250Xi, Thermo Fisher Scientific Co., Waltham, MA, USA). Finally, the
experimental setup included a halogen lamp light source (Ocean Optics HL-2000, Dunedin,
FL, USA), an optical fiber spectrometer (Ocean Optics USB 2000+, Dunedin, FL, USA), and
a light displacement stage.

3.4. Device Testing

Figure 1 shows the experimental setup used to study the performance of the sensor in
detecting Pb2+. The sensor was placed in a V-shaped tank filled with a specific concentration
of lead ions. One end of the sensor was connected to a halogen lamp light source, and the
other end was connected to an optical fiber spectrometer. Different concentrations of Pb2+

solutions were prepared by diluting a 1 mM PbCl2 solution. The AuNPs/GSH-modified
sensor was immersed in the different concentrations of Pb2+ solutions for 3 min. Once
the spectra stabilized, the transmission spectra of the sensor were observed and recorded.
Before each measurement, the sensing area of the sensor was washed with DI water and
PBS solution to remove impurities and unreacted Pb2+. All experiments were conducted at
a temperature of 25 ± 1 ◦C.
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4. Results and Discussions
4.1. Characterization

To demonstrate the successful fabrication and effectiveness of the optical fiber sensor
for detecting Pb2+, the materials modified on the fiber’s surface were characterized during
its fabrication and Pb2+ detection.

The surface morphology and chemical composition of the AuNPs/GSH-functionalized
fibers after Pb2+ capture were characterized using SEM and EDS, as depicted in Figure 3a–c.
In Figure 3a, the SEM image displays a uniform and dense film on the surface of the
AuNPs/GSH-functionalized fiber. Figure 3b shows an SEM image of the sensor surface
after modification with AuNPs, revealing the uniform distribution of approximately 20 nm-
sized AuNPs on the Au film surface. Figure 3c presents the elemental mapping analysis of
N, O, S, and Pb on the optical fiber sensor after Pb2+ capture. The presence of S confirms
the successful attachment of AuNPs/GSH to the fiber, while the presence of Pb demon-
strates the sensor’s ability to detect Pb2+, illustrating the strong recognition and capture
capabilities of GSH molecules towards Pb2+. Figure S6 displays the elemental distribu-
tion of the optical fiber sensor following Pb2+ capture, providing further evidence of the
successful encapsulation of the AuNPs/GSH functional film on the surface of the fiber,
enabling the detection of Pb2+ in aqueous solutions. Simultaneously, this sensor identifies
Pb2+ by capturing it through surface-modified GSH. This process alters the RI within the
sensing region, and these minute RI changes are converted into a detectable wavelength
shift response.
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surface on the sensor; (b) SEM characterization of the fiber modified with AuNPs; (c) EDS analysis
of the sensing probe surface after capturing Pb2+. (d) UV-vis of AuNPs, GSH, AuNPs/GSH, and
AuNPs/GSH/Pb2+ and their separate solution states; (e) XPS survey spectra of the sensor obtained
before and after Pb2+ detection.
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The UV-visible absorption spectra of AuNPs, GSH, AuNPs/GSH, and AuNPs/GSH/Pb2+

during the fabrication and Pb2+ detection of the sensor are presented in Figure 3d. Among
them, AuNPs exhibited an absorption peak at 520 nm, indicating their spherical shape [45].
The AuNPs exhibited a strong absorption peak at 520 nm, confirming their maximum
absorption at this wavelength, while also displaying a secondary strong absorption peak at
234 nm. The self-assembled AuNPs/GSH exhibited a broad absorption peak at 671 nm,
indicating the formation of Au-S bonds between AuNPs and GSH [46]. The addition of
Pb2+ resulted in a decrease in the absorbance peak of AuNPs/GSH, providing evidence
that the positively charged Pb2+ was attracted to the negatively charged carboxyl group of
AuNPs-GSH, leading to its attachment to AuNPs/GSH.

Figure 3e displays the XPS of the sensor obtained before and after Pb2+ detection.
The upper part of Figure 3e shows peaks corresponding to N1s and S2p, suggesting the
successful modification of GSH molecules on the surface of the fiber. The lower part of
Figure 3e and Figure S7 reveal the emergence of a new Pb4f peak, indicating the successful
capture of Pb2+ by the GSH molecule on the sensor in the solution.

