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Abstract: Specimens made of various materials with different geometric features were investigated
to predict the failure loads using the recently proposed criterion comprised of both stress and stress
gradient conditions. The notch types were cracks and holes, and the materials were brittle, ductile,
isotropic, orthotropic, or fibrous composites. The predicted failure stresses or loads were compared
to experimental results, and both experimental and theoretically predicted results agreed well for all
the different cases. This suggests that the stress and stress-gradient-based failure criterion is both
versatile and accurate in predicting the failure of various materials and geometric features.
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1. Introduction

Structural members are designed to avoid unexpected failure during their service life.
To achieve this, these members are tested experimentally or analyzed using proper model-
ing and simulation techniques. Extensive physical testing is time-consuming and costly,
so computational modeling and simulation are frequently used to replace or minimize
unnecessary testing. In order to have confidence in the accuracy of the results, however,
computational modeling should be reliable. To this end, many failure theories have been de-
veloped to predict failure loads based on material type, including isotropic and anisotropic
ones, subjected to a variety of loading conditions, including static and cyclic scenarios [1].

Important data in designing load-carrying structural members include the maximum
load that they can carry without failure. Hence, failure criteria are necessary to predict
the maximum failure load, but the load also depends on the geometry and material of the
structure. If the structures have notches such as holes or cracks, their load-carrying capacity
is significantly limited.

In the past, different failure theories were used to predict failure loads of structural
members depending on the state of notches they contained. For example, many different
failure criteria were proposed for structural members without any notches and subjected to
combined loading (i.e., multiaxial loading) [1–8]. Those criteria were to apply the failure
strength obtained from uniaxial testing to the prediction of failure under combined loading.
However, if a structural member has a notch, those failure criteria are not reliable.

A structural member with a crack has stress singularity at the crack tip if the material
behaves linearly elastically. Thus, fracture mechanics was also developed for structural
members with cracks [9–16]. On the other hand, if structural members have holes, an
entirely different set of failure criteria was used because fracture mechanics is suitable
for holes. The critical distance failure criteria, for example, is often applied for structural
members containing holes [17–25]. Some used the stress at the critical distance, while
others used the average value up to the critical distance from the notch tip to predict failure
at the notch tip.

The cohesive zone model was also developed to predict failure loads better [26–33].
The model considers a localized zone around the potential failure location, which is called
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the cohesive zone. A traction–separation relationship is applied to the cohesive zone
and is used to predict failure. For the cohesive zone model to be accepted as a failure
theory, the same traction–separation relationship must be applicable to structural members
independent of the notch shape, like a crack or a hole, as well as its size.

Recently, a unified failure criterion was proposed by the authors’ team [34–37]. The
unified failure criterion can be applied to structural members regardless of the existence
of notches, as well as their shapes and sizes. This failure criterion was validated against
different experimental data on brittle specimens with cutouts, including holes and slits.
The objective of this study is to validate the unified failure criterion further to determine
whether the theory can apply to various cases, which include ductile or brittle materials;
isotropic materials, 3D-printed orthotropic materials, or laminated fibrous composites; and
holes, long slits, or cracks. The next section describes the new unified failure criterion, and
it is followed by various sections that discuss the failures of different cases with subsequent
conclusions.

2. Failure Criterion Based on Stress and Stress Gradient

The recently proposed failure criterion uses both stress and stress gradient to deter-
mine failure. Both stress and stress gradient conditions must be satisfied for failure to
occur [34–37]. First, the stress condition must be checked. This condition states that the
effective stress at any material point should not be less than the failure strength of the
material, which is stated below:

σe ≥ σf (1)

where σe and σf are the effective stress and failure strength, respectively. The effective stress
is different depending on the material behavior. The maximum normal stress is usually
used for the effective stress for an isotropic brittle or quasi-brittle material. On the other
hand, the maximum shear or the octahedral shear stress is selected as the effective stress
for an isotropic ductile material. If a material is anisotropic, multiple effective stresses are
considered depending on the directions of the material properties and the loading.

