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Abstract: This study aims to examine the play between various archwires and bracket systems,
exploring potential variations in angle values for specific torque and torque values for a given angle
along different bracket systems. Therefore, seven brackets systems were evaluated in conjunction
with different stainless steel archwires of varying dimensions (0.016′′ × 0.022′′, 0.018′′ × 0.025′′, and
0.019′′ × 0.025′′). Biomechanical behavior during torque development and transmission was assessed
using a six-component force/torque sensor. Torque angles (5–45◦) were specified with subsequent
torque measurement, and the sequence was reversed by setting the torque (5–30 Nmm) and measuring
the angle. A reference measurement with 0 Nmm torque served to evaluate bracket slot play. Bracket
play (0 Nmm) during palatal load ranged between 20.06◦ and 32.50◦ for 0.016′′ × 0.022′′ wire, 12.83◦

and 21.11◦ for 0.018′′ × 0.025′′ wire, and 8.39◦ and 18.73◦ for 0.019′′ × 0.025′′ wire. The BioQuick®

bracket exhibited the highest play, while Wave SL® and Damon® Q brackets demonstrated the
lowest play (p < 0.001). Significant differences (p < 0.001) between the brackets were observed in
the torque angles required to achieve torques of 5–20 Nmm. In summary, each bracket system has a
different torque transmission, which is of great clinical importance in order to achieve correct torque
transmission and avoid complications such as root resorption.

Keywords: biomechanics; biomechanical phenomena; orthodontics; bracket slot; play; transmission;
moment; torque; force

1. Introduction

The straight-wire technique is the most commonly used in orthodontic therapy today.
This method was developed in 1972 by Andrews [1], whereby all the necessary information
for the alignment of a tooth in three dimensions was implemented in the bracket (bracket
prescription). Various modifications to the straight-wire technique, including those pro-
posed by Burstone [2] and Rickets [3], Roth [4], and Bennett and Mc Laughlin [5], aimed to
enhance the original straight-wire system, by integrating torque, angulation, and offset in
the brackets through different variations. Despite efforts, studies have demonstrated that
torqute transmission does not sufficiently alter the axial position of teeth [6]. This limitation
is mainly attributed to the play between the bracket slot and the archwire in use [7]. This
play occurs due to the difference between the archwire and bracket dimension [8], leading
to a deviation in torque transmission as the wire must rotate by a certain amount to get in
contact with the wall of the slot for force transmission to occur. Thus, an additional torque
must be applied for the correct axis position [1,9].
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The designation of a “bent torque” refers to the twisting of the front part of the
archwire in relation to the untwisted side segments of the wire. For example, with a 25◦

bent torque, the front part of the archwire is twisted by 25◦ in comparison to the rest of
the archwire. Due to the pre-bent wire coupled with the prescription integrated into the
bracket, a force reaction occurs between the archwire and bracket, because the archwire
is inserted into the brackets against its pre-bend. This force results in a torque, which is
decisive for the orthodontic movement of the teeth. In clinical practice, the torque bent
into the archwires often lies between 20◦ and 30◦, resulting in torques between 5 Nmm and
20 Nmm on the teeth [2]. The mean torsional play to achieve 20 Nmm was reported to be
18.5◦ for 0.016′′ × 0.022′′ wire [10] and 26.8◦ for 0.016′′ × 0.016′′ wire [11]. Another study
showed a play of 4.5◦ for 0.020′′ × 0.025′′ wire and 11.7◦ for 0.019′′ × 0.025′′ wire, whereas
a smaller slot leads to less play [12]. Furthermore, it was observed that the real play of the
wire is 0.98–17.38◦ greater than the ideal [13].

However, torque transmission also varies depending on the type of bracket used. A
distinction can be drawn between conventional twin brackets and self-ligating brackets [14].
In the case of conventional twin brackets, the connection between the wire and bracket is
created by attached ligatures. Currently, two types of self-ligated systems are available
on the market: active self-ligating and passive self-ligating systems [7]. Active systems
have a clip-type closure mechanism that actively applies pressure to secure the archwire
within the slot. In contrast, passive systems utilize a closing mechanism that essentially
transforms the bracket into a tube. To date, there are inconsistent data on the influence of
bracket type on torque transmission [7,15,16].

What follows is that different archwires can have different effects on the resulting
torque. Beyond that, the various archwires available on the market have different char-
acteristics in terms of slot geometry and material, which result in varying characteristics.
These effects can influence the amount of transmitted torque and are therefore critical to
the success of the treatment [12,13,17,18].

Another crucial point is the manufacturing tolerances in the production of orthodontic
appliances, which leads to deviations from the standard geometry. Although characteristic
features of the brackets and archwires are specified in inches, the tolerances lead to slightly
different dimensions, for example, in the slot width or archwire geometry. Several studies
have therefore shown that the geometries of brackets and wires have deviations contrary
to the manufacturer’s specifications [10,11,13,19]. A study showed that an increase and
decrease of the nominal dimensions can occur depending on the manufacturer and reported
a range of −6.47% to +5.10% [13].

Moreover, when torque is applied to the bracket, plastic deformation of the bracket
slot walls occurs. This involves beveling the edges and leads to an increase in the slot
width in the upper slot area, which in turn leads to an increase in the play between the
bracket and wire [11,19]. It has been reported that this has a significant impact on play
and can occur in the same way with rectangular and square arches with a certain material
dependency [13].