4.2. RI Sensitivity of Sensor

To further validate the enhanced RI sensitivity brought about by AuNPs, the RI
sensitivities of the sensors were measured and recorded before and after modifying the
surfaces of the Au film-coated fibers with AuNPs. Figure S8 shows the results of the RI
sensitivity tests conducted on the optical fiber sensor coated only with Au film, while
Figure 4 depicts the RI sensitivity test results of the optical fiber sensor after modifying the
surface of the Au film-coated fiber with AuNPs. The RIs of the surroundings around the
sensors were determined using NaCl solutions at concentrations of 0%, 5%, 10%, 15%, 20%,
and 25%, corresponding to the RIs of 1.3320, 1.3407, 1.3492, 1.3582, 1.3672, and 1.3765. The
transmission spectra of both sensors showed significant redshifts as the RI increased, as
shown in Figures 4 and S8. However, there was a notable difference in the total wavelength
drifts between the two sensors, with the former experiencing a total wavelength shift of
120.69 nm and the latter experiencing a shift of 98.33 nm. As a result, the RI sensitivities
of the two sensors were significantly different, with the former having an RI sensitivity
of 2778.2 nm/RIU and the latter possessing an RI sensitivity of 2053.2 nm/RIU. The
optical fiber sensor modified with AuNPs demonstrated an approximately 35% higher RI
sensitivity compared to the sensor coated only with pure Au film.
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4.3. Detection of Pb2+

To evaluate the sensor performance for Pb2+ detection, three SPR sensors were em-
ployed: one pure Au-coated sensor without AuNPs and GSH modification, one pure
Au-coated sensor with GSH modification but without AuNPs, and one Au-coated sensor
with both AuNPs and GSH modification. These sensors were used to measure various Pb2+

concentrations. The degree of sensor response to Pb2+ can be visualized by the magnitude
of wavelength shift in the transmission spectra. Figure 5a shows that the dip in the trans-
mission spectrum experiences a notable redshift as the Pb2+ concentration increases within
the concentration range of 10−12 M to 10−4 M. The maximum wavelength shift is 5.39 nm,
indicating a strong sensor response to low Pb2+ concentration (0.43 pM). This sensitivity
can be attributed to the formation of chelates between lead ions and GSH, which induces
structural changes in the GSH molecule, leading to alterations in light scattering and ab-
sorption properties. Consequently, the local RI on the fiber surface undergoes significant
changes, resulting in the highly sensitive detection of Pb2+. Moreover, the modification of
AuNPs induces the LSPR effect on the fiber surface, which further enhances the SPR effect
and improves the sensitivity of the optical fiber sensor for Pb2+ detection.
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A mathematical function was fitted to correlate the wavelength of the transmission
spectrum with the Pb2+ concentration, and the results are presented in Figure 5b, demon-
strating a good linear correlation between the logarithm of Pb2+ concentration and the
corresponding wavelength. The fitting function, y = 0.5908lgC + 587.4641, yielded an R2

value of 0.9919. The sensor demonstrated a sensitivity of 2.32 × 1011 nm/(mol/L) for Pb2+

detection, and the LOD of the sensor can be estimated to be CLOD = δλ/S = 0.43 pM [47].
This LOD is significantly below the maximum permissible concentration of Pb2+ in drinking
water set by the WHO at 10 ppb. However, the fiber optic SPR sensor without AuNPs
modification displayed reduced detection sensitivity, higher LOD, and a narrower detec-
tion range compared to the sensor modified with AuNPs/GSH. The sensitivity, LOD, and
detection range of the unmodified sensor were 2.32 × 1011 nm/(mol/L), 0.43 pM, and
10−12 M to 10−4 M, respectively. Additionally, the optical fiber sensor with unmodified
AuNPs and GSH exhibited minimal or negligible response, as detailed in Figure S9.

4.4. Stability of the Sensor

The long-term stability of the ion sensor was measured as well. The sensor was im-
mersed in four Pb2+ solutions with concentrations of 10−12 M, 10−9 M, 10−6 M, and 10−4 M
for a continuous duration of 90 min, and measurements were taken at 10 min intervals.
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Figure 6 illustrates the measurement results, showing that the maximum deviation of the
optical fiber sensor from the initial wavelength is only 0.09 nm, 0.09 nm, 0.07 nm, and
0.03 nm for the four respective concentrations, all falling within the acceptable range of
error. These variations may be attributed to background noise from the spectrometer and
thus result in minor fluctuations during the experiment. In conclusion, the sensor exhibits
excellent stability.
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4.5. Repeatability of the Sensor