Once the stress condition is satisfied, the stress gradient condition must also be checked.
This condition is expressed as

σe ≥
(

2EY
(

dσe

ds

))1/3
(2)

where E is the modulus; Y is a material failure value, which is discussed below; and s is the
failure path. For a brittle material, the failure path is normal to the maximum principal axis
at the failure location. When both stress and stress gradient conditions are satisfied at any
point in the sample in question, failure is deemed to have occurred. In other words, even
if the effective stress is greater than the failure strength, failure does not occur unless the
stress gradient condition is also satisfied.

To investigate the material failure value Y, which is different from σf , we consider a
crack under the first mode of fracture. The stress field very near a crack is expressed as

σe =
K√

s
(3)

in which s is along the crack orientation measured from the crack tip, which is perpendicular
to the loading direction. Equation (3) and its derivative are substituted into Equation (2),
which, at the onset of failure, results in the following:

Y =
K2

E
(4)

Thus, the material failure value Y is equivalent to the critical energy release rate in
fracture mechanics.
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3. Ductile Aluminum Alloy with Notches
3.1. Description of Specimens

All test specimens were 140 mm long, 24 mm wide, and 1 mm thick. The grip-to-grip
distance was 100 mm, meaning that each specimen was captured over 20 mm on each end.
Any notch was introduced at the center of every specimen, as sketched in Figure 1. The size
of the circular hole varied from 1 to 18 mm in diameter incrementally. All the holes were
located at the center of the specimens. There were six specimens for every size of the hole.
All the specimens were tested under tensile loading using INSTRON 5982 (Norwood, MA,
USA). In addition, six dog-bone shapes of specimens were also tested, without any notch,
to determine the stress–strain curves of the 5000 series aluminum alloy. Strain gauges were
attached to the dog-bone shape of specimens to measure both longitudinal and transverse
strains. Figure 2 shows the stress–strain curve of the aluminum alloy. The graph shows the
very ductile nature of the material with a low tangential modulus for strain hardening.
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Figure 1. Aluminum specimen with a center hole.
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Figure 2. Stress–strain curve of 5000 series aluminum alloy.

The next set of specimens had the same dimensions as before, but a slit was introduced
at the center instead of a circular hole, as sketched in Figure 3. The slit length was either
4 mm or 6 mm. The 6 mm slit had four different orientations with respect to the width
direction of the specimens. The orientation angles were 0◦, 15◦, 30◦ and 45◦, respectively.
Each type of specimen with a slit was called Lx/y◦, where x is the crack length in mm and
y is the orientation angle in degrees. Six of every specimen type were prepared for testing.
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Figure 3. Aluminum specimen with a center slit.

3.2. Results

Tensile tests of the dog-bone-shaped specimens, as well as the specimens with variable
diameters of center holes, were conducted to determine their failure loads. Then, the
applied failure stresses were computed from the failure loads divided by the cross-sections
at the grips, which do not consider the hole. The applied failure stresses are plotted in
Figure 4 for different hole sizes. The plot shows that the applied failure stresses decrease
almost linearly as a function of the hole diameter, and the standard deviations of the notched
specimens were very small as compared to that of the dog-bone-shaped specimens. In
addition, the specimens with a hole of a 1 mm diameter had applied failure stresses almost
the same as that of the dog-bone specimens, even though the dog-bone-shaped specimens
had a larger standard deviation than the perforated specimens. The dog-bone-shaped
specimen data were included in the figure if the failure occurred at the mid-section of the
specimens. Otherwise, the data were excluded. Figure 4 confirms that a very small hole, as
compared to the specimen width, does not have a noticeable effect on the load-carrying
capacity, and the load-carrying ability decreases as the hole size further increases.
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Figure 4. Applied failure stress of aluminum specimens with different hole sizes.

