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Abstract: Measuring the size distribution and temperature of high-temperature dispersed particles,
particularly in-flame soot, holds paramount importance across various industries. Laser-induced
incandescence (LII) stands out as a potent non-contact diagnostic technology for in-flame soot, although
its effectiveness is hindered by uncertainties associated with pre-determined thermal properties. To
tackle this challenge, our study proposes a multi-parameter inversion strategy—simultaneous inversion
of particle size distribution, thermal accommodation coefficient, and initial temperature of in-flame
soot aggregates using time-resolved LII signals. Analyzing the responses of different heat transfer
sub-models to temperature rise demonstrates the necessity of incorporating sublimation and thermionic
emission for accurately reproducing LII signals of high-temperature dispersed particles. Consequently,
we selected a particular LII model for the multi-parameter inversion strategy. Our research reveals
that LII-based particle sizing is sensitive to biases in the initial temperature of particles (equivalent to
the flame temperature), underscoring the need for the proposed multi-parameter inversion strategy.
Numerical results obtained at two typical flame temperatures, 1100 K and 1700 K, illustrate that selecting
an appropriate laser fluence enables the simultaneous inversion of particle size distribution, thermal
accommodation coefficient, and initial particle temperatures of soot aggregates with high accuracy and
confidence using the LII technique.

Keywords: high temperature dispersed particles; soot aggregates; particle thermometry; inverse
problem; laser-induced incandescence; LII

1. Introduction

Hydrocarbon combustion flames represent intricate dispersed mediums comprising
gases and carbonaceous particles, notably soot aggregates [1]. These flames are prevalent in
diverse sectors like metal smelting, petrochemicals, aerospace, and atmospheric science [2].
High-temperature soot emerges as a significant contributor to heat transfer in various in-
dustrial systems, including boilers, engines, and furnaces [3]. Beyond its role in combustion,
soot serves as a crucial engineering material with applications in producing inks, dyes, and
tires and promising prospects in solar cells, electronics, batteries, and quantum dots [4–6].
The particle size distribution and temperature evolution of soot during high-temperature
processes profoundly influence both the heat transfer dynamics within industrial systems
and the ultimate functional properties of the soot material [7]. Consequently, the measure-
ment of particle size distribution and temperature of in-flame soot aggregates becomes of
paramount importance.

Traditional contact measurement techniques involving intrusive probes penetrating
the flame to sample soot aggregates pose risks of altering temperature and flow field
distributions at the sampling site, challenging probe durability [8]. In contrast, non-contact
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measurement techniques such as soot spectral emission (SSE), laser-induced fluorescence
(LIF), and laser-induced incandescence (LII), utilizing passive/active optical signals, emerge
as uniquely suited for the extreme environmental conditions of flames [9].

Among these non-contact measurement techniques, LII stands out as a commonly em-
ployed method for in-situ characterization of volume fraction and particle size distribution
of in-flame soot aggregates [10]. LII-based particle sizing involves exposing soot particles
to nanosecond pulsed lasers, elevating them to incandescent temperatures (~3000 K), and
generating LII signals [9,10]. Over the past two decades, LII technology has witnessed
notable advancements [11,12]. Initially designed for pointwise (0D) or line-wise (1D) mea-
surements, it has evolved to facilitate 2D imaging of planar LII (PLII) signals and even 3D
volumetric LII (VLII) signal reconstruction [13–15]. Spectral resolution has transcended
the traditional two-wavelength approach, with LII signals now measured at three or more
wavelengths, imparting richer information and reducing susceptibility to artifacts [16,17].
In terms of temporal resolution, time-resolved laser-induced incandescence (TiRe-LII) tech-
nology provides nanosecond temporal precision, enabling the deduction of particle size
distribution based on the cooling rates of soot particles [18,19]. Significant innovations,
such as single-shot laser-sheet compressed ultrafast photography (LS-CUP), have further
pushed the boundaries of temporal resolution in planar LII imaging to the sub-nanosecond
level [20]. Collectively, these advancements in LII technology deliver informative signals
with spatial resolutions spanning from 0D to 3D, wavelengths covering two to the full
spectra, and temporal resolutions extending from nanoseconds to sub-nanoseconds. The
recent advancements in measurement techniques have augmented the information content
of TiRe-LII signals, facilitating the extraction of more details about particles and increasing
the potential for simultaneously inverting multiple parameters.

In terms of multi-parameter inversion using TiRe-LII signals, the essence of LII-based
particle sizing hinges on interpreting the TiRe-LII signal through heat transfer model-
ing [10]. Assuming a log-normal distribution of soot particle sizes, LII-based particle sizing
formulates a binary inverse problem—estimating the mean (µd) and standard deviation
(σd) of the log-normal distribution [21,22]. The ill-posed nature of the inverse problem
amplifies bias in predetermined model parameters, leading to a decline in the accuracy
and confidence of the inversion results for particle size distribution [23,24]. Among these
predetermined model parameters, the uncertainty in the thermal accommodation coef-
ficient (TAC) has garnered attention due to its correlation with factors such as ambient
temperature, fuel type, and combustion conditions [10]. Moreover, for modeling the LII
signal of in-flame soot, flame temperature (equivalent to the initial temperature of the soot
before laser heating) is a requisite model parameter [25,26]. Given that LII is not commonly
employed for flame temperature measurements, supplementary techniques are required
to obtain both the soot particle size distribution and flame temperature simultaneously.
For instance, combining two-color pyrometry (2CP) with LII enables simultaneous optical
diagnosis of flame temperature and soot particle size distribution [10]. However, in the
absence of supplementary techniques or reliable prior knowledge of flame temperature,
the application of LII technology in flames faces challenges.

For this scenario, this study aims to explore an alternative solution, namely, the
simultaneous inversion of flame temperature, particle size distribution, and thermal accom-
modation coefficients using only TiRe-LII information. This approach not only eliminates
the need for additional equipment but also achieves synchronized measurement of soot
particle size distribution and flame temperature. In previous studies, Lehre et al. [27,28]
simultaneously inferred flame temperature and the mean particle size of soot from TiRe-LII
signals. However, the remaining model parameters, including the standard deviation of the
particle size distribution and the thermal accommodation coefficient, were predetermined,
essentially solving a binary inverse problem. In contrast, our study allows for the additional
inversion of the standard deviation of particle size distribution and thermal accommodation
coefficient from TiRe-LII signals without prior knowledge of flame temperature and the
thermal accommodation coefficient, which is essentially a four-variable inverse problem.
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Given that, the purpose of this study is to introduce a four-parameter inversion strategy for
in-flame soot, relying solely on TiRe-LII signals. This approach seeks to simultaneously
determine the soot particle size distribution, thermal accommodation coefficient (a key
thermal property of soot), and flame temperature (equivalent to the initial temperature of
soot before laser irradiation). This approach does not require the independent determina-
tion of the standard deviation of particle size distribution and the thermal accommodation
coefficient using other measurement techniques, thus broadening the scenarios in which LII
technology can be applied independently. The LII-based four-parameter inversion strategy
proposed in this study holds significance for soot research under high-temperature con-
ditions. It presents potential applications in various scenarios, including lab-scale flames,
internal combustion engines, exhaust emissions, the ambient atmosphere, and nanoparticle
production. This study systematically investigates and evaluates this multi-parameter
inversion strategy from various perspectives, including (1) response properties of heat
transfer sub-models to flame temperature rise, (2) perturbation of flame temperature bias
on LII-based particle sizing, and (3) the performance of the multi-parameter inversion
strategy under different flame temperature conditions.

The paper is organized as follows: Section 2 briefly describes the LII model that
drives the LII-based multi-parameter inversion strategy, in particular heat transfer sub-
models. Section 3 outlines the operation details of the multi-parameter inversion strategy.
Section 4 numerically analyzes the effect of flame temperature rise on the heat transfer sub-
models, reveals the sensitivity of LII-based particle sizing to flame temperature deviations,
and presents numerical results of the multi-parameter inversion for two typical flame
temperatures. Section 5 summarizes the main conclusions.

