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Abstract: With the rapid development of the advanced manufacturing industry, equipment require-
ments are becoming increasingly stringent. Since metallic materials often present failure problems
resulting from wear due to extreme service conditions, researchers have developed various methods
to improve their properties. Laser shock peening (LSP) is a highly efficacious mechanical surface
modification technique utilized to enhance the microstructure of the near-surface layer of metallic
materials, which improves mechanical properties such as wear resistance and solves failure problems.
In this work, we summarize the fundamental principles of LSP and laser-induced plasma shock
waves, along with the development of this technique. In addition, exemplary cases of LSP treatment
used for wear resistance improvement in metallic materials of various nature, including conventional
metallic materials, laser additively manufactured parts, and laser cladding coatings, are outlined in
detail. We further discuss the mechanism by which the microhardness enhancement, grain refinement,
and beneficial residual stress are imparted to metallic materials by using LSP treatment, resulting
in a significant improvement in wear resistance. This work serves as an important reference for re-
searchers to further explore the fundamentals and the metallic material wear resistance enhancement
mechanism of LSP.

Keywords: laser shock peening; wear resistance; conventional metallic materials; laser additively
manufactured parts; laser cladding coatings

1. Introduction

Metallic materials play a vital role in numerous applications, ranging from the aerospace
and automotive industries to the power generation and manufacturing sectors [1]. As these
materials are subjected to harsh operating conditions, such as high temperatures, corrosive
environments, and mechanical stress, their mechanical properties, in particular wear resis-
tance, become paramount to ensuring optimal performance and longevity. Therefore, there
is a growing need to research and utilize effective techniques to enhance the mechanical
properties of metallic components [2].

A variety of technological processes are available to improve the mechanical properties
of metallic material surfaces [3], e.g., cold and hot rolling [4], shot peening [5], laser shock
peening (LSP), etc. LSP has gained significant attention as a surface modification technique
capable of enhancing wear resistance in metallic materials [3]. LSP involves the application
of intense laser pulses to a material’s surface, generating high-pressure shock waves that
induce beneficial residual stress and microstructural changes [6], where the former can
significantly enhance mechanical performance, leading to improved wear resistance and a
longer fatigue life [7]. Peyre et al. [8] provided a detailed overview of the current trends in
physics, mechanics, and applications related to LSP. This technique enhances mechanical
behavior by imparting beneficial deep compressive residual stress to metallic alloys, thereby
increasing the service life of the treated specimens and preventing crack growth, wear, and
stress corrosion cracking. Clauer et al. [9], in a research study on LSP, found that the use of
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this technique imparted a residual stress of 0.5 to 1 mm or more to the layer below the metal
surface and increased the fatigue life of metallic parts. Therefore, LSP has been recognized
as an effective technique for addressing wear failure in advanced manufacturing industries.

On the other hand, surface wear can occur due to microcracks or localized plastic
deformation in the material resulting from the movement of surfaces in relation to one
another [10]. The relationship between friction and the wear of metal surfaces is well
established, with the surface properties of hardness and surface roughness, mechanical
properties, and hardening behavior playing crucial roles [11]. For instance, in the research
study conducted by Mikhin et al. [12], it was revealed that the friction coefficient decreased
with surface microhardness. Similarly, Liu et al. [13] demonstrated that the friction coeffi-
cient varied significantly based on factors such as the shape, size, and surface hardness of
the worn particles. This suggests that improving the surface properties of metallic materials
could potentially reduce friction on their surfaces. LSP has been proven to be a highly
effective method for enhancing surface properties. In a comprehensive review by Mon-
tross et al. [14], the authors highlighted the considerable modification of the mechanical
behaviors of metals that can be achieved using LSP. The swift expansion of laser-generated
plasma creates a shock wave that travels through the material, resulting in deformation
and increased compressive residual stress near the surface exposed to the laser [15]. It has
been confirmed that LSP has the ability to enhance surface hardness, fatigue strength, wear
resistance, and anti-corrosion ability in diverse metals, such as titanium alloys, magnesium
alloys, stainless steel, aluminum alloys, etc. [16–19].

