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Abstract: Type II inorganic clathrates consist of cage-like structures with open frameworks, and
they are considered promising materials due to their unique properties. However, the difficulty of
synthesizing phase-pure and continuous films has hindered their application in practical devices.
In this report, we demonstrate the synthesis of type II SiGe clathrate films through the thermal
decomposition of a Na-deposited amorphous SiGe film on a sapphire substrate in a high vacuum.
The as-prepared films of type II SiGe clathrates showed uniform growth and were evaluated for
their structural and optical properties. Morphological studies conducted using a scanning electron
microscope showed the presence of cracks on the film surface.

Keywords: clathrate; thin film synthesis; type II SiGe clathrate

1. Introduction

The increasing demands for enhanced performance and energy efficiency in electronic
devices have brought the limitations of the traditional diamond structured Si/Ge into the
spotlight. Numerous structural forms of Si/Ge have been actively investigated, such as the
amorphous state, nanostructures, superlattices, etc. Si/Ge is a part of the group IV elements
which are among the most investigated materials with various structures, primarily due to
the flexibility of the covalently bonded sp3 hybridized framework; additionally, it can be
stabilized in the clathrate structure [1–7]. The clathrate structures of group IV elements are
commonly termed as inorganic clathrates, and the most common structures of inorganic
clathrates include types I and II. The clathrate structure mainly consists of a cage-like open
framework that can trap guest species (commonly alkali or alkaline earth metals) inside,
leading to the chemical formulas of M8E46 and M24E136 (M: guest species; E: Si, Ge, or Sn)
for type I and type II structures, respectively, for fully occupied clathrates [1,8–11]. The
type II clathrate structure is formed by the face-sharing of 16 dodecahedral (E20) cages and
8 hexakaidecahedral (E28) cages, and it crystalizes in a face-centered cubic lattice (space
group: Fd3m). The guest species act as the templates for the synthesis of the clathrate
structure and impart unique features due to their guest–host interactions. The guest species
trapped inside the polyhedra of this expanded volume structure donates charge carriers to
the host framework, leading to metal-like behavior with a high guest occupancy of binary
and defect-free (e.g., Zintl defects) clathrates [12–14]. Furthermore, upon a reduced guest
occupancy (<8 for type II clathrate unit cell) or alloying with suitable elements, a semi-
conducting nature is observed with exciting optoelectronic properties. Superconductivity
was reported for BaxNaySi46 clathrates [15–18]. Hence, clathrates have attracted signifi-
cant attention due to their wide range of applications, such as in metals, semiconductors,
superconductors [15,16,18], and phonon glass electron crystals [19], among others.

A type II clathrate structure allows for the removal of guest species without affecting
its stability, leading to unique features such as a semiconductor with a direct band gap. Type
II Si and Ge clathrates with low guest occupancies exhibit direct band gaps of 1.9 eV [20]
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and 0.7 eV [21], respectively, in contrast to the indirect band gap of diamond-structured
Si and Ge. Hence, Si- and Ge-based type II clathrates are investigated for applications in
photovoltaics [9,22,23], thermoelectric devices [21], and Li-ion batteries [24–27]. Recently,
alloy clathrates, in which the host framework is made up of more than one group IV
element (Si, Ge, or Sn), have been actively investigated due to their potential applications
as thermoelectric materials, optoelectronic materials, etc. Among them, alloyed clathrates
of Ge and Si are of great importance [28,29]. Bandgap tuning by alloying Si and Ge for type
II clathrates has been theoretically calculated to be in the range of 0.81 eV to 1.74 eV [21]
and has been experimentally reported to be in the range of 0.6 eV [30] to 1.9 eV [9]. Hence,
band gap tuning in the visible spectrum will be ideal for applications in LEDs and thin-film
solar cells. The properties of the clathrates can also be modified flexibly by alloying with
other elements such as group III elements, group V elements, etc. [31].