This study provides a comprehensive analysis of the significant differences in angle
and torque values for all bracket–wire combinations investigated. The aim of this study is
to investigate whether different brackets exhibit significant differences in play between the
archwire and bracket slot. Furthermore, this study aims to determine if different brackets
exhibit significant variations in angle values for a specific torque and, finally, whether there
are significant differences in torque values for a certain angle among different brackets.
Based on this study, clinicians can consider the unique characteristics of bracket–wire
combinations to better assess torque transmission during treatment.

2. Materials and Methods

Seven different bracket systems and three archwires with different dimensions were
tested and evaluated in terms of their biomechanical behavior during the development
and transmission of torque (Table 1). The following bracket systems were considered
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within this study: two active self-ligating brackets made of stainless steel (SS) (Damon® Q,
Ormco, Orange, Ca; BioQuick®, Forestadent, Pforzheim, Germany), two active self-ligating
brackets made of nickel–titanium (NiTi) (Wave SL®, Dentalline, Birkenfeld, Germany; 3M™
SmartClip™, 3M, Neuss, Germany), and two passive self-ligating brackets (In-Ovation® C
and In-Ovation® R, Dentsply Sirona, York, PA, USA), as well as a SS twin bracket (Mini
Sprint®, Forestadent, Pforzheim, Germany).

Table 1. Brackets used throughout this study, showing trade name, manufacturer, material, and
system of the brackets. All brackets were used in combination with 0.016′′ × 0.022′′, 0.018′′ × 0.025′′,
and 0.019′′ × 0.025′′ wire.

Trade Name Manufacturer Material System Bracket Slot Width

Mini Sprint® Forestadent SS Twin bracket 0.022′′

BioQuick® Forestadent SS SL passive 0.022′′

Wave SL® Dentalline NiTi SL passive 0.022′′

3M™ SmartClip™ 3M NiTi SL passive 0.022′′

Damon® Q Ormco SS SL passive 0.022′′

In-Ovation® C Dentsply Sirona Ceramic SL active 0.022′′

In-Ovation® R Dentsply Sirona SS SL active 0.022′′

(SS) = stainless steel; (NiTi) = nickel–titanium; (SL) = self-ligating.

The bracket systems were investigated in combination with three stainless steel arch-
wires with different dimensions: 0.016′′ × 0.022′′, 0.018′′ × 0.025′′, and 0.019′′ × 0.025′′

(Forestadent, Pforzheim, Germany).
The experimental setup and implemented coordinate system are shown in Figure 1.

The coordinate system for the reference of the measurement data was defined so that the
X-axis points along the bracket slot towards the left, the Z-axis points upwards as normal
in the bracket slot, and the Y-axis is perpendicular to the previous axes. The same test
setup and coordinate system was introduced in a previous publication by Wichelhaus [9].
During the experiment, the bracket was positioned on a sensor and the corresponding
wire was inserted into the bracket. Torques and associated forces were measured in all
three spatial directions using a six-component force/torque sensor (Nano17 SI-50-0.5, ATI
Industrial Automation, Apex, NC, USA) with a force resolution of 0.0125 N and a torque
resolution of 0.0625 Nmm. A stepper motor (QSH4218-41-10-035, Analog Devices Inc.,
Wilmington, MA, USA) with a corresponding motor driver was controlled via an Arduino®

Uno microcontroller. With the help of a mechanism and v-belt, the motor was used to rotate
a horizontal element, into which the archwire was inserted. By moving the mechanics, the
archwire could be horizontally adjusted to fit into the bracket slot. This made it possible
to twist the archwire in the bracket slot around the X-axis with specified angles. The final
control and collection of sensor data during the experiment was realized using LabVIEW
(National Instruments Co., Austin, TX, USA).

The experiments were conducted within a temperature chamber set at T = 36 ◦C to
replicate material behavior at body temperature. Each bracket–wire combination under-
went n = 3 repetitions on independent samples in both the buccal and palatal directions.
Each test run comprised three processes: the first involved specifying the angles with
subsequent torque measurement, the second reversed the sequence by setting the torque
and measuring the angles, and the third served as a reference measurement to evaluate
bracket slot play by setting the torque to 0 Nmm.

In this study, three different wires of varying dimensions (0.016′′ × 0.022′′,
0.018′′ × 0.025′′, and 0.019′′ × 0.025′′) were assessed. Transmitting high forces and torques
with smaller wires would inevitably lead to excessive twisting of the wire, which would
no longer be clinically valid. Thus, the angles of the smallest archwire (0.016′′ × 0.022′′)
were only measured from 0 Nmm to 15 Nmm, the angles of the 0.018′′ × 0.025′′ arch-
wire were measured from 0 Nmm to 30 Nmm, and the angles of the thickest archwire
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(0.019′′ × 0.025′′) were measured from 0 Nmm to 40 Nmm. The opposite effect was evident
for the twisted angles and the measured torque expression.
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Figure 1. Experimental setup and coordinate system definition of the torque measurement device.
The breakout focuses on the bracket with a ligated archwire on the sensor. The X-axis points along
the bracket slot towards the left, the Z-axis points upwards as normal in the bracket slot, and the
Y-axis is perpendicular to the previous axes.

Statistical analysis was performed using IBM SPSS Statistics 23 (IBM Corp., Armonk,
NY, USA). Descriptive statistics including mean and standard deviation were calculated.
A Shapiro–Wilk test was performed to check the data for normal distribution. Significant
differences in metric data were analyzed using a Kruskal–Wallis test and additionally by
the Dunn–Bonferroni post hoc test. A p-value < 0.05 was considered significant.