The data in Figure 4 were re-calculated such that the applied failure stress was replaced
by the nominal failure stress at the minimum cross-section across each hole. The nominal
failure stress is the average stress across the minimum cross-section at the onset of failure.
Table 1 shows the results. It is reasonable to state that the nominal failure stress was almost
constant, independent of the hole size. This suggests that for this geometry, the stress
failure condition dominates the failure of the aluminum test specimen. Therefore, the stress
gradient condition was easily satisfied because the failure value from the stress gradient
condition is much smaller than that from the stress condition. In order to demonstrate
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this, the stress gradient was computed at the edge of the hole of different sizes using finite
element analysis to investigate the stress gradient condition.

Table 1. Nominal failure stress of aluminum specimens with different sizes of holes.

Hole Size (mm) 0 1 2 3 6 9 12 15 18

Average Failure Stress (MPa) 228 237 236 228 236 219 227 228 230

Standard Deviation (MPa) 5.5 1.6 1.3 3.2 3.7 4.8 0.94 1.8 0.96

Specimens of 100 mm × 24 mm with a center hole were modeled for the plane stress
condition using four-node quadrilateral elements in Ansys [38]. The elastic–plastic analysis
was conducted using the stress–strain curve obtained from the dog-bone-shaped specimen.
Because the tangential modulus during the plastic deformation is quite small compared to
the elastic modulus, the stress gradient at the edge of the hole becomes smaller, along with
more plastic deformation around the edge of the hole. As a result, the stress gradient with
the ductile aluminum alloy becomes much smaller than that of any elastic analysis of brittle
materials. That is, the stress gradient of the former was at least an order of magnitude less
than that of the latter. Thus, the stress gradient condition was already satisfied at the edge
of the holes. This indicates that the failure of the ductile aluminum specimens with a low
tangential modulus of plastic deformation was also governed by the stress condition rather
than the stress-gradient condition, even though they contain a circular hole.

The aluminum specimens containing slits were also plotted in Figure 5 for the applied
failure stress. This stress was calculated by dividing the failure load divided by the cross-
sectional area without considering the slit. The results show an increase in the failure stress
along with the slit angle. Then, the nominal failure stresses were computed across the
minimum cross-section of the specimen. This minimum cross-section is defined in Figure 6
for slits with nonzero orientation angles. The nominal failure stresses were also almost
constant for different slit lengths and orientations, as seen in Figure 7. This also indicates
that the failure of the specimens with slits was predicted exclusively by the stress failure
condition instead of the stress gradient failure condition, as explained for the aluminum
specimens with circular holes. In other words, the stress gradients were so small that the
failure stress resulting from the stress gradient condition was smaller than the failure stress
from the stress condition. Thus, the failure stress from the stress condition is the failure
strength of the specimen.
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Figure 5. Plot of applied failure stress vs. the slit angle of slit size of 6 mm.
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4. Hardened Cement Pastes with Cracks
4.1. Description of Specimens

The next set of specimens was hardened cement paste with cracks, which were studied
experimentally in Ref. [39]. All the specimens are 3-dimensional blocks of L mm × H
mm × W mm, where L is the length, H is the height, and W is the width of the specimen.
Each specimen has a crack of the depth ‘a’ in the middle of the length and at the bottom
side. The crack is through the width of every specimen, which was tested under the three-
point bending setup. Figure 8 shows half of the hardened cement paste model because
of symmetry.
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All the specimens made of the hardened cement paste had the width W = 100 mm,
and the length to the depth ratio remained as L/H = 4 while the depth was varied with
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different ratios of the crack to specimen depth a/H. The hardened cement paste behaved in
a brittle manner with an elastic modulus of 20.8 GPa.

4.2. Modeling

First, half of the specimen, as sketched in Figure 8, was modeled using 3D solid
elements. The mesh was uniform, with the element length around 0.3 mm. The supporting
and symmetric boundary conditions were applied to the model, as well as the applied load
across the width of the specimen. Figure 9 shows the 3D finite element mesh of the model
with boundary and loading conditions. The right face had a symmetric boundary condition
except for the crack face at the bottom side.
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After linear elastic analysis, the stress profiles were examined along the crack line
across the width of the specimen. The results showed that the stress variation from the
edge of the crack to the vertical direction was very close across the specimen width. This
suggests that 2D analysis would be acceptable to save computational time. Therefore, 2D
analyses of three-point bending were conducted using four-node quadrilateral elements to
predict the failure loads of the specimens made of the hardened cement paste. After some
mesh sensitivity study, the final mesh was around 10,000 elements.