The type II clathrate has been synthesized in various form factors, such as powders
and thin films [32,33], by employing a range of synthesis methods. For powder samples,
type II clathrates have been synthesized mainly using a two-step thermal decomposition
method [34–36], an ionic liquid method [30], and an electrochemical method [26,37–39]. On
the other hand, for the film form, a two-step thermal decomposition method, primarily
derived from the powder synthesis method, was used predominantly [3,20,23,32,33]. Re-
cently, our team has reported a single-step thermal decomposition method using a specially
designed setup [31,40,41]. To control the guest concentration in the type II clathrate films,
various techniques have been employed. Among them, lowering the guest concentration
through prolonged annealing under a high vacuum has been widely investigated. Other
techniques include electric field application coupled with annealing in the inert atmosphere
for the removal of Na in a type II Ge clathrate film [32]. Recently, Vollondat et al. demon-
strated the removal of a Na guest from a type II Si clathrate film by annealing in an iodine
vapor, whereas a fully occupied type II Si clathrate film was achieved through an extended
exposition to sodium vapor [20]. For optical property analysis or to realize its potential in
practical devices, the film form is preferred over powder. However, the main challenges
in film fabrication involve obtaining uniformly grown film samples with good surface
features. The presence of cracks on the surface or non-uniform growth hinders the accurate
measurement of the film properties.

The type II SiGe clathrate has been investigated through theoretical studies [21,28].
Martinez et al. and Baranowski et al. have investigated the type II Si/Ge clathrates in
powder form [22,42]; however, there are currently no reports on experimental studies of
type II SiGe clathrate films to the best of our knowledge. In this study, the fabrication of a
type II SiGe film (5%, 10%, and 15% of Si molar composition) on a sapphire substrate with
a film feature suitable for investigating the optical and electrical properties was attempted.
A single-step thermal decomposition method was employed [40,41], which requires less
time for film fabrication and results in improved surface features compared to the two-step
method [32]. The as-prepared film was characterized by X-ray diffraction and Raman
scattering spectroscopy, confirming the synthesis of a type II SiGe film. Scanning electron
microscopy of the film surface revealed small cracks, and an optical transmission study
was used to estimate the absorption coefficient spectra.

2. Materials and Methods

Amorphous SiGe (a-SiGe) film, which was co-sputtered using RF sputtering from
Si and Ge targets and deposited on a sapphire substrate (20 × 10 mm2), served as the
starting material. The sapphire substrate was selected for this study because it is optically
transparent, electrically insulating, and stable at a higher temperature. The sputtering
chamber was evacuated down to 10−5 Pa, and the process pressure was maintained at
5 Pa with an Ar flow rate of 50 SCCM during sputtering. The substrate temperature was
maintained at 400 ◦C. The power settings of the Ge and Si targets were adjusted to obtain
various molar ratios of Si in the a-SiGe film. The Si/Ge ratio was investigated through an
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EDX measurement of the sputtered film, and a-SiGe films with molar ratios of 5% Si, 10%
Si, and 15% Si were confirmed.

The starting material (a-SiGe film) was transferred inside a specially designed chamber,
namely the Portable Vacuum Evaporation and Annealing System (pVEAS). The details of
the pVEAS setup can be obtained from previous reports created by our research group,
which facilitate the deposition of Na on the precursor film in a high vacuum and subsequent
annealing in the same chamber [40,41]. The a-SiGe film was placed on the sample holder
facing downwards in the chamber, and Na lumps (Nippon Soda, Tokyo, Japan, 99.95%)
of small sizes were placed in the tungsten basket located directly below the sample. The
handling of Na was performed inside a glove box filled with dry argon under safety
precautions. The chamber was sealed, and then transferred outside and connected to the
vacuum system and IR lamp heater. The chamber was evacuated using the fitted rotary
and turbo molecular pumps below ~10−4 Pa of the dynamic vacuum. Subsequently, Na
was evaporated from the tungsten basket by applying an external electric field to the
tungsten basket through the connected feedthroughs while maintaining the chamber at
a high vacuum. The Na-deposited a-SiGe film was then annealed by the IR lamp with a
power output corresponding to 250 ◦C while still maintaining the high vacuum to obtain a
type II SiGe clathrate film. Upon the completion of annealing, the sample was allowed to
cool to room temperature naturally.