2. TiRe-LII Model

Figure 1a depicts a classical configuration for pointwise time-resolved laser-induced
incandescence (TiRe-LII) measurements. The pointwise measurement of the LII signal of
laser-heated soot particles is generally achieved by the fast photomultiplier tubes (PMTs,
typically <1 ns response time) combined with ultra-high-frequency oscilloscope (such as
1 GHz sampling frequency) to allow for the nanoscale temporal resolution of the TiRe-LII
signal. Furthermore, the TiRe-LII signals are measured spectrally at specific wavelengths
using appropriate filters. The TiRe-LII signals emitted by laser-energized soot aggregates
are typically simulated by the model that integrates several heat transfer sub-models with
a spectroscopic sub-model. A concise overview of the TiRe-LII model is presented here; for
more comprehensive details, please refer to our previous work [29,30].
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2.1. Heat Transfer Sub-Models
2.1.1. Energy and Mass Balance Equations

As depicted in Figure 1b,c, the interaction between laser and soot aggregates involves
various heat transfer processes. While the figure illustrates spherical particles as an example,
the involved heat transfer processes apply similarly to laser-irradiated soot aggregates.
Consequently, the instantaneous temperature Tp(t) and diameter dp(t) of soot aggregates
are derived by solving the energy balance equation (Figure 1b) and mass balance equation
(Figure 1c) [10]:

.
U(t) =

.
Qabs(t) +

.
Qcond(t) +

.
Qrad(t) +

.
Qsub(t) +

.
Qtherm(t) +

.
Qox(t) (1)

.
M(t) =

.
Msub(t) +

.
Mox(t) (2)

where
.

U(t) is the temporal change of internal energy of a soot particle at time t, with the
unit of J/s;

.
Qabs(t),

.
Qcond(t),

.
Qrad(t),

.
Qsub(t),

.
Qtherm(t), and

.
Qox(t) represent the heat

transfer rate of soot particle caused by laser energy absorption, conduction, radiation,
sublimation, thermionic emission, and oxidation at time t, respectively, with the unit of J/s;

.
M(t) is the temporal of soot particle mass;

.
Msub(t), and

.
Mox(t) denote the temporal change

of soot particle mass caused by sublimation, and oxidation at time t, respectively, with the
unit of g/s. In contrast to the comprehensive TiRe-LII model proposed by Michelson [10,31],
this study neglects the impact of soot annealing during and after laser pulses in Equation
(1) due to its unclear mechanism [32].

The soot studied in this paper is irregularly shaped aggregate particles. Taking an
aggregate illustrated in Figure 1d as an example, its morphology can be described by
Np = kf

(
2Rg/dp

)Df [33]. In this equation, Np is the number of sphere-like primary particles
constituting the aggregate; kf is the fractal prefactor; Rg is the gyration radius; Df is the
fractal dimension. The Df value, ranging from 1 to 3, reflects the efficiency of occupying
space by the aggregate. A higher Df value indicates a more compact aggregate structure.

2.1.2. Internal Energy of Soot Aggregates

For a soot aggregate consisting of Np primary particles, the internal energy term is
expressed as [34]:

.
U(t) = Npcsρs

πd3
p(t)
6

dTp(t)
dt

(3)

where cs is the specific heat of soot in J/(g·K), and the temperature-dependent fitting
polynomial shown in Equation (4) was used in this study; ρs = 2.3031–7.3106 × 10−5 × Tp
is the density of soot, with the unit of g/cm3 [34].
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cs =
(

R
12.01 g/mol

){
1.115 ×

(
597 K
Tp(t)

)2
exp

(
597 K
Tp(t)

)[
exp

(
597 K
Tp(t)

)
− 1

]−2

+1.789 ×
(

1739 K
Tp(t)

)2
exp

(
1739 K
Tp(t)

)[
exp

(
1739 K
Tp(t)

)
− 1

]−2
+

Tp(t)
8620 K

} (4)

where R = 8.3145 J/(mol·K) is the universal gas constant.

2.1.3. Heat Conduction Sub-Model

The mean free path of surrounding gas λMFP is expressed as [31]:

λMFP =
kpTg√
2σaPa

(5)

where kp = 1.3626 × 10−22 atm·cm3/K is the Boltzmann constant in effective pressure units;
Tg is the temperature of surrounding air; σa = 4.21 × 10−15 cm2 is the mean molecular cross
section of surrounding air; Pa is the pressure of surrounding air.

For in-flame soot, the mean free path λMFP is equal to 389 nm at a flame temperature
of Tg = 1700 K and atmospheric pressure of Pa = 1 atm, which significantly exceeds the
diameter of the soot primary particles. Therefore, the heat conduction sub-model is in a
free-molecular-flow regime [10,34,35]:

.
Qcond(t) = −πD2

eff(t)αT
Pa

8

√
8RmTg

πWa

(
γ + 1
γ − 1

)[
Tp(t)

Tg
− 1

]
(6)

where Deff is the diameter of an equivalent sphere with the same heat transfer surface area
as the aggregate (Figure 1d), with unit of nm (nanometer); Deff is related to the primary
soot particle diameter dp and the aggregate size Np through Deff = dp

(
Np/kh

)1/Dh , with
kh = 1.2 and Dh = 2.2 [35] for a fractal aggregate with kf = 2.3 and Df = 1.78 [36]; αT = 0.37
is the thermal accommodation coefficient (TAC), which is a dimensionless parameter of
particular interest in this study due to its inherent uncertainty in prior values; Pa = 1 atm is
the pressure of ambient air; Rm = 83.145 g·m2/(mol·K·s2) is the universal gas constant in
effective mass units; γ = 1.3 is the dimensionless specific heat ratio under flame temperature
condition; Tp(t) is the temperature of laser-heat soot at time t, with the unit of K (Kelvin);
Tg = 1700 K is the temperature of ambient combustion gas, namely the flame temperature,
also with the unit of K; notably, Tg is also equivalent to the initial temperature (Tp, 0) of
soot aggregates before laser heating; Wa = 28.74 g/mol is the molecular weight of air. It
is worth noting that, in the case of atmospheric pressure flames considered in this study,
the Fuchs model based on the boundary sphere is also applicable [10]. In order to enhance
the computational efficiency of solving the inverse problem, a more straightforward free
molecular flow model was adopted in this study.

2.1.4. Sublimation Sub-Model

The temporal change rate of energy and mass of soot aggregates due to sublimation
can be expressed as [34]:

.
Qsub(t) = −∆Hv

Wv

.
Msub(t) (7)

.
Msub(t) = Np

−πd2
p(t)WvαM pv

RpTp(t)

√
RmTp(t)

2πWv
(8)

where Np is the number of sphere-like primary particles that constitute a soot aggre-
gate; αM = 0.77 is the mass accommodation coefficient of sublimated carbon cluster;
Rp = 83.145 bar· cm3/(mol·K) is the universal gas constant in the effective pressure units;
∆Hv, Wv, and pv is the average enthalpy of formation, average molecular weight, and
saturation partial pressure of subliming carbon clusters, respectively.
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The temperature-dependent expressions of ∆Hv, Wv, and pv are as follows [34]:

∆Hv = 2.054 × 105 + 7.366 × 102Tp(t)− 0.407T2
p(t) + 1.199 × 10−4T3

p(t)− 1.795 × 10−8T4
p(t) + 1.072 × 10−12T5

p(t) (9)

Wv = 17.179 + 6.865 × 10−4Tp(t) + 2.996 × 10−6T2
p(t)− 8.595 × 10−10T3

p(t) + 1.049 × 10−13T4
p(t) (10)

pv = exp
[
−122.96 + 9.056 × 10−2Tp(t)− 2.764 × 10−5T2

p(t) + 4.175 × 10−9T3
p(t)− 2.488 × 10−9T4

p(t)
]

(11)

2.1.5. Thermionic Emission Sub-Model

The energy change rate of soot particles caused by thermionic emission is expressed
as follows [34]:

.
Qtherm(t) = Np

4Φme
[
πdp(t)kBTp(t)

]2

h3 exp
[

−Φ
kBTp(t)

]
(12)

where Φ = 7.37 × 10−19 J is the work function; me = 9.1095 × 10−35 J·s2/cm2 is the electron mass;
h = 6.626 × 10−34 J·s is Planck’s constant; kB = 1.381 × 10−23 J/K is the Boltzmann constant.