In this work, we provide an overview of research on LSP, covering its fundamental
principles and the mechanism related to laser-induced plasma shock waves. Additionally,
we present detailed examples of wear resistance enhancement in metallic materials using
LSP treatment considering different material types, i.e., conventional metals, laser addi-
tively manufactured parts, and laser cladding coatings. This work stands as an important
reference for further investigations into the main mechanisms related to LSP, including
wear resistance improvement in LSP-treated metallic components.

2. Fundamentals of LSP

The fundamental mechanisms underlying LSP involve complex physical phenomena,
including shock wave generation, the material’s response to high-pressure loading, and
the subsequent microstructural changes induced by the process [20]. Residual compressive
stress, texture change, lattice distortion, dislocations, and grain refinement are imparted to the
metal subsurface layer with LSP to enhance material hardness and wear resistance [21–23].
At the base of LSP are the laser action mechanism, heat conduction theory, residual stress
theory, material phase change theory, and mechanical behavior theory. Briefly, the laser-
induced strengthening process improves material performance through the generation of
compressive stress and microstructural modifications, resulting in improved resistance to
wear, deformation, and failure.

2.1. Principles of LSP

The LSP process involves directing a high-energy pulsed laser beam toward the
material’s surface, leading to rapid localized heating and subsequent rapid cooling [24].
As illustrated in Figure 1, prior to being subjected to LSP, the surface of the material is
coated with an absorbent protective layer (e.g., black paint, black tape, or aluminum foil) [2].
Subsequently, it is overlaid with a confining layer, such as running water or optical glass,
the primary objective of which is to enhance the pulsed laser energy absorption efficiency of
the metallic material or alloy while safeguarding its surface against laser thermal ablation.
A high-power laser beam (109 W/cm2) with a short pulse width (10~30 ns) can pass through
the transparent confinement layer and then interact with the metallic surface [25]. The
coating on the metal surface absorbs the laser energy, which causes a sharp increase in the
temperature of the material almost simultaneously. As a result of explosive vaporization,
the vapor particles within the absorbing protective layer concurrently generate a substantial
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amount of dense plasma with high temperature (>104 K) and high pressure (>1 GPa) [26].
As the plasma keeps absorbing laser energy, it rapidly expands and eventually bursts,
generating a high-pressure shock wave (in the GPa order), which acts on the metal surface
and propagates beyond it, inside the material [27].
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Figure 1. Schematic diagram of LSP process [2].

The laser beam, characterized by a short pulse duration and high power density,
penetrates the transparent boundary layer and interacts with the surface of the metallic
material [28]. As a consequence of the surface being subjected to the impact of a laser-
induced plasma shock wave, uniaxial stress forms in the direction of wave propagation.
This, in turn, leads to plastic deformation in the LSP-affected region [29]. Once the laser-
induced plasma shock wave dissipates (typically within tens of nanoseconds), the plastic
deformation becomes constrained by the surrounding material. Consequently, biaxial
compressive residual stress forms in a region parallel to the LSP-treated surface [30].
When materials are subjected to laser treatment, the irradiated region experiences thermal
expansion. Nevertheless, upon immediate termination of laser irradiation, the material
swiftly undergoes cooling and reverts back to its initial dimensions. These rapid thermal
expansion and subsequent cooling processes induce significant stress and strain within
the material, which potentially surpasses its elastic limit, causing plastic deformation. The
process of LSP-induced plastic deformation of the material surface, as illustrated in Figure 2,
can lead to the development of a desirable gradient compressive microstructure, beneficial
compressive residual stress, and optimal properties within the near-surface layer.
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2.2. Laser-Induced Plasma Shock Waves