4.3. Results

The failure loads were predicted for the hardened cement paste specimens with initial
cracks from the 2D FEA, as discussed in the previous section. Because of the crack with
stress singularity, the stress gradient condition is used for the prediction of the failure loads.
In other words, the stress condition is already satisfied at the crack tip.

Since the failure value Y, which is related to the critical energy release rate, is not
known for the given material, one of the test results in Ref. [39] was used to extract the
value. Then, the same failure value Y was used for the remainder of the specimens to
predict the failure loads. The stress intensity factor K was obtained from 2D finite element
analyses. Because conventional FEA, in general, does not provide accurate stresses very
near the crack tip, a curve fit was conducted using Equation (3) to determine the stress
intensity factor K for a given applied load. Figure 10 shows an example of the curve fit to
the FEA solution. Then, the failure loads are determined using Equation (4).



Materials 2024, 17, 569 8 of 19

Materials 2024, 17, x FOR PEER REVIEW 8 of 19 
 

 

After linear elastic analysis, the stress profiles were examined along the crack line 
across the width of the specimen. The results showed that the stress variation from the 
edge of the crack to the vertical direction was very close across the specimen width. This 
suggests that 2D analysis would be acceptable to save computational time. Therefore, 2D 
analyses of three-point bending were conducted using four-node quadrilateral elements 
to predict the failure loads of the specimens made of the hardened cement paste. After 
some mesh sensitivity study, the final mesh was around 10,000 elements. 

4.3. Results 
The failure loads were predicted for the hardened cement paste specimens with ini-

tial cracks from the 2D FEA, as discussed in the previous section. Because of the crack 
with stress singularity, the stress gradient condition is used for the prediction of the failure 
loads. In other words, the stress condition is already satisfied at the crack tip.  

Since the failure value ϒ, which is related to the critical energy release rate, is not 
known for the given material, one of the test results in Ref. [39] was used to extract the 
value. Then, the same failure value ϒ was used for the remainder of the specimens to 
predict the failure loads. The stress intensity factor K was obtained from 2D finite element 
analyses. Because conventional FEA, in general, does not provide accurate stresses very 
near the crack tip, a curve fit was conducted using Equation (3) to determine the stress 
intensity factor K for a given applied load. Figure 10 shows an example of the curve fit to 
the FEA solution. Then, the failure loads are determined using Equation (4). 

 
Figure 10. Curve fit of the FEA solution to determine the stress intensity factor. 

Figure 11 shows the comparison between the predicted failure loads and the experi-
mentally measured values. Because the specimen with a crack-to-depth ratio of 0.1 and 
the specimen height of 100 mm was used to determine the failure value ϒ, both theoretical 
and experimental values agreed exactly for the specimen in this case. All other specimens 
show close agreement between the two results except for one specimen with a crack ratio 
of 0.3 with a specimen height of 100 mm. Because the authors do not have additional in-
formation on that test specimen, no further study could be conducted to understand the 
difference between the two results. Overall, the results confirmed the applicability of the 
present failure criterion to predict the failure of cracked specimens.  

0 0.2 0.4 0.6 0.8 1 1.2
Normalized Distance from Crack Tip

200

300

400

500

600

700

800

900

1000

1100

St
re

ss
 p

er
 U

ni
t L

oa
d 

(P
a)

FEA Results
Curve Fit

Figure 10. Curve fit of the FEA solution to determine the stress intensity factor.

Figure 11 shows the comparison between the predicted failure loads and the experi-
mentally measured values. Because the specimen with a crack-to-depth ratio of 0.1 and the
specimen height of 100 mm was used to determine the failure value Y, both theoretical and
experimental values agreed exactly for the specimen in this case. All other specimens show
close agreement between the two results except for one specimen with a crack ratio of 0.3
with a specimen height of 100 mm. Because the authors do not have additional information
on that test specimen, no further study could be conducted to understand the difference
between the two results. Overall, the results confirmed the applicability of the present
failure criterion to predict the failure of cracked specimens.
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Figure 11. Comparison of failure loads of hardened cement paste specimens with cracks.