3. Results

The mean torque angles in degrees required to achieve various torques in Nmm using
different brackets, along with the associated degrees of play, are presented in Table 2 (palatal
load) and Table 3 (buccal load). Additionally, Figure 2 illustrates significant differences in
measured torque among the investigated brackets with their respective wires and loads.

Depending on the bracket type, the bracket play (0 Nmm) ranged from 20.06◦ to
32.50◦ for the 0.016′′ × 0.022′′ wire dimension, 12.83◦ to 21.11◦ for the 0.018′′ × 0.025′′

wire dimension, and 8.39◦ to 18.73◦ for the 0.019′′ × 0.025′′ wire dimension during palatal
loading (Table 2). During buccal loading, the bracket play (0 Nmm) ranged from 20.64◦

to 34.90◦ for the 0.016′′ × 0.022′′ wire dimension, 11.93◦ to 20.56◦ for the 0.018′′ × 0.025′′

wire dimension, and 6.63◦ to 18.54◦ for the 0.019′′ × 0.025′′ wire dimension (Table 3). The
BioQuick® bracket exhibited the highest play with all wires during palatal and buccal load
(p < 0.001), while Wave SL® and Damon® Q showed the lowest play with all wires during
palatal and buccal load (p < 0.001).

Significant differences (p < 0.001) in torque angles required to achieve different torque
were observed among all investigated brackets during palatal or buccal load (Figure 2).
When combined with a wire dimension of 0.016′′ × 0.022′′, the BioQuick® bracket exhibited
the highest required torque angles (36.72◦, 41.09◦, and 43.7◦, respectively) to achieve torques
of 5 Nmm, 10 Nmm, and 15 Nmm, while the Wave SL® bracket showed the lowest torque
angles (20.06◦, 22.97◦, 25.91◦, and 28.75◦, respectively) during buccal and palatal load. For
the wire dimensions of 0.018′′ × 0.025′′ and 0.019′′ × 0.025′′, the BioQuick® bracket also
showed the highest required torque angles (21.11–31.07◦ and 18.73–31.2◦, respectively) to
achieve torques of 5 Nmm-40 Nmm. The Damon® Q bracket exhibited the lowest required
torque angles for the wire dimensions of 0.018′′ × 0.025′′ and 0.019′′ × 0.025′′ (14.56–23.13◦

and 10.13–21.05◦, respectively) during buccal and palatal load.
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and buccal load. DQ = Damon® Q; BQ = BioQuick®; WS = Wave SL®; SC = SmartClip™; IC = In-
Ovation® C; IR = In-Ovation® R; MS = Mini Sprint®. The black line indicates non-significant differ-
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Figure 2. Differences between the brackets investigated at a given angle in degrees during a
palatal and buccal load. DQ = Damon® Q; BQ = BioQuick®; WS = Wave SL®; SC = SmartClip™;
IC = In-Ovation® C; IR = In-Ovation® R; MS = Mini Sprint®. The black line indicates non-significant
differences (p > 0.05) and the gray line indicates significant differences between the brackets.
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Table 2. Mean torque angle and standard deviation in degrees to achieve torques of 5–40 Nmm with
0.016′′ × 0.022′′, 0.018′′ × 0.025′′, and 0.019′′ × 0.025′′ wire for different brackets during palatal loading. A
p-value < 0.05 was considered significant (Kruskal–Wallis test). Post hoc analysis is pictured in Figure 2.

Wire Bracket Torque

0 Nmm 5 Nmm 10 Nmm 15 Nmm 20 Nmm 25 Nmm 30 Nmm 35 Nmm 40 Nmm

0.016′′ × 0.022′′

Mini Sprint® 28.77
(0.75)

31.65
(0.84)

34.52
(0.98)

37.31
(1.03)

BioQuick® 32.59
(4.83)

36.72
(2.6)

41.09
(1.42)

43.70
(1.31)

Wave SL® 20.06
(1.3)

22.97
(1.27)

25.91
(1.23)

28.75
(1.21)

SmartClip™ 29.74
(0.39)

32.77
(0.35)

35.93
(0.55)

38.75
(0.65)

Damon® Q 21.76
(0.41)

24.70
(0.42)

27.64
(0.45)

30.52
(0.48)

In-Ovation® C 25.33
(0.87)

27.71
(0.89)

30.08
(0.95)

32.38
(1.0)

In-Ovation® R 24.91
(0.36)

27.46
(0.48)

30.05
(0.67)

32.56
(0.77)

p-value <0.001 <0.001 <0.001 <0.001

0.018′′ × 0.025′′

Mini Sprint® 17.95
(0.98)

19.71
(1.09)

21.48
(1.2)

23.15
(1.32)

24.71
(1.41)

26.23
(1.44)

27.75
(1.51)

BioQuick® 21.11
(0.91)

22.92
(0.97)

24.83
(1.07)

26.52
(1.04)

28.20
(0.9)

29.86
(0.82)

31.07
(0.43)

Wave SL® 13.28
(1.5)

14.91
(1.41)

16.61
(1.36)

18.25
(1.39)

19.83
(1.38)

21.42
(1.34)

23.03
(1.35)

SmartClip™ 17.99
(0.46)

19.61
(0.49)

21.33
(0.54)

22.90
(0.57)

24.45
(0.56)

25.99
(0.53)

27.52
(0.50)

Damon® Q 12.83
(0.36)

14.56
(0.38)

16.35
(0.34)