For the synthesis of pure type II Ge clathrate film using pVEAS, amorphous Ge (a-Ge)
film prepared by RF sputtering served as the precursor. In pursuit of good-quality films of
type II Ge clathrate on a sapphire substrate, we fine-tuned the synthesis parameters. The
process involved depositing Na onto the a-Ge film at a substrate temperature of 230 ◦C,
followed by a subsequent annealing phase at the same temperature for 3 h.

The as-prepared film was investigated through X-ray diffraction (XRD) by Rigaku
Smartlab (Cu Kα radiation, λ = 0.154 nm) in grazing incidence (GIXRD) mode at an angle
of incidence of ω = 2◦. Rietveld refinement of the XRD data was carried out to estimate
the lattice parameters, atomic positions, and Na occupancy in the polyhedral cages, using
PDXL 2 software package (version 2.1.3.4) by Rigaku. Raman scattering spectroscopy
was performed using JASCO (Tokyo, Japan), NRS-2100 G (laser source: 532 nm). The
film surface morphology, film thickness, and elemental composition were investigated
by top-view analysis, cross-sectional analysis, and energy-dispersive X-ray spectroscopy
(EDX), respectively, using a field emission scanning electron microscope (Hitachi Hi-Tech,
Tokyo, Japan, S-4800). An accelerating voltage of 5.0 kV was used. Optical properties of the
clathrate films were analyzed using a single-beam Fourier transform infrared spectrometer
(Perkin Elmer, Shelton, CT, USA, Spectrum 100) and a dual-beam ultraviolet-visible near-
infrared (UV-vis-NIR) spectrometer (JASCO, Tokyo, Japan, V-670). All measurements were
carried out at room temperature.

3. Results

The photographs in Figure 1 depict the as-prepared film with varying Si/Ge con-
centrations, which was prepared at an annealing temperature of 250 ◦C for 8 h. A visual
inspection suggested the uniform and homogenous growth of the film without any visible
surface defects. The film samples appeared translucent when placed in front of a white light
source, in contrast to the semi-transparent nature of the type II Ge clathrate film prepared
at the same annealing temperature. The optimization of the synthesis parameters for a type
II Ge clathrate film, such as Na deposition at a higher substrate temperature of a-Ge film
and annealing at a lower temperature (230 ◦C for 3 h), resulted in the suppression of the
semi-transparent nature, and an almost opaque film was achieved.
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Figure 1. Photograph of as-prepared type II SiGe clathrate film on sapphire substrate (20×10 mm2): 
(a) 5% Si (sample 1), (b) 10% Si (sample 2), and (c) 15% Si (sample 3). 

3.1. Structural and Morphological Characterization 
The X-ray diffractograms obtained from the as-prepared film samples with varying 

Si ratios are shown in Figure 2. Observed reflections were indexed to the NaxGe136 and 
NaxSi136 phases. The as-prepared films were polycrystalline in nature, and no epitaxial 
growth was observed. No impurity phase, such as diamond-structured Ge or Si, was de-
tected, suggesting the successful synthesis of type II SiGe clathrate films. When comparing 
the XRD results with that of the pure type II Ge clathrate, peak broadening with an in-
crease in the Si ratio was observed. Broad background peaks were clearly identifiable at 
2θ~20° and 52°, suggesting the presence of an amorphous Si-like phase for samples with 
higher Si ratios. The global profiles of the peak intensities suggested that there were low 
Na concentrations in all of the as-prepared film samples, which are typically identifiable 
by the small relative intensity of the peak at ~10°. The exact estimation of the Na contents 
was carried out through a Rietveld analysis of the XRD data, which is discussed in a later 
section. 