2.2. Spectroscopic Sub-Model

For optically thin, polydisperse soot aggregates aerosols, the spectral TiRe-LII emitted
by laser-heated soot at an instant t, denoted as Jλ(t), is calculated as follows [37,38]:

Jλ(t) = Λ
∫

p
(
dp

)
Cabs, λ

[
dp(t)

]
Ib, λ

[
Tp(t)

]
d
(
dp

)
(13)

where Λ is the intensity scaling factor, accounting for the effect of soot volume fraction,
geometry, and collection efficiency of detectors; p(dp) is the probability density function of
the polydisperse primary particles of soot aggregates; Cabs, λ is the absorption cross-section
of a primary particle at wavelength λ, which depends on the dp; Ib, λ is the blackbody
spectral intensity emitted by the soot aggregates at temperature Tp.

This study assumes that dp is constant within aggregates but follows a narrow log-
normal distribution between aggregates [39]:

p
(
dp

)
=

1
dp
√

2π ln σd
exp

[
−
(

ln dp − ln µd√
2 ln σd

)2
]

(14)

where µd and σd are the mean value and standard deviation of p(dp), respectively.
The absorption cross-section of soot aggregates is given by [33]:

Cabs, λ

[
dp(t)

]
=

π2d3
pE(mλ)

λ
(15)

where mλ is the complex refractive index (optical constant) of soot at wavelength λ;
E(mλ) = Im

∣∣(m2
λ − 1

)
/
(
m2

λ + 2
)∣∣ is the spectral absorption function of mλ, and the symbol

Im|·| indicates the extraction of imaginary parts [34].
The blackbody spectral intensity Ib, λ follows the Planck law, and its integral over all

solid angles is expressed as [33]:

Ib, λ

(
Tp

)
=

8πhc2

λ5 ·
[
exp

(
hc

λkBTp

)
− 1

] (16)

where the c = 2.998 × 108 m/s is the speed of light.
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3. Inverse Problem
3.1. Equivalent Thermal Accommodation Coefficient

Based on the TiRe-LII model, inferring the parameters of interest (in this study, two par-
ticle size distribution parameters, flame temperature, and thermal accommodation coef-
ficient, totaling four parameters) from the measured TiRe-LII signals essentially involves
solving an inverse problem. In order to realize the multi-parameter inversion strategy
proposed in this study, a special treatment of the thermal accommodation coefficients is
required. For soot aggregates, the implementation of the heat conduction mechanism
(Equation (6)) depends on the determination of the equivalent heat transfer cross-section
πD2

eff. Due to the aggregate structure, heat transfer between aggregated primary particles
is hindered, resulting in a shielding effect. This shielding effect is modulated by a shielding
factor η ranging between 0 and 1, then πD2

effαT = αT · ηπNpd2
p. Importantly, the exact

value of the shielding factor depends on the morphology of the aggregate. The morphology
of soot aggregates in a flame is influenced by a number of factors, including fuel type, flame
temperature, and combustion time, which introduces significant uncertainty into the shield-
ing factor. Measuring the aggregate morphology in advance to determine Deff is critical for
inverting the flame temperature and particle size distribution from the LII signal when the
value of the shielding factor is unknown. However, even with the support of other mea-
surement techniques, achieving accurate Deff remains extremely challenging. To address
these challenges, we introduce a combined parameter, αeff, which combines the thermal ac-
commodation coefficient (αT) and the shielding factor (η), then (η · αT)πNpd2

p = αeffπNpd2
p.

By inverting this combined parameter along with flame temperature and particle size
distribution from LII signals, the aforementioned challenges are avoided.

In the proposed multi-parameter inversion strategy, we derive an equivalent thermal
accommodation coefficient, αeff, from the normalized form of TiRe-LII signals (for a detailed
derivation, refer to our previous work, Ref. [29]). By employing αeff, the product πD2

effαT
in Equation (6) is replaced with πNpd2

pαeff:

.
Qcond(t) = −πNpd2

p(t)αeff
Pa

8

√
8RmTg

πWa

(
γ + 1
γ − 1

)[
Tp(t)

Tg
− 1

]
(17)

where Np typically follows a log-normal distribution among aggregates:

p
(

Np
)
=

1
Np

√
2π ln σN

exp

[
−
(

ln Np − ln µN√
2 ln σN

)2
]

(18)

where µN and σN are the mean value and standard deviation of the probability density
function p(Np), respectively.

The normalized TiRe-LII signals are simplified using the αeff (see Appendix A for the
full derivation) as follows:

b(t, λ) =

∫
Np Jλ(t)dNp∫

Np Jλ(tm)dNp
=

∫ d3
p(t)p(dp)

exp
[
hc/λkBTp(t)

]
− 1

ddp

/∫ d3
p(tm)p(dp)

exp
[
hc/λkBTp(tm)

]
− 1

ddp (19)

where tm is the time at which the spectral TiRe-LII signal Jλ(t) reaches its maximum value,
b(t, λ) is the spectral normalized TiRe-LII signal at time t, and the collection of b(t, λ) at
multiple times is expressed in vector form as b.

Therefore, the introduction of the equivalent TAC, αeff, transforms the multi-parameter
inversion based on the normalized LII signal, eliminating the reliance on prior information
about the specific aggregate structure and replacing it with an estimation of the unknown
variable αeff.
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3.2. Multi-Parameter Inversion Strategy

Upon examining the heat transfer sub-models presented in Section 2, it becomes
apparent that the flame temperature Tg, i.e., the initial temperature Tp, 0 of the soot aggre-
gates before laser heating, is a crucial model parameter. Previous studies have highlighted
the sensitivity of modeling TiRe-LII signals to deviations in flame temperature [25,26].
Consequently, precise measurement of flame temperature is paramount to ensuring the
accuracy of LII-based particle sizing. While obtaining flame temperature information
through alternative measurement methods introduces additional uncertainties and requires
more complex devices, this paper proposes a novel multi-parameter inversion strategy.
This strategy simultaneously inverts the flame temperature along with the particle size
distribution parameters and the equivalent thermal accommodation coefficient from the
TiRe-LII signals. Thus, the variable vector x of the multi-parameter inversion comprises
µd, σd, αeff, and Tp, 0. The inversion process is formulated as a least-squares optimization
problem, minimizing the non-negative objective function that incorporates both measured
values and model-derived estimates of TiRe-LII signals:

fobj =

∣∣∣∣∣∣∣∣bmea − best

bmea

∣∣∣∣∣∣∣∣2
2

(20)

where bmea is the measured values of TiRe-LII signals, and best is the model-derived
estimates of TiRe-LII signals.

In a proof-of-concept study, the measured values of TiRe-LII signals are typically
replaced by the synthetic LII signal contaminated by a noise model. We employ the general
noise model proposed by Sipkens et al. [40] based on extensive experimental data:

bmea = btar + τ · n · btar︸ ︷︷ ︸
Shot-to-shot error

+ [θ · (1 + τ · n) · btar]
1/2 ◦ nP︸ ︷︷ ︸

Poisson error

+ γ · nG︸ ︷︷ ︸
Gaussian error

(21)

where btar denotes the target (noise-free) simulated TiRe-LII signal, calculated using the full
LII model with the true values of variable vector xtar; n is a standard normal random variable;
τ, θ, and γ are the characteristic parameters of the general model, representing scale factors for
shot-to-shot error, Poisson error, and Gaussian error, respectively; nP and nG are respectively
the standard normal random vector for Poisson error and Gaussian error.