5. Three-Dimensional Printed PLA with Holes
5.1. Description of Specimens and Experiments

PLA specimens were printed by a 3D printer using the fused filament fabrication
technique. The printing conditions influence the material properties of the 3D-printed PLA
specimens. For example, the printing temperatures affected the strength of the printed
specimens. In other words, the strength in the printing direction was much greater than that
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in its transverse direction, such that the 3D printed specimens behaved like an orthotropic
material, such as a unidirectional fibrous composite.

The printing conditions for the present PLA specimens are provided in Table 2. First,
rectangular shapes of specimens were printed in 0◦, 90◦, and ±45◦ with a length of 140
mm, a width of 24 mm, and a thickness of 2 mm. The printing angle is with respect to the
length direction of the specimens, which is also the loading direction. This means that the
0◦ specimens were printed along the loading direction, and those specimens were stronger
than other specimens. For uniaxial testing, tabs of 20 mm × 24 mm were attached to both
sides of every specimen on both ends. That is, each specimen had four tabs so as not to fail
at the grip section during the tests. This made the gauge length of every specimen 100 mm.

Table 2. Printing conditions for PLA specimens.

Print temperature 185 ◦C

Bed temperature 55 ◦C

Print speed 45 mm/s

Line thickness 0.2 mm

Line width 0.35 mm

The stiffness and strength were determined from the tensile tests of the rectangular
shapes of specimens with tabs. Figure 12 shows the typical stress–strain curves of the PLA
specimens printed in different orientations relative to the loading direction. The test results
indicate a larger difference in strength than in stiffness. Those graphs provided the material
properties of the PLA specimen. To determine Poisson’s ratio, strain gauges were also
attached to the specimens in both longitudinal and transverse directions. The details are
given in Ref. [37].
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Figure 12. Stressstrain curves of rectangular PLA specimens.

In the previous study [37], rectangular specimens with the same geometry were tested
with different sizes of holes and different printing angles relative to the loading direction.
Then, the experimental results were compared to the predicted failure loads. The agreement
was very good. In this paper, much larger sizes of dog-bone-shaped specimens were printed
using PLA. Those specimens were tested to investigate the effect of the hole size relative
to the specimen width on the failure load. Figure 13 shows the dog-bone shape of a
PLA specimen.
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Figure 13. Dog-bone shape PLA specimens.

All the dog-bone shapes of PLA specimens were printed along the loading direction,
i.e., at a 0◦ angle. All specimens had a test section of 80 mm wide and 1 mm thick. The
top and bottom portions of the specimen were 3 mm thick, while the thickness gradually
decreased to 1 mm in the test section of the specimen. This is to prevent failure around
the grip sections of the specimens because the testing equipment could hold only a small
portion of the end sections, as sketched in Figure 13. In other words, there was no grip
available for the testing, which was wide enough to hold the whole width of the specimen.
The hole was drilled at the center of every specimen, and the hole size was 3 mm, 4 mm,
5 mm, or 6 mm, respectively. At the minimum, three specimens were tested for the same
size of the hole.

All the dog-bone shapes of PLA specimens were subjected to tensile loading until
failure. The maximum forces were obtained as the failure loads from which the applied
stresses at failure were computed. Furthermore, a high-speed video was used to capture
the locations of the initial failures of the specimens. The video was set to 50,000 frames per
second. The observed failure locations were later compared to the predicted failure location.

5.2. Results

The dog-bone specimens were modeled using 2D quadrilateral elements only for a
quarter of their geometry because of double symmetries. To emulate the physical test
condition, uniform displacements were applied to the FEA model at the grip section of
each specimen, as shown in Figure 13. The applied displacement was increased gradually
until both stress and stress-gradient failure conditions were satisfied at any material point
that would be the location of the initial failure. The analyses were conducted for specimens
with different hole sizes.