18.07
(0.33)

19.74
(0.34)

21.44
(0.34)

23.13
(0.31)

In-Ovation® C 14.85
(0.44)

16.28
(0.33)

17.69
(0.30)

19.13
(0.32)

20.51
(0.28)

21.93
(0.26)

23.36
(0.27)

In-Ovation® R 14.59
(0.49)

16.19
(0.47)

17.81
(0.50)

19.36
(0.53)

20.9
(0.57)

22.41
(0.58)

23.92
(0.62)

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

0.019′′ × 0.025′′

Mini Sprint® 14.11
(1.13)

15.52
(1.19)

16.97
(1.26)

18.33
(1.34)

19.66
(1.38)

20.98
(1.27)

22.31
(1.37)

23.66
(1.33)

25.02
(1.27)

BioQuick® 18.73
(1.23)

20.45
(1.56)

22.30
(1.85)

23.89
(1.95)

25.37
(1.91)

26.87
(1.79)

28.00
(1.03)

29.65
(0.75)

31.20
(0.72)

Wave SL® 9.68
(1.12)

11.25
(1.01)

12.89
(0.93)

14.45
(0.87)

15.98
(0.82)

17.45
(0.77)

18.95
(0.71)

20.44
(0.66)

21.95
(0.6)

SmartClip™ 13.48
(0.35)

15.17
(0.4)

16.97
(0.54)

18.49
(0.67)

19.90
(0.74)

21.27
(0.77)

22.63
(0.77)

24.01
(0.75)

25.39
(0.70)

Damon® Q 8.39
(1.21)

10.13
(0.88)

12.08
(0.29)

13.61
(0.26)

15.13
(0.23)

16.63
(0.22)

18.09
(0.25)

19.58
(0.28)

21.05
(0.31)

In-Ovation® C 12.26
(0.79)

13.50
(0.80)

14.76
(0.81)

16.01
(0.81)

17.22
(0.85)

18.43
(0.84)

19.69
(0.9)

20.93
(0.92)

22.19
(0.93)

In-Ovation® R 11.37
(0.61)

12.86
(0.61)

14.38
(0.61)

15.91
(0.64)

17.35
(0.69)

18.81
(0.74)

20.29
(0.83)

21.73
(0.89)

23.18
(0.92)

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 3. Mean torque angle and standard deviation in degrees to achieve torques of 5–40 Nmm with
0.016′′ × 0.022′′, 0.018′′ × 0.025′′, and 0.019′′ × 0.025′′ wire for different brackets during buccal loading. A
p-value < 0.05 was considered significant (Kruskal–Wallis test). Post hoc analysis is pictured in Figure 2.

Wire Bracket Torque

0 Nmm 5 Nmm 10 Nmm 15 Nmm 20 Nmm 25 Nmm 30 Nmm 35 Nmm 40 Nmm

0.016′′ × 0.022′′

Mini Sprint® 28.87
(0.73)

31.64
(0.83)

34.48
(1.01)

37.08
(0.98)

BioQuick® 34.90
(3.56)

38.43
(1.99)

42.14
(1.47)

44.52
(0.78)

Wave SL® 20.64
(1.12)

23.48
(1.06)

26.32
(1.97)

29.09
(1.17)

SmartClip™ 30.30
(0.63)

33.13
(0.49)

36.06
(0.44)

38.69
(0.51)

Damon® Q 22.08
(0.64)

24.97
(0.60)

27.88
(0.62)

30.73
(0.61)

In-Ovation® C 25.24
(0.63)

27.78
(0.72)

30.30
(0.81)

32.86
(0.90)

In-Ovation® R 24.85
(0.46)

27.69
(0.55)

30.52
(0.70)

33.33
(0.79)

p-value <0.001 <0.001 <0.001 <0.001
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Table 3. Cont.

Wire Bracket Torque

0 Nmm 5 Nmm 10 Nmm 15 Nmm 20 Nmm 25 Nmm 30 Nmm 35 Nmm 40 Nmm

0.018′′ × 0.025′′

Mini Sprint® 17.91
(0.91)

19.6
(1.03)

21.35
(1.18)

22.99
(1.25)

24.55
(1.29)

26.06
(1.32)

27.57
(1.36)

BioQuick® 20.51
(1.07)

22.39
(1.11)

24.36
(1.23)

26.04
(1.20)

27.68
(1.06)

29.37
(0.86)

31.01
(0.71)

Wave SL® 11.93
(1.25)

14.14
(1.16)

16.38
(1.31)

18.31
(1.44)

20.21
(1.75)

21.98
(1.81)

23.88
(1.96)

SmartClip™ 17.92
(0.33)

19.51
(0.31)

21.14
(0.36)

22.69
(0.38)

24.20
(0.41)

25.70
(0.43)

27.19
(0.44)

Damon® Q 12.39
(0.36)

14.19
(0.31)

16.05
(0.30)

17.88
(0.34)

19.65
(0.37)

21.41
(0.39)

23.15
(0.42)

In-Ovation® C 14.48
(0.55)

16.10
(0.53)

17.73
(0.54)

19.31
(0.53)

21.02
(0.56)

22.62
(0.52)

24.25
(0.50)

In-Ovation® R 15.04
(0.54)

16.74
(0.60)

18.45
(0.67)

20.16
(0.70)

21.85
(0.72)

23.51
(0.71)

25.16
(0.69)

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

0.019′′ × 0.025′′

Mini Sprint® 14.30
(1.7)

15.71
(1.75)