To avoid the ‘inverse crime’ phenomenon [41,42], where identical full models and
simplified models are used, leading to trivial results, we adopt a dual-model framework,
as illustrated in Figure 2. Specifically, the full model generates the synthetic TiRe-LII
signal, which differs from the simplified model used for variable estimation. The full
and simplified models used in this study are shown in Table 1 (Section 4.2). In this study,
we employ the covariance matrix adaptive evolution strategy (CMA-ES) algorithm to
minimize the objective function value, with further details available in Ref. [43]. It is
worth noting that this study employs the CMA-ES algorithm solely due to its excellent
performance demonstrated in previous research. Other non-linear least-square solvers,
such as Twomey’s algorithm, could theoretically be applied to this multi-parameter inverse
problem, and the performance differences among various algorithms are beyond the scope
of this study.
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Table 1. Three TiRe-LII models were involved in this study.

Notation Type Energy and Mass Balance Equations

Model #0 Baseline
(Full model)

.
U =

.
Qabs +

.
Qcond +

.
Qrad +

.
Qsub +

.
Qtherm +

.
Qox.

M =
.

Msub +
.

Mox

Model #1 Low-fluence model
(Simplified model)

.
U =

.
Qabs +

.
Qcond.

M = 0

Model #2
Selected for the multi-parameter
inversion in this study
(Simplified model)

.
U =

.
Qabs +

.
Qcond +

.
Qsub +

.
Qtherm.

M =
.

Msub +
.

Mox

4. Results and Discussion
4.1. Impact of Flame Temperature Rise on Heat Transfer Sub-Models

In LII technology, rapid pulsed laser heating creates a substantial temperature disparity
between the hot particle surface and the relatively cold ambient gas molecules. This initi-
ates various cooling processes for high-temperature particles, including heat conduction,
thermionic emission, radiation, sublimation, and oxidative heating. The simplified model
selected for the proposed multi-parameter inversion strategy relies on retaining pertinent
heat transfer sub-models while excluding trivial ones. This approach ensures modeling
accuracy, avoids meaningless calculations, and strikes a balance between computational
accuracy and efficiency. Additionally, the chosen simplified model must generalize well to
various laser fluences and flame temperatures.

To assess the response properties of different heat transfer sub-models for high-
temperature soot aggregates to flame temperature rise, we examined the particle heating
rate due to oxidation, the particle cooling rates from heat conduction, thermionic emission,
radiation, sublimation, and the particle diameter loss rate from sublimation and oxidation.
This analysis covered ambient temperatures ranging from 300 K (room temperature) to
2500 K (high flame temperature), as illustrated in Figures 3–5. Considering radiation,
thermionic emission, sublimation, and oxidation are essentially independent of ambient
temperature, Figure 3d illustrates the performance of different heat transfer processes at
various particle temperatures under typical flame conditions (Tg = 1700 K). It is important
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to note that when particle temperatures exceed 5000 K, soot rapidly evaporates, which is
physically unrealistic. Therefore, the temperatures of studied soot in Figures 3–5 do not
surpass 5000 K. To preserve the soot structure and prevent laser-induced damage, this
study recommends selecting a laser fluence not exceeding 0.5 J/cm2.
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Figure 3. The cooling rates of a typical soot aggregate, with particle temperatures ranging from
ambient to 5000 K, due to (a) heat conduction, (b) radiation, and (c) thermionic emission, are
investigated as the ambient temperature varies from 300 K to 2500 K. (d) Comparison of different
heat transfer processes for a typical soot aggregate at various particle temperatures under typical
flame conditions (Tg = 1700 K). The typical soot aggregate studied here has dp = 20 nm and Np = 30.
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Figure 5. (a) The heating rate and (b) particle diameter loss rate of a typical soot aggregate, with
particle temperatures ranging from ambient to 5000 K due to oxidation, are investigated as the
ambient temperature varies from 300 K to 2500 K. The typical soot aggregate studied here has
dp = 20 nm and Np = 30.

Figure 3a reveals that the conductive cooling rate exhibits a nearly linear increase with
the rising particle temperature. Consequently, heat conduction processes consistently drive
particle cooling throughout the heating and cooling phases. Moreover, for low laser fluence
cases, conduction dominates the soot heat transfer model, as the particle temperature remains
below 3500 K, and high-temperature processes are relatively weak (see Figure 3d). Figure 3b
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illustrates that radiation, although a high-temperature process, has a peak cooling rate below
−3 K/ns, making it ignorable. Examining Figure 3c, it becomes evident that thermionic
emission is a high-temperature process independent of ambient temperature, contributing
negligibly to particle cooling when the particle temperature is under 3500 K (see Figure 3d).
Nevertheless, as the particle temperature increases, the thermionic emission cooling rate
exhibits exponential growth, surpassing 100 K/ns. The duration of the high-temperature
phase, where the particle temperature exceeds 3500 K (see Figure 3d), becomes crucial in
deciding whether to include the thermionic emission term in the simplified model.

It is essential to note the exponential response of sublimation to the rise in particle
temperature, as shown in Figure 4. For particles with temperatures between 4000 K and
5000 K, the soot aggregate cooling rates due to sublimation range from −102 K/ns to
−104 K/ns, accompanied by particle size loss ranging from −0.1 nm/ns to −10 nm/ns.
Thus, when particles undergo the same high-temperature phase, the change in particle
energy due to sublimation becomes more crucial than thermionic emission, and the alter-
ations in particle mass and diameter due to sublimation cannot be overlooked. For the
proposed multi-parameter inversion strategy, both sublimation and thermionic emission
play pivotal roles in modeling in-flame soot TiRe-LII. Sublimation’s role must be considered,
while thermionic emission relies on the chosen laser fluence. Thermionic emission-induced
particle cooling, with higher laser fluences, may briefly surpass the sublimation process,
but accuracy in modeling both becomes problematic in extreme high-temperature cases.
Consequently, the sublimation term consistently proves stronger than thermionic emission
within the range of laser fluences considered in this study.

Similarly, the oxidation of high-temperature particles induces changes in both energy
and mass within the soot. However, as illustrated in Figure 5, the oxidative heating rate
of high-temperature soot does not exceed 1.5 K/ns. Furthermore, the particle size loss
due to oxidation is less pronounced than anticipated, remaining below 0.001 nm/ns. In
instances of extremely high temperatures induced by elevated laser fluences, the heat and
mass transfer model for the oxidation term encounters significant errors. Consequently, in
the context of this study, where model accuracy takes precedence, disregarding the heating
of soot due to oxidation and the associated mass consumption is deemed acceptable.
Therefore, the impact of the oxidation process on the modeling of in-flame soot TiRe-LII
can be considered negligible. Investigation of the response characteristics of different
heat transfer mechanisms as particle temperature rises under a wide range of ambient
temperature conditions from 300 K to 2500 K has been conducted above. It is noteworthy
that similar studies have been extensively discussed in prior research [10,34], with trends
consistent with those presented in this paper being observed.

4.2. Simplified LII Model for Multi-Parameter Inversion

In light of the insights gained from the analysis in Section 4.1, where distinct responses
of various heat transfer sub-models to ambient temperature variations were observed,
it becomes evident that choosing a suitable simplified LII model for multi-parameter
inversion necessitates a quantitative evaluation of model errors. As outlined in Table 1, the
full model (referred to as Model #0), encompassing all conceivable heat transfer sub-models,
serves as the baseline for assessing model accuracy. This model incorporates internal energy,
laser energy absorption, heat conduction, radiation, sublimation, thermionic emission, and
oxidation terms in the energy balance equation, alongside sublimation and oxidation terms
in the mass balance equation.