According to the principle of LSP, the diffusion of laser-induced plasma shock waves
in metallic materials can trigger a dynamic response with a high strain rate near the material
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surface [24], reinforcing this layer. Hence, the plasma shock waves generated by using
a pulsed laser play a leading role in material hardening. In this section, we explore the
theoretical model and formation process of laser-induced plasma shock waves. Plasma
shock waves induced by using a laser undergo a process of formation, amplification, and
decay. Their formation is a result of the chasing effect caused by compression waves,
while their decay is induced by the tensile effect caused by sparse waves [30], and their
amplification and attenuation arise from the intersection of compressed and rarefied waves.
Laser beams with high energy density are used to induce focused ionization and electronic
excitation in the target medium. These excited electrons then collide with other atoms or
molecules, triggering a cascading sequence of additional ionization and excitation. As this
progresses, the free electrons are accelerated due to the strength of the laser field, ultimately
leading to the formation of plasma. The electrons and ions within the plasma undergo
stimulation and merging processes, leading to the emission of additional energy. This
phenomenon, referred to as plasma amplification, occurs due to the laser fields’ ability to
initiate the accumulation and augmentation of energy [31], resulting in a localized heating
effect and expansion of the plasma. These events induce fluctuations in the density and
refractive index of the formed plasma, subsequently affecting the transmission of laser
light. In addition, the plasma undergoes various processes, including the combination of
free electrons and ions and radiation combination, resulting in energy loss and decay. The
equations of the theoretical model are as follows [30]:

∂u
∂t

+ u
∂u
∂x

+
1
ρ

∂p
∂x

= 0 (1)

∂p
∂t

+ u
∂p
∂x

+ ρC2 ∂u
∂x

= 0 (2)

The Hugoniot acoustic speed behind the shock wave front can be determined with the
following equations:

C2 =
dp
dρ

(3)

C = v

{
2(γ − 1)

(γ + 1)2

[
γ

(
U
v

)2
−

( v
U

)2
]
+

8γ

(γ + 1)2 − 1

}
(4)

where C represents the Hugoniot acoustic speed; U and v represent the speed of the shock
wave and the acoustic speed at ambient temperature, respectively; and γ represents the
specific heat ratio.

Without considering the phenomenon of shock wave reflection, the shock wave front
can be described by the following equation [30]:

dp
dx

=
∂p
∂x

+
1
U

∂p
∂t

(5)

where x represents the position of the shock wave front; ρ represents the mass density; and
dp/dx and ∂p/∂x represent the shock amplitude variation and the pressure gradient right
behind the shock wave front, respectively.

du
dx

=
∂u
∂x

+
1
U

∂u
∂t

(6)

The equations of the presented theoretical model are useful in research on the evolution
dynamics, utility, and applicability of laser-induced plasma shock waves [30]. As detailed
above, in the first phase of this phenomenon, when a high-power-density pulsed laser
beam is directed toward a solid target, the affected region absorbs the laser energy, melts,
and evaporates, resulting in the formation of plasma. The high heat pressure exerted by
the latter causes an explosion, which, in turn, generates a shock wave in the surrounding
air. The plasma shock wave rapidly increases within the pulse duration prior to decaying
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into a local sound wave. Furthermore, the laser energy is released from the explosion
source in an energy-altering shock wave, whose prolonged duration is useful in practical
applications. In summary, the laser-induced plasma shock wave phenomenon involves the
utilization of a pulsed laser to subject a substance to shock, resulting in the generation of
plasma; this process is facilitated by the laser beams’ desirable attributes of high energy
density and short pulse width, through which they rapidly increase the temperature of
the substance and induce ionization, thereby causing the transformation of its constituent
atoms or molecules into a plasma state.