Figures 14–16 show both the analytical predictions of failure locations for the 3, 4, and
6 mm holes, respectively. Each figure has three graphs. The first graph is the failure strength
from the stress failure condition, the second graph is the failure strength from the stress-
gradient condition, and the third graph is the induced effective stress from the applied
loading. All the graphs were normalized with respect to the failure strength from the stress
condition. The failure strength from the stress condition is constant, independent of the
location in the specimen. However, failure strength from the stress-gradient condition, as
well as the induced equivalent stress, varies across the specimen from the hole.
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Figure 15. Analytical failure prediction of a PLA dog bone with a 4 mm diameter center hole.
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The FEA analysis gave the failure strength computed from the stress-gradient condi-
tion at every node or element starting from the edge of the hole. The stress-gradient-based
failure strength varies at different locations because the stress gradients change from point
to point. Those varying failure stresses from the stress-gradient condition are plotted in the
figures along the minimum cross-section of the specimen from the edge of each hole.

The equivalent stress is the maximum normal stress along the same minimal sections of
the specimens. The equivalent stress increases as the applied displacement to the specimen
models increases. For the failure to initiate, the equivalent stress at one location must be
equal to or greater than both failure stresses from the stress and stress-gradient failure
conditions. Figures 14–16 show the plots of the equivalent stresses that just meet both
failure conditions at the initial failure locations for different sizes of the center holes from
3 mm to 6 mm.

Figure 14 is for the 3 mm hole, which shows that the equivalent stress meets both
failure strengths from the stress and stress-gradient conditions, respectively, at a distance
away from the edge of the hole. Before that failure location, the stress-gradient condition is
not satisfied, and after the location, the stress condition is not satisfied. Thus, the initial
failure does not occur at the edge of the 3 mm hole but rather some distance away from
it. Hence, the stress concentration at the hole edge did not influence the failure, and the
failure load was not affected by such a small hole in the specimen.

When the hole size was increased to 4 mm, Figure 15 shows there are two potential
failure locations: one at the edge of the hole and the other at a distance away from it. That
is, both stress and stress-gradient conditions could be satisfied at both locations almost
simultaneously. This suggests that the failure would occur at one site, immediately followed
by the other site. On the other hand, failure occurs at the edge of the hole when the hole
size grows to 6 mm, as shown in Figure 16.

Experiments were conducted using PLA specimens with different hole sizes. As the
tensile load was applied to each specimen until failure, a high-speed video was used
to capture the moments of initial failures. Figure 17 shows the video clip of the failure
progression of the specimen with a 3 mm hole just after the initial failure. The experiment
agrees with the theory showing the failure initiation away from the edge of the 3 mm hole.
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Figure 17. Progression of initial failure of the specimen with a 3 mm hole.

For the 4 mm hole size, some specimens showed initial failure starting from the edge
of the hole, and others showed it at a distance away from the edge. Figure 18 shows the
first failure at the edge of the hole, which was followed immediately at a distance away
from the 4 mm diameter hole. On the other hand, the specimen containing a 6 mm central
hole showed failure initiation from the edge of the hole, as seen in Figure 19. Because of
uncontrollable asymmetry, the initial failure occurred on one side of the hole, and then
failure also followed on the other side of the hole. Thus, the experimental results confirmed
the theoretical predictions based on both stress and stress-gradient failure criteria.
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The applied failure stresses of the PLA specimens at the onset of failure were also com-
pared between the theory and the experimental results. Figure 20 shows this comparison.
Both results agreed well with each other.
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Figure 20. Comparison of theoretical and experimental failure stresses of PLA specimens with
different hole sizes.