In the initial assessment, the applicability of a widely used low-laser fluence model
(designated as Model #1) is examined. Model #1 retains only the internal energy, laser
energy absorption, and heat transfer terms in its energy balance model, omitting all mass
losses. Employing a laser fluence of 0.12 J/cm2, the performance of the low-laser fluence
model (Model #1) is compared with the full model (Model #0, baseline) in reproducing
soot temperature and TiRe-LII signal profiles under three typical ambient temperature
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conditions: 300 K (room temperature), 1100 K (low flame temperature), and 1700 K (high
flame temperature).

Under room temperature conditions, the particle temperature and TiRe-LII signal
curves reproduced by Model #1 align perfectly with those of the baseline model, indicating
negligible model error at this point (refer to Figure 6a). However, in the low-temperature
region of the flame, the particle temperature profile generated by Model #1 diverges from
the baseline model after the peak temperature, maintaining an elevated value of approxi-
mately 300 K. This results in an error exceeding 50% in the TiRe-LII signal reproduced by
the spectroscopy model (see Figure 6b). The modeling error of Model #1, relative to the
baseline model, becomes more pronounced with an increase in soot ambient temperature
to high flame temperatures. In comparison with the baseline model, the peak moment
of the particle temperature profile is significantly delayed, and the cooling trend after
the peak temperature differs entirely. Model #1 appears to neglect certain crucial cooling
processes, leading to an overall higher particle temperature of about 800 K in the cooling
phase compared to the baseline model. At this point, the error in the TiRe-LII signal curve
of Model #1 exceeds 100%, with curve characteristics inconsistent with the baseline model
(see Figure 6c). It is noteworthy that these TiRe-LII models have been extensively discussed
and compared in detail in References [10,34]. Their evaluations yield results consistent
with those presented in this paper, providing additional support for the subsequent model
selection in our study.
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Figure 6. Comparison of Model #0 (full model, baseline) and Model #1 (low-fluence model) in
reproducing particle temperature and TiRe-LII signal profiles when ambient temperatures are
(a) 300 K, (b) 1100 K, and (c) 1700 K, respectively. The curves indicated by the leftward black
arrow in the figure corresponds to the left y-axis, while the curves indicated by the rightward black
arrow corresponds to the right y-axis.

Given the inadequacy of the low-fluence model under flame temperature conditions,
a particular simplified model (referred to as Model #2) based on Model #1 is chosen for
the in-flame soot multi-parameter inversion strategy in this study. In comparison to the
full model (Model #0), Model #2 essentially neglects weak heat transfer mechanisms,
including oxidation and annealing. Model #2 retains the sublimation and thermionic
emission terms in the energy balance equation, and the mass balance equation includes the
sublimation term, as indicated in Table 1. The temperature gradient in the region adjacent
to the peak temperature is substantial, and a weak model bias can cause the reproduced
particle temperature profile to deviate at the peak temperature and introduce a time delay.
Therefore, the moment when the particle reaches the peak temperature, tm serves as an
intuitive indicator for model error assessment.
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Comparing the deviations in tm for Model #2 and Model #1 relative to the baseline model
under different laser energies and ambient temperatures (Figure 7), it is evident that, even
with a lower laser fluence, Model #1 is only suitable for limited conditions around room
temperature. Once the ambient temperature is increased or the laser fluence is elevated, the
peak particle profile reproduced by Model #1 experiences a significant time delay. In contrast,
Model #2, accounting for sublimation and hot electron emission contributions, demonstrates
excellent generalization. Figure 7b illustrates that the error of Model #2 relative to the baseline
model is negligible across a wide temperature range, from room temperature to high flame
temperature, as long as the laser fluence exceeds 0.1 J/cm2. Consequently, all models used in
the subsequent studies in this research adhere to Model #2.
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4.3. Impact of Flame Temperature Bias on LII-Based Particle Sizing

In conventional LII-based particle sizing, only two parameters of the particle size
distribution, namely the mean µd and the standard deviation σd of the log-normal distribu-
tion, are treated as unknown variables for inversion. The flame temperature is typically
a predetermined parameter in the LII model for this binary inverse problem. It is worth
noting that in recent years, an increasing number of studies have treated flame temperature
as a stochastic variable with an expectation value and uncertainty [23]. In this analysis,
the flame temperature is assumed to have varying degrees of deviation to examine the
perturbation of flame temperature bias on LII-based particle sizing.

The normalized noisy TiRe-LII signal bmea used for inverting µd and σd is mimicked
by the full model along with the noise model (refer to Section 3.2). The temporal profile of
the selected pulsed laser approximates a Gaussian distribution g(t):

g(t) =
1√

2πσLaser
exp

[
− (t − µLaser)

2

2σ2
Laser

]
(22)

where µLaser = 22.5 ns and σLaser = 3.3 ns are the mean and standard deviation of the
g(t), respectively.
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q(t) is the temporal profile of the normalized laser energy:

q(t) = g(t)
/∫

g
(
t′
)
dt′ (23)

Based on these settings, the laser energy absorption of soot aggregates is determined
by the laser fluence F by [31]:

.
Qabs(t) = Cabs, λ

(
dp, mλ

)
F · q(t) (24)

Substituting the above-pulsed laser settings into the full model produces the smooth
and noise-free TiRe-LII, btar. Subsequently, a noisy TiRe-LII bmea, similar to the real
measured signal, is obtained from btar through the noise model. Figure 8 illustrates an
example of a set of two-color noisy spectral TiRe-LII signals (signals prior to normalization,
thus denoted as Jλ(t)). Because the noise model mimics the irregular perturbations of real
measurement noise through random numbers, each set of bmea generated through the noise
model is different.
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Figure 8. Example of a set of two-color noisy spectral TiRe-LII signals generated by the coupling of
the full model and the general noise model for a binary inversion problem in which two particle size
distribution parameters are inverted simultaneously.

For a pulsed laser with fluence F = 0.12 J/cm2 and wavelength of 532 nm, and the true
value of flame temperature Tg of 1700 K, 100 sets of different bmea are generated for the
binary inverse problem of the mean (µd) and standard deviation (σd) of the log-normal
distribution representing soot primary particle sizes. It is important to note that in this
binary inverse problem, the true value for µd is 20 nm, and the true value for σd is 1.2.
Thirteen cases with different Tg biases are considered, ranging from prior values of Tg
of 1500 K to 1900 K, and the corresponding percentages of Tg-Bias range from −11.8% to
+11.8%, as shown in Table 2.

Table 2. Flame temperature bias setting for studying the binary inverse problem of µd and σd.