17.17
(1.80)

18.6
(1.91)

19.96
(1.92)

21.30
(1.91)

22.62
(1.88)

23.92
(1.84)

25.23
(1.71)

BioQuick® 18.54
(1.16)

20.15
(1.38)

21.94
(1.54)

23.43
(1.63)

24.87
(1.59)

26.38
(1.47)

27.96
(1.26)

29.63
(1.01)

30.87
(1.15)

Wave SL® 9.05
(1.25)

10.74
(1.09)

12.55
(0.97)

14.25
(0.91)

15.95
(0.90)

17.73
(0.85)

19.54
(0.91)

21.37
(0.96)

23.23
(1.04)

SmartClip™ 14.25
(0.36)

15.76
(0.33)

17.34
(0.38)

18.78
(0.47)

20.13
(0.56)

21.50
(0.58)

22.84
(0.57)

24.18
(0.56)

25.52
(0.52)

Damon® Q 6.63
(3.73)

8.92
(2.44)

11.79
(0.56)

13.40
(0.56)

14.98
(0.58)

16.52
(0.56)

18.05
(0.57)

19.59
(0.57)

21.12
(0.58)

In-Ovation® C 11.58
(0.56)

12.96
(0.56)

14.34
(0.58)

15.73
(0.59)

17.12
(0.60)

18.50
(0.59)

19.92
(0.60)

21.33
(0.58)

22.76
(0.56)

In-Ovation® R 11.25
(0.78)

12.87
(0.78)

14.51
(0.79)

16.14
(0.81)

17.77
(0.84)

19.40
(0.84)

20.99
(0.84)

22.60
(0.82)

24.20
(0.81)

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Figure 3 provides an example of the measured torques in Nmm required to achieve
different angles (5–45◦) using a BioQuick® and Damon® Q bracket with various wire
dimensions. The assessed torque in Nmm to achieve different angles in degree using
different brackets as well as the play in degree is shown in Table 4 (palatal load) and Table 5
(buccal load). Figure 4 depicts the significant differences for the measured angles between
the brackets investigated with the different wires and different loads.
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mon® Q bracket with a 0.022″ bracket slot in combination with 0.016″ × 0.022″, 0.018″ × 0.025″, and 
0.019″ × 0.025″ wire. 

Figure 3. Example of torque measurements in Nmm. With increasing arch dimensions, exponentially high
torque values occur with a small change in the torque angle. (A) BioQuick® and (B) Damon® Q bracket
with a 0.022′′ bracket slot in combination with 0.016′′ × 0.022′′, 0.018′′ × 0.025′′, and 0.019′′ × 0.025′′ wire.
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Table 4. Mean torque and standard deviation in Nmm to achieve angles of 5–45◦ with 0.016′′ × 0.022′′,
0.018′′ × 0.025′′, and 0.019′′ × 0.025′′ wire for different brackets during palatal loading. A
p-value < 0.05 was considered significant (Kruskal–Wallis test). Post hoc analysis is pictured in
Figure 4.

Wire Bracket Angle

5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0.016′′ × 0.022′′

Mini Sprint® 0.10
(0.08)

0.12
(0.10)

0.23
(0.23)

0.33
(0.37)

0.33
(0.49)

2.47
(1.27)

10.88
(1.75)

20.27
(1.84)

30.72
(1.11)

BioQuick® 0.51
(0.19)

0.52
(0.24)

0.42
(0.25)

0.52
(0.19)

0.72
(0.14)

1.23
(1.06)

2.69
(2.11)

8.31
(2.37)

17.15
(1.90)

Wave SL® 0.17
(0.04)

0.17
(0.05)

0.17
(0.11)

1.18
(0.82)

8.42
(2.17)

17.23
(2.21)

26.19
(2.14)

35.07
(1.96)

43.63
(1.68)

SmartClip™ 0.33
(0.23)

0.36
(0.27)

0.37
(0.31)

0.37
(0.37)

0.72
(0.38)

1.79
(0.62)

8.51
(0.91)

17.32
(1.11)

27.19
(0.83)

Damon® Q
0.14

(0.08)
0.13

(0.06)
0.24

(0.10)
0.41

(0.13)
5.51

(0.72)
14.08
(0.85)

22.98
(0.86)

31.79
(0.66)

40.38
(0.37)

In-Ovation® C
0.69

(0.65)
0.69

(0.69)
0.42

(0.51)
0.60

(0.33)
0.96

(0.47)
9.91

(1.99)
20.67
(2.16)

31.20
(2.35)

41.28
(2.55)

In-Ovation® R
0.29

(0.09)
0.25

(0.11)
0.20

(0.14)
0.29

(0.15)
0.91

(0.51)
10.00
(1.24)

19.95
(1.71)

30.07
(2.12)

39.97
(2.37)

p-value <0.001 <0.001 0.17 0.26 <0.001 <0.001 <0.001 <0.001 <0.001

0.018′′ × 0.025′′

Mini Sprint® 0.18
(0.14)

0.18
(0.11)

0.22
(0.20)

6.03
(3.02)

21.10
(4.28)

37.53
(5.00)

BioQuick® 0.34
(0.34)

0.60
(0.38)

1.04
(0.78)

1.43
(0.91)

10.58
(3.15)

25.20
(2.19)

Wave SL® 0.20
(0.14)

0.30
(0.27)

5.79
(3.01)

20.59
(4.26)

36.07
(4.14)

51.52
(4.12)

SmartClip™ 0.42
(0.12)