6. Laminated Glass Fiber Composites with Holes
6.1. Description of Specimens

Test specimens were cut out of a quasi-isotopically laminated glass fiber composite
(GFC) plate, which has the following layer angles: 0◦/45◦/−45◦/90◦/90◦/−45◦/45◦/0◦.
Here, 0◦ denotes that fibers are orientated along the loading direction. The overall di-
mensions of the GFC specimens were identical to the previously tested aluminum alloy
specimens. The GFC specimens had 3 mm, 6 mm, and 9 mm diameter holes at their centers.
Three specimens were prepared for the same hole size, and all the GFC specimens were
tested under tensile loading until failure.
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6.2. Multiscale Failure Modeling

Failure of laminated composite structures was modeled using a multiscale approach,
which links the microscale and the macroscale of the composite materials and structures.
The microscale indicates the fiber and matrix materials, while the macroscale is the smeared
or homogenized composite material. The multiscale approach is sketched in Figure 21, and
it consists of two processes bridging the microscale and macroscale. The first process is to
transfer the information at the microscale to that at the macroscale. This process, called
the upscaling or stiffness process, computes the effective composite material properties
from the material properties of the fiber and matrix and their volume fractions. The second
process occurs in the opposite direction and transfers information from the macroscale
down to the microscale. This is called the downscaling process or the strength process. This
second process determines the stresses and strains in the fiber and matrix materials from
those at the composite material level. The main reason for this is to apply failure criteria at
the fiber and matrix material level. The three different failure modes at the microscale are
fiber failure, matrix failure, and fiber/matrix interface failure; for example, interlaminar
delamination is described as matrix failure and/or fiber/matrix interface failure.
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The overall analysis occurs in the following manner.

1. First, the composite material properties are computed from virgin fiber and matrix
materials using the upscaling process.

2. The composite material properties are used for the analysis of the given composite
structure with an applied loading. Because the structural analysis is complex, FEA is
mostly used for the structural analysis, which provides the stresses and strains in the
composite structure.

3. Then, the composite level stresses and strains are decomposed into the stresses and
strains at the fiber and matrix materials using the downscaling process.

4. The unified failure criteria are applied to the stresses and strains of the fiber and
matrix materials.

5. If there is a failure, then the corresponding material properties are degraded based
on the specific failure, and the degraded material properties are used for the next
upscaling process.

6. The analysis cycle repeats as failure progresses locally or the applied load increases.

Because both upscaling and downscaling processes are used iteratively, the computa-
tional cost of the multiscale analysis may be quite high. To overcome this, both upscaling
and downscaling processes use analytical solutions without any additional numerical
model. The derivations of the analytical solutions are based on a unit cell model as de-
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scribed in Refs. [40,41]. The unit cell consists of subcells. Some of the subcells represent the
embedded fibers, and the remaining subcells represent the surrounding matrix material.
Stresses and strains were assumed constant with every subcell for mathematical simplicity.
Then, stress equilibrium and deformation compatibility are applied to the subcells to derive
the equations necessary for the upscaling and downscaling processes. The details of the
analytical derivations for the up and downscaling processes are omitted here. In summary,
the upscaling process has the following analytical expression:

Ec
ijkl = f

(
E f

ijkl , Em
ijkl , ν f , νm

)
(5)

where Eijkl is the material property tensor; ν is the volume fraction; and superscripts ‘c’, ‘f ’,
and ‘m’ denote the homogenized composite, fiber, and matrix materials, respectively. This
equation computes t homogenized composite material properties directly from the fiber
and matrix material properties.

The analytical expression used for the downscaling process is expressed as below:

ε
f
ij = g1

(
εc

ij

)
and εm

ij = g2

(
εc

ij

)
(6)

in which εij is the strain tensor, and the same superscripts as before were used. Once the
strains at the fiber and matrix materials are determined from Equation (6), the stresses at
the fiber and matrix materials are computed as below:

σ
f or m
ij = E f or m

ijkl ε
f or m
ij (7)

where σij is the stress tensor.
The failure criteria at the microscale level are given for the fiber breakage/buckling,

matrix cracking, and fiber/matrix interface debonding. Fiber failure is the major catas-
trophic failure of fibrous composites because fibers are the major load-carrying elements.
The effective stress for the fiber failure is expressed as

σ
f
e =

√√√√√(σ
f
11

)2
+

(
E f

11

G f
12

)2[(
σ

f
12

)2
+
(

σ
f
13

)2
]

(8)

This effective stress is applied to the failure criterion based on the stress and stress
gradient as given in Equations (1) and (2). In Equation (8), ‘1’ is the fiber orientation, and ‘2’
is the transverse direction normal to the fiber orientation. In addition, E and G are elastic
and shear moduli. All the components in Equation (8) are for the fiber material.