Prior Value of Tg 1700 K 1725 K/
1675 K

1750 K/
1650 K

1775 K/
1625 K

1800 K/
1600 K

1825 K/
1575 K

1900 K/
1500 K

Bias of Tg 0 K ±25 K ±50 K ±75 K ±100 K ±125 K ±200 K
Percentage of

Tg-Bias 0% ±1.5% +2.9% ±4.4% ±5.9% +7.4% +11.8%
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Figure 9a,b summarize the results of 100 inversions of µd and σd for thirteen cases at
different Tg biases, respectively. When underestimating the flame temperature, as the Tg
bias increases from −25 K to −125 K, the distribution of resulting µd and σd essentially
widens. This suggests a decrease in the credibility of the solution, posing a challenge in
obtaining stable inversion results. However, as the Tg bias further increases to −200 K,
the confidence for the 100 inversions of µd and σd narrows unexpectedly. It is crucial to
note that, in this case, the resulting µd and σd from the 100 inversions are higher and lower
than the target value, respectively, which contrasts with the trend observed between Tg
biases of −25 K and −125 K. This anomaly arises from σd in the binary inverse problem.
As illustrated in Figure 9b, when the Tg bias is −200 K, the 100 inversions for σd are all
trapped at σd = 1, the boundary of the solution space. The correlation matrix analysis
of Bauer et al. [23] shows that there is a negative correlation between µd and σd. Given
this, when the solution of σd is trapped at one below the target value, this, in turn, causes
the solution of µd to be limited to values greater than the target value. It is evident that
when Tg bias exceeds −200 K, the binary inverse problem becomes incapable of deriving a
global optimal solution for µd and σd, rendering the inversion results unreliable. Therefore,
the simulations with a Tg bias of −200 K in Figure 9a,b are potential artifacts (marked
by shaded circles). When overestimating the flame temperature, as the Tg bias increases
from +25 K to +100 K, the distribution width of resulting µd and σd remains essentially
unchanged. However, as Tg bias further increases to +125 K and +200 K, the confidence
intervals for µd and σd suddenly narrow, which is attributed to σd becoming trapped at the
solution space boundary. Therefore, the simulations with a Tg bias of +125 K and +200 K in
Figure 9a,b are also potential artifacts (marked by shaded circles). To precisely understand
the impact of flame temperature bias on the inversion result errors, after excluding the three
aforementioned artifact cases, the percentage relative error of the average of 100 inversions
is illustrated both without taking absolute values and after taking absolute values. These
variations with Tg biases are presented in Figure 9c,d, respectively. The relative errors of µd
and σd in Figure 9c basically show a monotonically increasing trend with respect to the Tg
biases. The slope for µd is negative, while for σd, it is positive, aligning with the expected
negative correlation between the two. In Figure 9d, after taking the absolute values of
the relative errors of µd and σd, both µd and σd show a U-shaped function with respect
to the Tg biases. From Figure 9d, it is evident that LII-based particle sizing is sensitive to
flame temperature bias. To obtain satisfactory results for both µd and σd (with relative
errors <±10%), the tolerable bias in the prior flame temperature is approximately within
the range of ±50 K. In light of this, when the independent measurement error of flame
temperature is within ±50 K (achievable through various methods, including thermocou-
ple [44], laser absorption spectroscopy [45], and spectral soot emission-based two-color
pyrometry [46]), it is still preferable to treat LII-based particle sizing of in-flame soot as a
binary inverse problem. Due to the ill-posed nature of inverse problems, simultaneously
inverting fewer parameters aids in obtaining solutions with higher confidence and preci-
sion. However, in the absence of supplementary measurement techniques or reliable prior
knowledge of flame temperature, independently using LII for in-flame soot particle sizing
involves a multi-parameter inverse problem that includes both particle size distribution and
flame temperature.
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Figure 9. Results of 100 inversions of (a) µd and (b) σd for thirteen cases under different Tg biases;
the square-dashed line in the figure is the target value of the parameter to be inverted; the circle-solid
line is the average of the 100 inversion results; the text next to the circle labels the bias of Tg; the
shaded area of the coloring is the confidence interval of one standard deviation; and shaded circles
denote three potential artifact cases. After excluding three potential artifact cases, the percentage
relative error of the average of 100 inversions is presented for (c) without taking absolute values and
(d) after taking absolute values, showing variations with Tg biases. The reference line at 0% on the
y-axis in (c) serves as a baseline for the negative correlation between µd and σd. The reference line at
10% on the y-axis in (d) serves as a benchmark for the satisfactory error level.

4.4. Multi-Parameter Inversions at Two Typical Flame Temperatures

After evaluating the distinct responses of various heat transfer mechanisms to the
temperature increase of ambient gases and laser-heated particles (Section 4.1), we selected
a specific simplified LII model (Section 4.2). This model incorporates sublimation and
thermionic emission in addition to the low-fluence model. In scenarios where supplemen-
tary temperature measurement methods are unavailable and reliable prior information
on flame temperature is lacking, there is a need to enhance the independent use of LII
technology (Section 4.3). Therefore, based on this simplified LII model, this study proposes
a multi-parameter inversion strategy using only the TiRe-LII signals. The strategy involves
the simultaneous inversion of the equivalent thermal accommodation coefficient (αeff) and
the flame temperature (Tg, equal to the initial temperature of the particles prior to laser
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heating, Tp, 0), along with the two-particle size distribution parameters, µd and σd, which
is essentially a four-variable inverse problem based on normalized noisy TiR-LII signals.
Three laser fluences, F = 0.09 J/cm2, F = 0.12 J/cm2, and F = 0.15 J/cm2 are used to generate
100 sets of different bmea for studying the multi-parameter inversion strategy. On this basis,
the performance of the multi-parameter inversion strategy was first evaluated for a typical
flame temperature of 1700 K. The relative errors per inversion for 100 multi-parameter joint
inversions are summarized as histograms in Figure 10.
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Figure 10. Histograms of the relative error per inversion for 100 multi-parameter joint inversions
of (a) µd, (b) σd, (c) αeff, and (d) Tp, 0 (=Tg) using the laser fluence of 0.09 J/cm2, 0.12 J/cm2, and
0.15 J/cm2, respectively, when the studied soot aggregates were bathed in a flame temperature of
1700 K. This figure is based on Figure A1, excluding the unreasonable four-parameter inversion
results at the σd = 1 peak.

The relative errors of each inversion of the four target parameters under different laser
fluences are approximated to show a single-peaked normal distribution, indicating that the
results of 100 inversions tend to converge to the same solution. In terms of the distribution
width, it not only indicates inversion stability but also reflects the extent to which noise
is amplified into the solution and the credibility of the obtained results. The distribution
of the 100 inversion results for all four parameters becomes wider and wider with the
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increase of the laser energy under the flame temperature of 1700 K, indicating that the
inversion stability deteriorates. This phenomenon could be explained as follows: Among
the four inversion parameters, αeff plays a pivotal role in governing the heat conduction
mechanism. A stronger heat conduction mechanism implies more robust constraints on αeff
during inversion, yielding more accurate results. Additionally, according to Bauer et al.’s
correlation matrix analysis [23], there is a significant correlation (0.49) between µd and
αeff. At a flame temperature of 1700 K, employing a laser fluence of 0.09 J/cm2 achieves a
balance between the sublimation and heat conduction mechanisms during particle cooling.
This balance ensures precise inversion results for αeff, and the mathematical constraints
imposed by the sublimation mechanism on µd enhance the accuracy of its inversion. In turn,
this enhances the inversion accuracy of αeff. The accurate inversion of µd, in turn, leads to
a corresponding accuracy in retrieving σd. Considering the strong correlation (correlation
coefficient of 0.62) between σd and Tg, this interrelation significantly influences the Tg
inversion process, ensuring simultaneous precision in Tg inversion. However, with an
increase in laser fluence, heat conduction experiences approximately linear growth, while
sublimation undergoes exponential increase. This disruption in balance alters the above
inversion constraint relationship, causing a relative decrease in the contribution of the heat
conduction mechanism to particle cooling. Consequently, the precision of αeff inversion
diminishes, and the uncertainty of µd inversion increases. The diminished precision in both
inversions is transmitted through their correlation, resulting in an overall amplification
of the inversion error and uncertainty for all four parameters (see Table 3). Therefore, a
suitable laser fluence needs to be selected to ensure that the multi-parameter inversion
strategy can give a stable and accurate inversion of the particle size distribution and flame
temperature. At this point, for the high flame temperature case of 1700 K, 0.09 J/cm2 is the
best choice. In this case, the average of 100 inversions is close to the target values of the
four parameters, and the average relative errors of 100 inversions for the four parameters
are less than 10%, which has excellent inversion accuracy.

Table 3. Four-parameter inversion results were obtained using three laser fluences when the flame
temperatures were 1700 K and 1100 K, respectively. The results presented in this table are based on
Table A1, excluding the unreasonable four-parameter inversion results at the σd = 1 peak.