 
Figure 2. GIXRD pattern of the type II Ge clathrate and type II SiGe clathrate films obtained with 
incident angle of ω = 2°. 

The top surface FESEM micrographs of the as-prepared films are presented in Figure 
3. Small cracks on the surfaces of the type II SiGe clathrate films were observed, suggesting 
a granular structure. The total area of the surface cracks appeared to be reduced in the 
samples with increases in the Si ratio. The EDX results of the as-prepared film samples, 
shown in Table 1, confirm the Si/Ge molar ratios of 5% Si in sample 1, 10% Si in sample 2, 
and 15% Si in sample 3, which were found to be the same as those of the starting material 
(a-SiGe film). The Rietveld refinement of the XRD data was performed by fixing the Si/Ge 
molar ratio obtained from the EDX measurement, and the refinement fitting curves of 

Figure 1. Photograph of as-prepared type II SiGe clathrate film on sapphire substrate (20 × 10 mm2):
(a) 5% Si (sample 1), (b) 10% Si (sample 2), and (c) 15% Si (sample 3).

3.1. Structural and Morphological Characterization

The X-ray diffractograms obtained from the as-prepared film samples with varying
Si ratios are shown in Figure 2. Observed reflections were indexed to the NaxGe136 and
NaxSi136 phases. The as-prepared films were polycrystalline in nature, and no epitaxial
growth was observed. No impurity phase, such as diamond-structured Ge or Si, was de-
tected, suggesting the successful synthesis of type II SiGe clathrate films. When comparing
the XRD results with that of the pure type II Ge clathrate, peak broadening with an increase
in the Si ratio was observed. Broad background peaks were clearly identifiable at 2θ~20◦

and 52◦, suggesting the presence of an amorphous Si-like phase for samples with higher Si
ratios. The global profiles of the peak intensities suggested that there were low Na concen-
trations in all of the as-prepared film samples, which are typically identifiable by the small
relative intensity of the peak at ~10◦. The exact estimation of the Na contents was carried
out through a Rietveld analysis of the XRD data, which is discussed in a later section.
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Figure 2. GIXRD pattern of the type II Ge clathrate and type II SiGe clathrate films obtained with
incident angle of ω = 2◦.

The top surface FESEM micrographs of the as-prepared films are presented in Figure 3.
Small cracks on the surfaces of the type II SiGe clathrate films were observed, suggesting
a granular structure. The total area of the surface cracks appeared to be reduced in the
samples with increases in the Si ratio. The EDX results of the as-prepared film samples,
shown in Table 1, confirm the Si/Ge molar ratios of 5% Si in sample 1, 10% Si in sample 2,
and 15% Si in sample 3, which were found to be the same as those of the starting material
(a-SiGe film). The Rietveld refinement of the XRD data was performed by fixing the Si/Ge
molar ratio obtained from the EDX measurement, and the refinement fitting curves of
sample 3 are shown in Figure 4. The lattice constants (a) of the as-prepared samples were
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estimated as 15.2070(3) Å, 15.1929(3) Å, and 15.1828(5) Å for sample 1, sample 2, and sample
3, respectively. The guest occupancies at the 8b and 16c sites were used to calculate the Na
contents. The amounts of Na (x) in the as-prepared type II SiGe clathrate (Nax(SiyGe1-y)136)
films were estimated as 1.00(28), 1.02(24), and 0.93(32) for sample 1, sample 2, and sample
3, respectively. The Rietveld refinement results of sample 3 are summarized in Table 2.
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Table 2. Structural parameters obtained through Rietveld refinement analysis. The space group was
assumed as Fd-3m.

a (Å) Rwp Rexp S

15.1828(5) 5.05 3.54 1.425
Atom (site) x y z Occ
Ge/Si (8a) 0.875 0.875 0.875 0.85/0.15
Ge/Si (32e) 0.78278(7) 0.78278(7) 0.78278(7) 0.85/0.15
Ge/Si (96g) 0.81687(4) 0.81687(4) 0.81687(4) 0.85/0.15