Repeatability is a crucial parameter for evaluating sensor performance. Six repetitions
of the test were conducted using Pb2+ solutions at concentrations of 10−12, 10−9, 10−6, and
10−4 M. The tests were performed on three identical optical fiber SPR sensors that had been
modified with AuNPs/GSH. The sensors were cleaned with DI water and alcohol three
times after each test and then dried in air to restore their initial state. Figure 7 presents
the results of the repeated tests performed on one identical sensor using Pb2+ solutions
at concentrations of 10−12, 10−9, 10−6, and 10−4 M. The wavelength changes exhibited
deviations of 0.03, 0.06, 0.07, and 0.04 nm, correspondingly (the other two experiments are
shown in Figure S10). These results indicate the consistent repeatability of the optical fiber
sensor in detecting Pb2+ under various measurements of the same concentration.
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4.6. Specificity of the Sensor

The specificity of the sensor refers to its capability to selectively recognize specific
ions, which is crucial for achieving highly sensitive and accurate measurements. To assess
the specificity of the AuNPs/GSH-modified optical fiber sensor for Pb2+ detection, the
potential interference from other common metal ions (Ca2+, Al3+, Hg2+, Ba2+, Mg2+, Fe3+,
Co2+, Na+) was measured. The same experimental conditions as those used for Pb2+

detection were employed, and the concentrations of all metal ions were set to 10−4 M (the
concentrations of all metal ions at 10−10, 10−9, 10−8, 10−7, 10−6, and 10−5 M are shown
in Figure S11). Figure 8 illustrates the wavelength shift of the sensor in various metal ion
solutions, indicating that the sensor exhibits minimal response to all metal ions except Pb2+.
This suggests that the sensor exhibits excellent specificity, which may be attributed to the
fact that when the carboxyl group in the GSH molecule forms a ligand bond with Pb2+,
the carboxyl group (–COOH) undergoes deprotonation while the amino (–NH2) group
undergoes protonation, and the protonated amino group prevents the binding of GSH to
other metal ions, which leads to the selective binding of GSH to Pb2+.
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4.7. Discussions

Here, we summarize the recent research work on Pb2+ detection through optical
sensors. Their performances were also compared in detail in Table 1. Our sensor exhibits an
applicable detection range that surpasses most existing sensors, giving it a clear advantage.
Therefore, the sensor could satisfy most requirements for Pb2+ measurement. Furthermore,
the optical fiber SPR sensor proposed in our work is at a significant advantage in terms of
both Pb2+ detection sensitivity and the LOD. The sensitivity of our sensor is two orders
of magnitude higher than the previously reported highest sensitivity (2.55 × 109 nm/M).
Finally, the highly biocompatible material (GSH) we employed as the sensing element holds
promise for the development of a novel wearable sensor that enables real-time monitoring
of lead ion concentration levels in the human body, which might be achieved by combining
a flexible biocompatible plastic optical fiber with the sensitive materials mentioned in this
work. Of course, the detection performance of the sensors is yet to be verified in various
complex environments for practical applications, but these highly sensitive sensors with
universal sensing platforms can be utilized to detect various low concentrations of ions
and biochemical molecules by functionalizing the SPR fiber with probes with specificity.
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Table 1. Performance comparison of different optical Pb2+ sensors.

Structure/
Method

LOD
(pM)

Sensitivity
(nm/M)

Dynamic Range
(pM) Sensing Layer Ref.

Fiber Bragg grating 1.80 × 103 / 1.80 × 103–1.80 × 104 L-glutathione [19]

Fiber Bragg grating 500.00 2.55 × 109 500–1 × 109 CCS-NGO/PAA
nanocomposite [20]

Fiber Bragg grating 8.56 / 10–106 DNAzyme/AuNPs [21]
Fiber Bragg grating 9.65 × 104 2.10 × 106 4.49 × 105–4.63 × 108 PMO/BTESPTS [22]

Tapered fiber 102.47 / 360–1.80 × 108 Black phosphorus [26]
Tapered fiber 8.60 / 8.60–3019 Black phosphorus [27]
Tapered fiber 62.20 1.23 × 107 3.02 × 102–3.02 × 108 Black phosphorus [28]

Interferometric
fiber 3019.00 1.03 × 107 3019–1.51 × 105 Chitosan-PVA/

GSH/AuNPs [30]

Interferometric
fiber 2.45 × 108 8.16 × 105 2 × 105–1.20 × 106 Hydroxyethyl methacrylate

crosslinked hydrogel [31]