Scenario F = 0.09 J/cm2 F = 0.12 J/cm2 F = 0.15 J/cm2

Tg = 1700 K (Corresponding to Figure 10)
µd/nm 18.88 ± 0.74 18.40 ± 1.55 17.87 ± 2.55
σd 1.25 ± 0.03 1.23 ± 0.15 1.28 ± 0.12
αeff 0.24 ± 0.01 0.23 ± 0.02 0.23 ± 0.03
Tg/K 1625 ± 42 1613 ± 84 1605 ± 128
Tg = 1100 K (Corresponding to Figure 11)
µd/nm 24.31 ± 4.03 19.09 ± 0.63 19.17 ± 1.51
σd 1.28 ± 0.16 1.23 ± 0.03 1.23 ± 0.07
αeff 0.32 ± 0.05 0.22 ± 0.02 0.24 ± 0.04
Tg/K 1040 ± 58 937 ± 98 975 ± 185

Under the laser fluence of 0.09 J/cm2, the multi-parameter inversion strategy em-
ployed in this study yields an average flame temperature error of 75 K, with an average
uncertainty of 42 K (see Table 3). In terms of accuracy, there is a certain gap compared to
the commonly used temperature measurement techniques (such as thermocouple, laser
absorption spectroscopy, and two-color pyrometry) with errors ranging from 50 to 60 K [44],
while uncertainty levels are comparable. For scenarios focused on in this study, where
flame temperature measurement tools are unavailable and reliable prior information about
the flame is lacking, reasonably accurate and uncertain flame temperature information can
be obtained solely using LII signals. However, to achieve higher precision, the combination
of LII with supplementary temperature measurement techniques is undoubtedly a superior
choice, whether for flame temperature or particle size distribution. Due to the ill-posed
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nature of inverse problems, reducing the number of inversion parameters reduces the errors
and uncertainties in the inversion of particle size distribution. Furthermore, it is essential
to emphasize that the limitations of this study lie in the fact that, apart from the four target
parameters for inversion, the remaining model parameters, such as E(m), soot density, and
work function, are treated as fixed values and assumed to be perfectly known. Therefore,
the inversion results in Figure 10 are obtained under idealized conditions. According to
Bauer et al.’s findings, uncertainties in model parameters are likely to broaden the existing
distribution of inversion results, reducing confidence.
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of (a) µd, (b) σd, (c) αeff, and (d) Tp, 0 (=Tg) using the laser fluence of 0.09 J/cm2, 0.12 J/cm2, and
0.15 J/cm2, respectively, when the studied soot aggregates were bathed in a flame temperature of
1100 K. This figure is based on Figure A2, excluding the unreasonable four-parameter inversion
results at the σd = 1 peak.

To evaluate the performance of the proposed multi-parameter inversion strategy at
different flame temperatures, a relatively low flame temperature of 1100 K is chosen to
carry out the same inversion accuracy and stability evaluation as in Figure 10, and the
corresponding results are summarized in Figure 11. Although the overall distribution of
100 inversions still approximately shows a single-peaked normal distribution, the distri-
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bution is wider, and the central axis of the distribution has significantly deviated from
the target value in some cases, which indicates that the stability and accuracy of the in-
versions have declined to different degrees. In the 100 multi-parameter inversion results
at 0.09 J/cm2 laser fluence, the average error of both particle size distribution parameters
exceeds 20%, and the average relative error of flame temperature exceeds 10%, which
does not meet the practical requirements. The 100 multi-parameter inversion results for
0.12 J/cm2 and 0.15 J/cm2 perform better, with the average errors of the four parameters
controlled within 10%, but the standard deviation of the inversion in the latter case is larger
overall. Therefore, considering the accuracy and stability of the inversion, 0.12 J/cm2 is the
best choice for the multi-parameter inversion strategy at 1100 K flame temperature. The
overall accuracy and reliability of the multi-parameter inversion strategy decreases when
compared to the flame temperature of 1700 K (see Table 3), and therefore, the proposed
method is more suitable for higher flame temperatures, such as 1700 K.

It is noteworthy that as the flame temperature decreases from 1700 K to 1100 K, the
optimal laser fluence for the multi-parameter inversion strategy shifts from 0.09 J/cm2 to a
higher 0.12 J/cm2. The inversion accuracy and stability at 0.09 J/cm2 become the worst
among the three laser fluences. This shift is attributed to the shorter high-temperature
segment of the particle temperature and overall heat conduction dominating the primary
heat transfer model. Previous studies have revealed undesirable mathematical properties
in inversion parameters using conduction-dominated LII signals, contributing to a signifi-
cant ill-posedness in the multi-parameter inverse problem [23,47]. Consequently, careful
selection of laser fluence is crucial for multi-parameter inversion strategies at different
flame temperatures, with the optimal laser fluence correlating with the flame temperature.
Another point worth mentioning is that similar to Figure 9, the results of the four-parameter
inversions in Figures 10 and 11 are also affected by artifacts at σd = 1. Figure A1, Figure A2,
and Table A1 represent the situations in which the results at the σd = 1 peak were not
excluded from Figure 10, Figure 11, and Table 3, respectively. It is evident that the distri-
butions in Figures A1b and A2b are not strictly unimodal, exhibiting a secondary peak
at σd = 1, especially under the high laser fluence of 0.15 J/cm2. Due to this influence, the
distributions of the 100 inversions for the four parameters become broader, as intuitively
reflected in Table A1, where the standard deviations of the inversion results are higher
than those in Table 3. This leads to an increase in the uncertainty of the inversion results.
Additionally, influenced by the negative correlation between µd and σd (with a correlation
coefficient of approximately −1), Figures A1a and A2a both exhibit a peak in µd relative
error at +20%, as the σd = 1 peak is located at a relative error of −20%. Considering that
the inversion results at σd = 1 are artifacts caused by local optimal points, excluding these
results is reasonable. Through this processing step, there has been a moderate improvement
in both the confidence and accuracy of the inversion results.

Overall, with the careful selection of laser fluence, the multi-parameter inversion strat-
egy presented in this study demonstrates the capability to simultaneously extract particle
size distribution parameters, flame temperature, and thermal accommodation coefficient
from TiRe-LII signals. While accurate inversion results for particle size distribution param-
eters can be achieved, the flame temperature results exhibit relatively high uncertainties,
ranging from 100 K to 150 K.

5. Conclusions

Time-resolved laser-induced incandescence (TiRe-LII) emerges as a powerful non-
contact diagnostic technology for particle sizing of in-flame soot aggregates. However, it
typically requires independent methods for pre-measuring flame temperature. In scenarios
where there are no available supplementary measurement methods or reliable prior knowl-
edge of flame temperature, LII-based particle sizing cannot be conducted for soot in flames.
To address such situations, this study proposes a multi-parameter inversion strategy solely
utilizing TiRe-LII signals. This strategy simultaneously inverts four parameters: the mean
(µd) and standard deviation (σd) of soot primary particle size distribution, flame tempera-
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ture Tg, and equivalent thermal accommodation coefficient αeff. The main conclusions are
as follows:

(1) The numerical investigation explores the sensitivity of LII-based bivariate inversion
of µd and σd to flame temperature bias. Even slight flame temperature bias (−100 K)
led to inversion errors exceeding 20%. Conventional bivariate inversion of µd and σd
is recommended when combining LII with other measurement methods featuring a Tg
uncertainty of ±50 K. However, it becomes challenging in the absence of supplementary
measurement methods or reliable prior knowledge of flame temperature.

(2) By employing a reduced laser fluence of 0.09 J/cm2, the multi-parameter inversion
strategy proposed in this study yields precise inversion results for the two-particle size
distribution parameters and offers flame temperature estimates with uncertainties ranging
from 100 K to 150 K at a flame temperature of 1700 K. However, at a flame temperature
of 1100 K, the overall precision and confidence of the four-parameter inversion decrease,
suggesting that the strategy is more apt for higher flame temperatures.