In LSP technology, the confining and absorbing layers serve as the fundamental
operational variables and play a key role in guaranteeing plasma pressure exceeding the
order of GPa [7]. Figure 3 presents different materials that are commonly used for these
layers. Generally, glycerol and glass are applied in applications involving medium-to-high
temperature or insulation demands by virtue of their insulating properties and high melting
points. Currently, running water, glass, quartz, and glycerol are the main materials used for
the confining layers in LSP, where glass is more suitable for processing small-scale samples
in laboratory settings; running water, for large-scale LSP procedures at room temperature;
and glycerol, for large-scale, high-temperature LSP processing. Table 1 provides a summary
of the advantages and drawbacks of these three different confining layer materials [7].
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Table 1. Advantages and drawbacks of different confining layer materials in industrial applica-
tions [7].

Confining Layer Material Advantages Drawbacks Application Scenario

Running water

• Cost effectiveness
• High availability
• Safety
• High flexibility

• Unsuitability for use
at high temperatures

• Difficult-to-control
thickness

Large-scale,
room-temperature LSP

Glass
• Heat resistance (≥500 ◦C)
• High shock impedance
• High optical transparency

• Inflexibility
• Proneness to surface

cracks and breaking

Small-scale LSP
processing in laboratory

settings

Glycerol
• Heat resistance (≥300 ◦C)

• Insulation

• High viscosity and
poor flow

• Lack of safety

Large-scale, high-temperature
sample processing
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2.3. Development of LSP

Since its conception, LSP has undergone a comprehensive journey, from initial research
on laser-induced melting and evaporation on the material surface to widespread applica-
tion across various sectors, including military, industry, materials science, and advanced
manufacturing. As the demand for improved material surface properties and enhanced
functionality continues to increase, LSP is emerging as a promising surface enhancement
process aimed at increasing the fatigue life of metallic components [7]. Extensive research
has been conducted on this topic. For instance, Montross et al. [15]. examined the impor-
tance of residual stress monitoring in the development of laser peening [32]. They described
laser peening as a new surface treatment for metals, whereby cold working is used to create
compressive residual stress close to the surface. Chi et al. [16] demonstrated that by using
LSP, it is possible to convert residual tensile stress into compressive stress in the LAM
Ti17 alloy, which greatly improves surface hardness through grain refinement and work
hardening. Yang et al. [32] reported that LSP is considered a replacement technology to SP
for imparting compressive residual stress to metallic alloys to improve their fatigue, wear,
and corrosion resistance. Hence, LSP is emerging as a competitive alternative technology to
traditional treatments to improve the fatigue life and wear resistance of metals for multiple
important applications.

LSP offers noticeable technical advantages in strengthening the surface of metal-
lic materials. In their work, Shin et al. [33] summarized some major developments in
laser-based manufacturing material processing and introduced important technological
issues associated with laser-based manufacturing. Among the commonly used industrial
procedures covered are laser additive manufacturing, laser-assisted machining, laser micro-
machining, laser forming, laser surface texturing, laser welding, and laser shock peening.
Processes using laser shock applications, such as LSP or laser stripping, require a deep
understanding of both the mechanical and thermal loadings applied. LSP is a competitive
surface-strengthening technology for post-weld treatment. In their work, Wan et al. [34]
treated tungsten inert gas-welded alloy 600 joints by using LSP to enhance their mechanical
properties. New experimental measurements of plasma pressure release with respect to
its initial dimension were reported by Rondepierre et al. [35]; findings related to more
precise plasma profiles, such as theirs, are expected to contribute to a better understanding
of laser–matter interactions for laser shock applications. Zhou et al. [36] investigated the
lodging of pre-coated nanopowders into the near-surface layer of IN718 SPF superalloy
material by using LSP-induced GPa pressure to enhance surface hardness. Wang et al. [37]
investigated the microhardness of LC-treated 30CrMnSiNi2A high-strength steel after LSP
treatment, which resulted in being 25% higher than that of the substrate. In their work, Tong
et al. [38] utilized the LSP technique to modify the residual stress state and microstructure of
Cr-Mn-Fe-Co-Ni HEA surface layers fabricated by using laser-directed energy deposition;
they found a variation in the surface residual stress state from tensile residual stress to
compressive residual stress in the LSP-treated specimens, and they observed the closing
of pores in the surface layers due to severe plastic deformation (SPD). In addition, it was
reported that LSP led to the formation of gradient microstructures in the depth direction,
which increased the strength and ductility of the LSP-treated specimens [39]. According
to research by Lim et al. [40], the wear volume of 2205 duplex stainless steel material was
reduced by up to 39% when LSP was used. Therefore, LSP is considered a feasible solution
to reduce abrasive degradation.