0.46
(0.28)

0.82
(0.61)

6.16
(1.44)

21.79
(1.80)

37.93
(1.37)

Damon® Q
0.09

(0.08)
0.29

(0.24)
6.13

(0.99)
20.73
(1.93)

35.36
(0.88)

49.33
(0.47)

In-Ovation® C
0.76

(0.97)
1.28

(0.36)
1.76

(0.94)
18.15
(0.89)

35.54
(0.87)

52.36
(1.04)

In-Ovation® R
0.50

(0.23)
0.68

(0.37)
2.15

(0.72)
17.25
(1.73)

33.69
(2.09)

50.35
(2.40)

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

0.019′′ × 0.025′′

Mini Sprint® 0.10
(0.09)

0.46
(0.32)

4.10
(3.41)

21.33
(5.18)

39.70
(4.42)

BioQuick® 1.07
(0.27)

0.37
(0.22)

1.26
(0.70)

5.07
(3.23)

18.69
(5.56)

Wave SL® 0.51
(0.27)

2.31
(2.03)

16.68
(2.77)

33.49
(2.23)

49.80
(1.54)

SmartClip™ 0.19
(0.11)

0.82
(0.75)

4.67
(1.00)

20.44
(2.70)

38.50
(2.57)

Damon® Q
0.88

(1.31)
3.95

(1.64)
19.62
(0.08)

36.49
(0.95)

53.20
(1.40)

In-Ovation® C
0.91

(0.66)
1.13

(0.48)
10.93
(3.20)

31.29
(3.57)

50.73
(3.50)

In-Ovation® R
0.25

(0.29)
1.39

(0.41)
12.04
(2.15)

29.22
(2.87)

46.19
(3.32)

p-value <0.001 <0.001 <0.001 <0.001 <0.001
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Table 5. Mean torque and standard deviation in Nmm to achieve angles of 5–45◦ with 0.016′′ × 0.022′′,
0.018′′ × 0.025′′, and 0.019′′ × 0.025′′ wire for different brackets during buccal loading. A
p-value < 0.05 was considered significant (Kruskal–Wallis test). Post hoc analysis is pictured in
Figure 4.

Wire Bracket Angle

5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

0.016′′ × 0.022′′

Mini Sprint® 0.12
(0.10)

0.10
(0.10)

0.11
(0.06)

0.15
(0.09)

0.22
(0.18)

2.62
(1.08)

10.99
(1.91)

20.95
(1.61)

31.31
(1.00)

BioQuick® 0.49
(0.18)

0.37
(0.17)

0.18
(0.17)

0.30
(0.11)

0.62
(0.28)

0.51
(0.38)

3.28
(1.61)

6.90
(2.11)

14.62
(1.91)

Wave SL® 0.15
(0.02)

0.12
(0.02)

0.09
(0.05)

0.49
(0.50)

7.67
(1.84)

16.72
(2.14)

25.79
(2.44)

34.65
(2.44)

42.97
(2.29)

SmartClip™ 0.25
(0.08)

0.26
(0.10)

0.29
(0.15)

0.40
(0.25)

0.77
(0.48)

1.40
(0.94)

8.14
(0.75)

17.55
(0.91)

27.19
(0.52)

Damon® Q
0.11

(0.05)
0.22

(0.16)
0.45

(0.13)
0.67

(0.10)
5.10

(0.94)
13.75
(1.12)

22.64
(1.13)

31.77
(1.06)

40.47
(0.83)

In-Ovation® C
1.28

(0.94)
1.08

(0.69)
0.82

(0.54)
0.65

(0.57)
0.94

(0.62)
9.44

(1.51)
19.20
(1.76)

29.00
(1.83)

38.22
(2.16)

In-Ovation® R
0.21

(0.12)
0.31

(0.11)
0.48

(0.07)
0.39

(0.23)
1.07

(0.55)
9.15

(1.20)
18.07
(1.52)

27.34
(1.77)

36.56
(2.05)

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

0.018′′ × 0.025′′

Mini Sprint® 0.20
(0.13)

0.23
(0.14)

0.32
(0.26)

6.45
(2.91)

21.63
(4.09)

38.02
(4.50)

BioQuick® 1.03
(0.62)

0.78
(0.66)

0.53
(0.83)

1.66
(1.79)

11.89
(3.37)

26.68
(2.19)

Wave SL® 0.23
(0.17)

0.33
(0.33)

7.13
(2.42)

20.06
(3.88)

33.40
(5.37)

46.57
(6.20)

SmartClip™ 0.61
(0.16)

0.75
(0.37)

0.82
(0.65)

6.50
(0.99)

22.71
(1.42)

39.22
(1.78)

Damon® Q
0.37

(0.34)
1.02

(0.32)
7.11

(0.81)
21.02
(1.07)

35.18
(1.19)

49.48
(1.10)

In-Ovation® C
1.00

(0.99)
0.74

(0.57)
1.92

(1.26)
17.08
(1.65)

32.29
(1.44)

47.06
(1.45)

In-Ovation® R
1.60

(0.28)
1.27

(0.33)
1.30

(1.12)
14.56
(2.07)

29.48
(2.12)

44.59
(2.09)

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

0.019′′ × 0.025′′

Mini Sprint® 0.13
(0.07)

0.22
(0.11)

4.17
(3.09)

20.29
(6.70)

38.79
(6.69)

BioQuick® 1.11
(0.57)

0.94
(0.30)

0.80
(1.03)

5.35
(3.75)