Na (8b) 0.375 0.375 0.375 0.020(16)
Na (16c) 0 0 0 0.048(12)

The Raman scattering spectra obtained from the as-prepared film samples are shown
in Figure 5. The major peaks obtained were assigned to the vibrational modes of the
NaxGe136 phase. No characteristic peaks in the diamond phase of Si/Ge were detected.
A systematic blue shift of the major peaks was observed for the samples with increasing
Si ratios. This blue shift phenomenon is often correlated with a decrease in crystallinity
or material subjected to compressive stress [20]. Hence, the presence of an amorphous
phase, supported by the XRD measurement results, and lattice strain, due to substitutional
effects of the Ge lattice with smaller Si atoms, were attributed to the observed blue shift
of the Raman scattering spectra. Additionally, weak intensity peaks centered at 360 cm−1

and 390 cm−1 were observed, as indicated by the red dots; these are discussed in the
subsequent section.
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sapphire substrate.

3.2. Optical Characterization

The optical properties of type II SiGe clathrate films were investigated through
transmission measurements. Figure 6a shows the absorption coefficient spectra of the
as-prepared film samples that were compared with those of the type II Ge clathrate to inves-
tigate the effects of Si inclusion. The absorption coefficient was calculated using a formula,
−ln(T)/d, where T represents the transmittance and d represents the film thickness. The
thicknesses of the film samples were estimated using cross-sectional FESEM measurements,
and they were 334 nm, 1454 nm, and 1302 nm for the Na0.80Ge136, Na1.02(Si0.1Ge0.9)136, and
Na0.93(Si0.15Ge0.85)136 film samples, respectively. Compared to the type II Ge clathrate, a
blue shift in the spectra was observed for the type II SiGe clathrates, which increased with
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the Si concentration. The estimation of the optical band gap using a Tauc plot under the
direct band gap scheme is shown in Figure 6b. An interpretation of the Tauc plot appeared
complicated due to the lack of a clear absorption edge. However, a careful observation
revealed that two absorption edges can be drawn from the spectra, which are depicted by
the solid lines in Figure 6b.
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4. Discussion

The as-prepared type II clathrate films appeared opaque with no visible defects, such
as pin holes, suggesting uniform film growth. The XRD peaks were indexed to the type II
SiGe clathrate phase, and no impurity phase was detected. Upon a comparison with the
XRD peak profile of the pure type II Ge clathrate, peak broadening was observed, which
was attributed to the a-Si/Ge-like states present at the top surface or at the periphery of
the grain boundaries. The presence of disordered Si states in the type II Si clathrate was
extensively investigated in previous reports [12,43]. The FESEM micrographs revealed
the presence of small cracks on the film surface of the as-prepared film sample in the
micrometer range, which can be attributed to the fast rate of phase transformation (from the
intermediate zintl phase to the type II clathrate), inherent surface defects on an RF-sputtered
a-SiGe film, etc. An EDX analysis for the Si:Ge ratio estimation revealed that the ratios
for sample 1, sample 2, and sample 3 were 5%, 10%, and 15% of Si, respectively, which
were consistent with the values of the starting material (a-SiGe). However, the Na contents
x (in Nax(SiyGe1-y)136) calculated using an EDX analysis appeared to be overestimated,
as the type II SiGe clathrate samples with high Na contents resulted in x > 24. This
observed phenomenon was speculated to originate due to the inhomogeneous distribution
of Na at the surface and the bulk of the film sample, which needs to be verified through
further investigations. For the Rietveld refinement of the XRD data, the Si/Ge molar
ratio obtained from the EDX measurement was fixed. The refinement fitting parameters
appeared unaffected by small changes in the Si molar ratio of the type II SiGe clathrate.
The lattice constant (a) decreased slightly with the increase in the Si ratio, which is in good
agreement with previously reported results [31,40]. The estimation of the Na contents
(x) resulted in the empirical formulas of Na1.00(Si0.05Ge0.95)136, Na1.02(Si0.10Ge0.90)136, and
Na0.93(Si0.15Ge0.85)136 for sample 1, sample 2, and sample 3, respectively. In the Raman
scattering spectra shown in Figure 5, peaks corresponding to the vibrational modes of the
NaxGe136 phase were observed [40,41]. Additionally, weak intensity peaks observed at
~360 cm−1 and 390 cm−1 were assigned to the Si-Ge bond vibration, which is in agreement
with the reported results for the diamond-structured Si-Ge bond vibrations [44] and the
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theoretical calculations for the vibrational density of states of the Ge rich type II SiGe alloy
clathrates [21]. It is worth mentioning that this represents the first observation of a Si-Ge
bond vibration for a type II SiGe clathrate, to the best of our knowledge, and corroborates
the XRD results.