End reflection fiber 8.00 × 108 280.00 8 × 108–1 × 1010
AuNPs/1,1-

Mercaptoundecanoic
acid

[32]

Plastic clad silica
optical
fiber

158.00 2.10 × 109 3.60 × 104–7.20 × 105 Pyrrole/CS/ITO/Ag [48]

ITO glass 50.00 / 100–1 × 107 AuNPs/GSH [49]
Colorimetry 9.60 × 104 / 9.60 × 104–4.80 × 106 Paper-based/AgNPs/PVA [50]
Colorimetry 3100.00 5.90 × 107 2.40 × 103–4.80 × 104 AgNPs/dithizone [51]

Optical
sensor / 2.10 × 109 / AuNPs/kappa-carrageenan [52]

Optical
sensor 53.00 / 53–2.40 × 104

AuNIs/Poly
(m-phenylenediamine-co-

aniline-2-sulfonic acid)
copolymer nanoparticles

[53]

Optical
sensor 720.00 / /

AuNIs/Poly
(m-phenylenediamine-co-

Aniline-2-
sulfonic acids) copolymer

[54]

LSPR sensor 1.40 × 105 / 1.40 × 105–1.40 × 107 AuNPs/GO/PANI [55]
Multimode-
singlemode-
multimode

fiber

0.43 2.32 × 1011 1–1 × 108 AuNPs/GSH This
Work

5. Conclusions

In summary, a synergistic SPR-enhanced optical fiber sensor functionalized with the
self-assembly GSH is developed for highly sensitive and selective detection of lead ions.
By modifying AuNPs on the Au film-coated optical fiber, both the RI sensitivity and the
specific surface area of the optical fiber improved. This enhancement increases the number
of surface active sites and the number of modified probes, greatly improving the sensitivity
of the sensor for detecting Pb2+. In addition, the presence of deprotonated carboxyl
groups in GSH enables stable chelation between Pb2+ and GSH, leading to a significant
modification in the localized RI on the sensor’s surface, and improves the specificity and
long-term stability of Pb2+ ion detection. The experimental results demonstrated that the
proposed sensor exhibited a significant response across the dynamic concentration range
between 10−12 and 10−4 mol/L, with a high sensitivity of 2.32 × 1011 nm/(mol/L). The
LOD was determined to be 0.43 pM. Consequently, the optical fiber sensor developed
in this study holds great promise for trace detection of Pb2+ in various environments,
particularly its potential application in the detection of lead contamination in water, food,
and biological samples.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17010098/s1, Figure S1: The mechanism of GSH-specific
capturing Pb2+; Figure S2: Measured normalized spectra of MMF-SMF-MMF structures with different
sensing lengths: (a) 5mm, (b) 10mm, (c) 15mm, (d) 20mm, (e) 25mm. (f) Plots of surface plasmon
resonace peak wavelength versus refractive index for sensors with different sensing lengths; Table S1:
Wavelength values at the resonance valley of sensors with different sensing lengths at different
refractive index values; Figure S3: Transmittance spectra of sensor of different sensing lengths at
n = 1.3320; Table S2: Parameters of gold-plated fiber SPR sensors with different sensing lengths at
refractive index value of 1.3320; Figure S4: The preparation of AuNPs; Figure S5: The SPR wavelength
variation of the hetero-core fiber coated with Au film, Au film/AuNPs, and Au film/AuNPs/GSH;
Figure S6: The elemental distribution on the optical fiber sensor after capturing the Pb2+; Figure S7:
High-resolution Pb4f spectrum of AuNPs/GSH-modified SPR optical fiber after the addition of Pb2+;
Figure S8: RI sensitivity measurement of the sensor coated with pure Au-film. (a) Transmission
spectra of the sensor coated with pure Au-film in NaCl solutions with different RI. (b) The linear
fitting curve of the sensor coated with pure Au-film; Figure S9: Variations in wavelength of the
sensors at different Pb2+ concentrations; Figure S10: (a) No.1 of repeatability of the proposed sensor.
(b) No.2 of repeatability of the proposed sensor; Figure S11: The specificity tests of the sensor for
different metal ions at different concentrations. (a) At 1 × 10−5 mol/L. (b) At 1 × 10−6 mol/L. (c) At
1 × 10−7 mol/L. (d) At 1 × 10−8 mol/L. (e) At 1 × 10−9 mol/L. (f) At 1 × 10−10 mol/L.
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