19.98
(5.01)

Wave SL® 0.35
(0.29)

3.40
(2.42)

17.16
(2.52)

31.32
(2.26)

44.82
(2.83)

SmartClip™ 0.26
(0.09)

0.69
(0.70)

2.84
(1.09)

19.57
(1.98)

38.00
(2.00)

Damon® Q
1.50

(2.13)
5.08

(2.09)
20.13
(1.82)

36.34
(1.90)

52.85
(2.08)

In-Ovation® C
1.23

(0.83)
0.54

(0.65)
12.33
(2.14)

30.29
(2.07)

47.64
(1.84)

In-Ovation® R
1.41

(0.23)
1.05

(0.28)
11.52
(2.54)

26.89
(2.61)

42.48
(2.44)

p-value <0.001 <0.001 <0.001 <0.001 <0.001



Materials 2024, 17, 684 10 of 16Materials 2024, 17, x FOR PEER REVIEW 11 of 18 
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in degrees during a palatal and buccal load. DQ = Damon® Q; BQ = BioQuick®; WS = Wave SL®; SC 
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Figure 4. Differences in torque angles required to achieve different torque during palatal or buccal
load between brackets investigated. Differences between the brackets investigated at a given angle
in degrees during a palatal and buccal load. DQ = Damon® Q; BQ = BioQuick®; WS = Wave SL®;
SC = SmartClip™; IC = In-Ovation® C; IR = In-Ovation® R; MS = Mini Sprint®. The black line
indicates non-significant differences (p > 0.05) and the gray line indicates significant differences
between the brackets.
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With 0.016′′ × 0.022′′ wire, all investigated brackets showed no steady increase in
torque between 5◦ and 15◦ (Figure 5). Above 20◦, the torque in Nmm increased expo-
nentially with increasing angle. It was only from 10◦ onwards that higher wire dimen-
sions showed higher torques in all investigated brackets. For the 0.018′′ × 0.025′′ and
0.019′′ × 0.025′′ wire dimensions, a steady increase in torque with increasing angle can
already be observed from 5◦ onwards.
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Figure 5. Measured torque in Nm with increasing angle in degree for all brackets examined in
combination with (A,D): 0.016′′ × 0.022′′ wire; (B,E): 0.018′′ × 0.025′′ wire; (C,F): 0.019′′ × 0.025′′ wire.
(A–C): palatal loading; (D–F): buccal loading.

With a wire dimension of 0.016′′ × 0.022′′, Mini Sprint® achieved torques of 0.33 to
30.72 Nmm with a torque angle of 20–45◦, while BioQuick® achieved torques of
0.52–17.15 Nmm, Wave SL® torques of 1.18–43.63 Nmm, SmartClip™ torques of
0.37–27.19 Nmm, Damon® Q torques of 0.41–40.38 Nmm, In-Ovation® C torques of
0.60–41.28 Nmm, and In-Ovation® R torques of 0.29–39.97 Nmm. BioQuick® reached the
lowest torque of 17.15 Nmm at a maximal deflection of 45◦, while the highest torques
were reached by Damon® Q (40.48 Nmm), In-Ovation® C (41.28 Nmm), and Wave SL®

(43.63 Nmm) (p < 0.001). With a wire dimension of 0.018′′ × 0.025′′, BioQuick® again
achieved the lowest torque (25.20 Nmm), and In-Ovation® R (50.35 Nmm), Wave SL®

(51.52 Nmm), and In-Ovation® C (52.36 Nmm) achieved the highest torques (p < 0.001)
using a maximal deflection of 30◦. With a wire dimension of 0.019′′ × 0.025′′, BioQuick®



Materials 2024, 17, 684 12 of 16

again achieved the lowest torques (18.68 Nmm), and Wave SL® (49.80 Nmm), In-Ovation®

C (50.73 Nmm), and Damon® Q (53.20 Nmm) achieved the highest torques (p < 0.001) with
a maximal deflection of 25◦.

Figure 6 compares torques subdivided by bracket types (twin, active, passive). At
angle values of 5◦ and 10◦, the active brackets significantly showed the highest torques in
Nmm, whereas at angle values of 15–40◦, the passive brackets significantly exhibited the
highest torques in Nmm.
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* Indicates significant differences between the bracket (p < 0.05) based on the Kruskal–Wallis test
for independent samples. (A): 5◦ angle; (B): 10◦ angle; (C): 15◦ angle; (D): 20◦ angle; (E): 25◦ angle;
(F): 30◦ angle; (G): 35◦ angle; (H): 40◦ angle; (I): 45◦ angle.
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4. Discussion

In this study, we observed significant differences in bracket play among all brackets
investigated. The BioQuick® bracket exhibited the highest play with all wires under
both palatal and buccal loads (p < 0.001). Conversely, the Wave SL® and Damon® Q
brackets demonstrated the lowest play with all wires during palatal and buccal loading
(p < 0.001). These differences in bracket play have a substantial impact on the clinical
outcomes, particularly in the context of active dynamic movements such as anterior tooth
movement [20,21]. At low angles, torque is often not generated, depending on the bracket
system used. The reason for this observation is that the play in the system has not been
overcome, and in some systems, the wire rotates freely in the slot without making contact
with the walls of the slot [22–24]. Therefore, this study underscores the necessity for
different brackets to have distinct torque angles within different wires to prevent tipping
during dynamic movements [21]. Thus, for example, a torque of at least 32.59◦ must be
applied to the BioQuick® bracket and a torque of 20.0◦ must be applied to the Wave SL®

using a 0.016′′ × 0.022′′ wire dimension in order to overcome the play and apply a torque.
These findings are in line with Dalstra et al. [25], who postulated a play between 19.8◦ and
36.1◦ comparing conventional and self-ligating bracket systems.