The absorption coefficient spectra of the as-prepared film (Figure 6a) shifted to higher
energies with an increase in the Si ratio, indicating a systematic blue shift of the spectra
with the increased Si ratio in the type II SiGe clathrate. This implies that the host framework
of the type II Ge clathrate was substituted by Si atoms, consequently modifying the band
structure and shifting the absorption spectra. The band gap energy was estimated using
a Tauc plot (Figure 6b) under the direct band gap scheme. The Tauc plot suggested two
possible absorption edges, which are indicated by solid lines. When considering the
theoretical calculations of the band structure for the type II SiGe clathrate, the valence band
maximum and the conduction band minimum at the L point were indicated as a direct band
gap [21,28]. Furthermore, a conduction minimum present at the Γ point was attributed to
a nearly direct band gap. For the type II Ge clathrate (0% Si), the absorption edge in the
lower energy range was observed at 0.74 eV, which was attributed to the direct interband
transitions at the L point, and the absorption edge observed at 1.04 eV was attributed to the
direct interband transitions at the Γ point. A similar observation of two absorption edges
was reported for the type II Ge clathrate and Al-doped type II Ge clathrate films [31,40].
For the type II SiGe clathrate films, the absorption edge in the lower energy region was
estimated at 1.03 eV for sample 2 (10% Si) and 1.10 eV for sample 3 (15% Si), and in the
higher energy region, it was 1.45 eV for sample 2 and 1.54 eV for sample 3. A previous
study on type II SiGe clathrate powder demonstrated that the absorption onset for a 15%
Si sample was observed at 1.2 eV, whereas for type II Ge and Si clathrates, they were
observed at 0.65 eV and 2.2 eV, respectively [42]. It is noteworthy that past reports of the
band gap estimation of a type II SiGe clathrate were mainly obtained using the powder
sample. In this work, we report the band gap estimation from a film sample and employ
transmission measurements. Furthermore, it is speculated that the band gap tunes to the
energy range of 1.3–1.4 eV, which is considered promising for photovoltaic applications,
and can be achieved with the composition ratio of ~25% Si in a type II SiGe clathrate. A
further investigation on properties such as the temperature-dependent electrical properties
is deemed necessary for the accurate estimation of the band gap of a type II SiGe clathrate,
which is ongoing in our research group and will be published in the future reports.

5. Conclusions

Type II SiGe clathrate films with molar ratios of 5%, 10%, and 15% of Si were synthe-
sized on a sapphire substrate. The as-synthesized film showed uniform surface features in
the visual inspection; however, the presence of cracks was revealed in a top-view FESEM
investigation. The GIXRD peaks confirmed the synthesis of the type II SiGe film with small
traces of an a-Si/Ge phase. The Raman scattering spectroscopy showed a blue shift in
the spectra with an increase in the Si fraction, and the weak intensity peaks observed at
~360 cm−1 and 390 cm−1 were attributed to the Si-Ge bond vibration. A band gap estima-
tion performed using the Tauc plot revealed two absorption edges, which were estimated
at 1.03 eV and 1.10 eV for sample 2 and sample 3, respectively, in the lower energy range.
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