In conclusion, with careful selection of laser fluence, the multi-parameter inversion
strategy proposed in this study enables the simultaneous inversion of µd, σd, Tg, and αeff
solely from TiRe-LII signals without relying on independent temperature measurement or
prior knowledge of flame temperature. Although the precision of flame temperature obtained
through this approach (approximately 100 K) shows some disparity compared to specialized
flame temperature measurement techniques (50 K~60 K), it nonetheless makes it feasible to
independently use LII technology for particle sizing in high-temperature environments.

For future work, incorporating the boundary sphere-based Fuchs heat conduction
model and the annealing model proposed by Michelson [31] into the LII model can in-
crease the disparity between the full and simplified models, aiding in the comprehensive
assessment of the multi-parameter inversion strategy. Furthermore, employing Bayesian
estimation and treating the remaining model parameters, such as laser fluence, E(m), soot
density, and work function, as variables with expectation and uncertainties is crucial for
evaluating the impact of their prior information uncertainties on the performance of the
multi-parameter inversion strategy.

Author Contributions: Conceptualization, J.Z. (Junyou Zhang) and J.Z. (Juqi Zhang); methodology,
J.Z. (Junyou Zhang); software, J.Z. (Junyou Zhang); validation, J.Z. (Junyou Zhang), J.Z. (Juqi Zhang)
and X.H.; formal analysis, J.Z. (Junyou Zhang); investigation, J.Z. (Junyou Zhang); resources,
J.Z. (Junyou Zhang); data curation, X.H.; writing—original draft preparation, J.Z. (Junyou Zhang);
writing—review and editing, J.Z. (Junyou Zhang); visualization, J.Z. (Junyou Zhang); supervision,
J.Z. (Junyou Zhang); project administration, J.Z. (Junyou Zhang); funding acquisition,
J.Z. (Junyou Zhang). All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Central Universities
(Grant No. 06121098).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Appendix A.1 Simulation of Normalized TiRe-LII Signal Considering Both the Size Polydispersity
of Soot Primary Particles and Aggregates

For optically thin soot aggregate aerosols with polydisperse primary particles diameter
dp, the spectral TiRe-LII signals emitted by laser-heated soot at an instant t, denoted as Jλ(t),
is calculated as follows:

Jλ(t) = Λ
∫

p
(
dp

)
Cabs, λ

[
dp(t)

]
Ib, λ

[
Tp(t)

]
d
(
dp

)
(A1)
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where Λ is the intensity scaling factor, accounting for the effect of soot volume fraction,
geometry, and collection efficiency of detectors; p(dp) is the probability density function of
the polydisperse primary particles of soot aggregates; Cabs, λ is the absorption cross-section
of soot aggregates at wavelength λ, which depends on the dp; Ib, λ is the blackbody spectral
intensity emitted by the soot aggregates at temperature Tp.

Building upon Equation (A1) and simultaneously considering the polydispersity in
sizes Np among different aggregates, the spectral TiRe-LII signals of a group of laser-heated
soot aggregates can be expressed as:

S(λ, t) =
∫

p
(

Np
)

Np Jλ(t)d
(

Np
)

= Λ
s

p
(

Np
)

p
(
dp

)
NpCabs, λ

[
dp(t)

]
Ib, λ

[
Tp(t)

]
d
(
dp

)
d
(

Np
) (A2)

where p(Np) is the probability density function of aggregate size Np.
Then, the spectral TiRe-LII signals at any given moment t is normalized to the peak

signal, yielding:

b(t, λ) = S(λ, t)/S(λ, tm)

=
s

p(Np)p(dp)NpCabs, λ[dp(t)]Ib, λ[Tp(t)]d(dp)d(Np)s
p(Np)p(dp)NpCabs, λ[dp(tm)]Ib, λ[Tp(tm)]d(dp)d(Np)

(A3)

where tm is the time at which the spectral TiRe-LII signal Jλ(t) reaches its maximum value,
and b(t, λ) is the spectral normalized TiRe-LII signal at time t.

Appendix A.2 Simplification of Normalized TiRe-LII Signal Simulation Using the Equivalent
Thermal Accommodation Coefficient

Since the values of the shielding factor η and the thermal accommodation coefficient
αT are related to the structure and size of the aggregates, the combined parameter of η and
αT, namely the equivalent thermal accommodation coefficient αeff, may be constant within
an aggregate but variable across different aggregates. However, in this study, αeff is one of
the unknown parameters in the inverse problem, necessitating its constancy for all detected
aggregates. In light of this, the definition of αeff is generalized from an individual aggregate
to all detected aggregates, along with the introduction of an associated equivalent aggregate
size Np, eff. Consequently, the simulation of spectral TiRe-LII signals (Equation (A2)) can be
transformed as follows:

S(λ, t) = Λ · Np, eff

∫
p
(
dp

)
Cabs, λ

[
dp(t)

]
Ib, λ

[
Tp(t)

]
d
(
dp

)
(A4)

Based on Equation A4, the simulation of normalized TiRe-LII signals (Equation (A3))
can be simplified as follows:

b(t, λ) = S(λ, t)/S(λ, tm)

=
Λ·Np, eff

∫
p(dp)Cabs, λ[dp(t)]Ib, λ[Tp(t)]d(dp)

Λ·Np, eff
∫

p(dp)Cabs, λ[dp(tm)]Ib, λ[Tp(tm)]d(dp)

=
∫

p(dp)Cabs, λ[dp(t)]Ib, λ[Tp(t)]d(dp)∫
p(dp)Cabs, λ[dp(tm)]Ib, λ[Tp(tm)]d(dp)

(A5)

Subsequently, by substituting the parametric expressions for the product of spectral
absorption cross-section Casb, λ and blackbody spectral intensity Ib, λ as follows:

Cabs, λ

[
dp(t)

]
· Ib, λ

[
Tp(t), dp(t)

]
=

π2d3
p(t)E(mλ)

λ · 8πhc2

λ5·
{

exp
[

hc
λkBTp(t)

]
−1

}
=

8π3hc2d3
p(t)E(mλ)

λ6·
{

exp
[

hc
λkBTp(t)

]
−1

} (A6)
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Equation (A5) can be further simplified as follows:

b(t, λ) =
∫

p(dp)Cabs, λ(dp)Ib, λ[Tp(t), dp(t)]d(dp)∫
p(dp)Cabs, λ(dp)Ib, λ[Tp(tm), dp(tm)]d(dp)

=
∫ d3

p(t)p(dp)

exp[hc/λkBTp(t)]−1
ddp

/∫ d3
p(tm)p(dp)

exp[hc/λkBTp(tm)]−1
ddp

(A7)

Appendix B

Figures A1 and A2, along with Table A1, are plotted using the raw data from the
100 four-parameter inversions, where the σd = 1 peak has not been excluded.
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Table A1. Four-parameter inversion results were obtained using three laser fluences when the flame
temperatures were 1700 K and 1100 K, respectively.

Scenario F = 0.09 J/cm2 F = 0.12 J/cm2 F = 0.15 J/cm2

Tg = 1700 K (Corresponding to Figure A1)
µd/nm 18.55 ± 0.95 18.95 ± 3.11 18.87 ± 3.53
σd 1.26 ± 0.04 1.23 ± 0.15 1.24 ± 0.16
αeff 0.23 ± 0.01 0.24 ± 0.06 0.25 ± 0.06
Tg/K 1603 ± 47 1626 ± 170 1635 ± 206
Tg = 1100 K (Corresponding to Figure A2)
µd/nm 24.69 ± 4.11 19.70 ± 2.61 20.28 ± 2.71
σd 1.31 ± 0.16 1.21 ± 0.07 1.18 ± 0.11
αeff 0.31 ± 0.06 0.25 ± 0.09 0.27 ± 0.09
Tg/K 1035 ± 75 982 ± 206 1062 ± 267
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