Clinically effective torque has been suggested to range between 5 Nmm and
20 Nmm [2,26,27]. This study showed that using a wire dimension of 0.016′′ × 0.022′′, the
BioQuick® bracket required a torque angle of 36.72◦ to achieve the torque of 15 Nmm, while
the bracket Wave SL® required only 20.06◦. Also, using a wire dimension of 0.018′′ × 0.025′′,
the BioQuick® bracket required the highest torque angle of 26.52◦ for 15 Nmm and 28.20◦

for 20 Nmm. In contrast, the Damon® Q bracket only required a torque angle of 17.88◦ and
19.65◦ to achieve the same torques. It is therefore clinically important to know that a torque
angle of 20◦ may have no effect at all on one bracket but may already have the maximum of
the required Nmm using another bracket. These findings are in line with Morina et al. [28],
who compared the torque expression of self-ligating brackets with conventional metallic,
ceramic, and plastic brackets to show a wide range of required torque angles to achieve
different torques in Nmm.

However, having too much torque transmission carries inherent risks compared to
having none at all. Generally, heightened magnitudes of applied forces and torques are
linked to an augmented probability of unfavorable outcomes. The risk of root resorption
during orthodontic treatment, despite its complex and multifactorial nature, is acknowl-
edged, particularly in torquing movements where increased torque magnitudes are related
to root resorptions. Casa et al. [29] observed that teeth subjected to higher torquing torques
exhibited greater root resorption in terms of both width and depth, particularly concen-
trated in the apical third of the root. Furthermore, Bartley et al. [30] examined the degree
of root resorption after 2.5◦ and 15◦ of buccal root torque over a four-week period. The
study showed that root resorption was observed in both torque groups, concentrated in
regions of compression. The torque bent into the archwires often lies between 20◦ and 30◦.
In the context of 0.018′′ × 0.025′′ wire, the present study revealed torques ranging from
20.6 Nmm to 51.5 Nmm when utilizing the Wave SL bracket. These values are nearly three
times higher than expected, posing a substantial risk of root resorption [29,31–34].

To date, there are inconsistent findings in the literature on the influence of bracket
types (twin, active, passive) on torque transmission. Brauchli et al. [7] investigated seven
different self-ligated bracket systems and concluded that there were no significant dif-
ferences between active and passive systems in torque expression. A systematic review
showed that conventionally ligated systems exhibit higher torque expression than self-
ligated systems, while active and passive systems show only marginal distinctions [27].
Badawi et al. [15] and Katsikogianna et al. [16] demonstrated that active brackets exhibited
superior torque control compared to passive systems. The researchers concluded that active
systems (In-Ovation and Speed) generated higher torquing torques than passive systems
(Damon® Q and SmartClip™) at clinically relevant torque angles (up to 35◦). However, at
higher (non-clinically relevant) angles, passive systems yielded greater torques.



Materials 2024, 17, 684 14 of 16

In this study, similar findings were observed. At lower angle values (5◦ or 10◦),
active brackets achieved higher torques. However, in contrast to Badawi et al. [15] and
Katsikogianna et al. [16], higher torque transmission could be observed with the passive
brackets from an angle of 15◦ onwards (Figure 4). However, what counters the influence
of active and passive systems is that the active BioQuick® bracket consistently showed
the lowest torque values, indicating an influence due to the manufacturer rather than an
influence by the bracket type (Figure 5).

The limitations of the current study lie in the transferability of the results from an
in vitro analysis to a clinical in vivo situation. In the experimental setup of this study, the
relevant wire was clamped in a single bracket. This approach differs from a clinical in vivo
situation where the wire is held by multiple brackets. Consequently, there is a possibility
that the generated torques in a clinical environment may vary.

Additionally, the present investigation was conducted under normal air conditions,
whereas in a clinical application, the torque is applied in a moist environment. It has
been documented that moisture and warmth in a simulated oral environment can have a
significant impact on force transmission [35].

Furthermore, brackets in a clinical situation are rarely new when torque is applied,
as they are usually introduced after the leveling phase. It is presumed that the effects of
torque in a clinical application are lower due to the general usage of brackets compared to
the results of this study. The fatigue of the flaps in self-ligating systems may also play a
role over such an extended treatment period [36,37].

In addition, only steel wires were used in this study. Steel wires can already achieve
greater torque transmission at a smaller angle compared to NiTi wires with the same
magnitude. Archambault et al. [38] showed that, at an angle of 24 degrees, steel wires
exhibit 1.5 to 2 times higher torque than TMA wires and 2.5 to 3 times higher torque than
NiTi wires.

Therefore, further studies are recommended to, on the one hand, investigate torque
transmission with multiple brackets in a humid environment and assess the influence of
material fatigue and, on the other hand, analyze the impact of different wires on the torque
transmission of the investigated brackets.

5. Conclusions

This study observed significant differences in bracket play, angle values, and torque
values among all investigated brackets, which underscores the critical need for clinicians to
consider the unique characteristics of each bracket–wire combination and precisely tailor
torque angles in line with it. This customization is vital for avoiding undesirable side
effects, particularly the risk of root resorptions, and enhancing the treatment efficacy to
obtain the best clinical outcomes.
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