The matrix material used in this study is an isotropic brittle material, so as a result, the
maximum normal stress in the matrix material is used for the effective stress. Finally, the
effective stress to check the fiber/matrix interface failure is given below:

σint
e =

√√√√(σm
12 +

√
v f
(
σm

22 − σm
11
)

τint
fail

)2

+

〈
σm

22
σint

fail

〉2

(9)

where τint
fail and σint

fail are the tangential and normal failure strength of the interface. In
addition, <. . .> in Equation (9) is the Macaulay function. Hence, this function is used to
indicate that only the tensile but not compressive normal stress at the fiber/matrix interface
contributes to the interface failure.

6.3. Results

The GFC specimens behaved like quasi-brittle material. In order to view the failure
surfaces closely, GFC specimens were sputter-coated with approximately 15 nm of Pt/Pd.
Because GFC is non-conductive, it must be coated with a conductive metal to achieve
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high-quality images using scanning electron microscopy. Additionally, sputter coating the
GFC samples prevents the GFC from absorbing the energy, which could result in deforming
the samples.

Figure 22 shows that the GFC samples, regardless of hole size, had fiber fractures in the
0◦ layers at the edge of the hole with minimal cross-section. The fiber fracture initiated in
the perpendicular direction to the applied loading, and then it propagated at approximately
45◦. On the other hand, the ±45◦ layers showed no fiber fracture but indicated that fiber
pull-out had occurred, as shown in Figure 23. The failure of the ±45◦ layers occurred after
the failure of the 0◦ layer. Thus, the applied failure stresses of the GFC specimens were
obtained at the onset of the initial fiber fracture of the 0◦ layers.
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The multiscale analysis, as described in the previous section, was conducted for the
GFC specimens with holes. As the applied load increased incrementally, failure criteria at
the fiber and matrix material levels were checked, respectively, using the effective stress
and the stress gradient condition. Then, when the 0◦ layers initiated the fiber fracture at



Materials 2024, 17, 569 17 of 19

the edge of each hole, it was the onset of the main failure. The applied failure stress was
then determined at that applied load.

Figure 24 shows the comparison between the experimental and predicted failure
stresses, which were computed from the applied load divided by the specimen cross-
section at the grip locations, i.e., the section without holes. Because the fiber failure
value Y for the stress-gradient condition was obtained from the 6 mm hole specimens,
the theoretical prediction is exactly on top of the mean experimental failure stress. Using
the same failure value, failure stresses were predicted for the specimens with a 3 mm or
9 mm hole. As shown in Figure 24, the theoretically predicted failure stresses agreed well
with the experimental stresses, which also suggests that the unified failure criterion in
association with the multiscale approach is useful for predicting the failure of the quasi-
brittle laminated composites.
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7. Summary and Conclusions

A new unified failure criterion was proposed to predict the failure loads of structural
members. The criterion uses both stress and stress gradient to determine failure. For
failure to occur, both stress and stress gradient conditions must be satisfied simultaneously.
Various scenarios were examined to validate the new failure criterion. The cases included
brittle or quasi-brittle materials and a ductile aluminum alloy. The former materials were
isotropic hardened cement pastes, orthotropic PLA, and laminated glass fiber composites.
Different geometric features were also tested, including a crack, a long slit, and a circular
hole of different sizes. The new failure criterion predicted the failure loads satisfactorily
for all the cases examined in this study as compared to their corresponding experimental
results. The failure criterion showed that the failure load was ultimately determined
by either the stress condition or stress-gradient condition depending on the material or
geometric conditions of the tested specimens, even though both conditions were satisfied
simultaneously for all the specimens.
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