In summary, LSP is a surface treatment method used to strengthen and improve
the dependability of metallic parts [41]. At present, LSP technology is widely used for
improving the surface properties of metallic materials as a means of improving their wear
resistance, anti-corrosion properties, and fatigue life.
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3. LSP-Induced Wear Resistance Improvement in Metallic Materials
3.1. Wear Resistance Improvement in Conventional Metallic Materials

Conventional metallic materials, which have wide applications in various industries,
are manufactured by using traditional methods, which include traditional manufacturing
processes such as casting [11], forging [19], and forming. Conventional metallic parts in-
evitably present surface roughness and inhomogeneity, which lead to wear and tear during
use, ultimately resulting in insufficient wear resistance to meet working requirements [42].

Cast aluminum–silicon alloys are extensively applied in many fields, such as in the
automotive, aerospace, and electronics sectors, due to their low mass density, good mechan-
ical properties, thermal conductivity, machinability, etc. [11]. However, cast parts typically
exhibit diminished density and an irregular organizational structure, rendering them vul-
nerable to wear and damage. Numerous studies have explored the wear mechanism and
response of cast aluminum–silicon alloys using various surface-strengthening techniques.
Park et al. [10] conducted an investigation into the impact wear behavior of LSP-treated cast
aluminum–silicon alloys. In their experiment, the laser intensities ranged from 1 GW/cm2

to 7 GW/cm2, with an overlapping ratio of 50%. The laser beam spot diameter of 2.06 mm
was chosen for obtaining laser irradiance within the range of 1~4 GW/cm2, whereas a
1.64 mm spot diameter was chosen for obtaining higher laser irradiance, within the range
of 4~7 GW/cm2; the laser pulse duration was 10 ns. After LSP treatment, the friction of
AC8A specimens (Hansin metal, Republic of Busan, Korea) was tested before and after LSP
treatment.

The tribological properties of a material’s surface, specifically wear resistance and
friction properties [43], determine its proper functioning. The coefficient of friction (COF)
is a key parameter describing the friction characteristics between a material and other
surfaces [44]. In Park et al.’s study, the COFs of untreated and LSP-treated samples were
measured under different loading conditions, as illustrated in Figure 4. For the five laser-
peened samples, the average friction coefficients (with corresponding RSDs) were measured
as 0.08 (5.2%), 0.079 (7.1%), and 0.081 (11.5%) under the applied loads of 50 N, 100 N, and
150 N, respectively. These values show reductions of 20%, 42%, and 45%, respectively,
compared with the friction coefficients observed in the untreated samples under the same
loading conditions. In contrast to the untreated samples, which exhibited an increase in
the friction coefficient with the increase in the load (e.g., from 50 N to 100 N), the friction
coefficients of the laser-peened samples remained relatively stable under all tested loading
conditions. This consistent response highlights the efficacy of LSP in decreasing friction.

    

measured as 0.08 (5.2%), 0.079 (7.1%), and 0.081 (11.5%) under the applied loads of 50 N, 

100 N, and 150 N, respectively. These values show reductions of 20%, 42%, and 45%, 

respectively, compared with the friction coefficients observed in the untreated samples 

under the same loading conditions. In contrast to the untreated samples, which exhibited 

an increase in the friction coefficient with the increase in the load (e.g., from 50 N to 100 

N), the friction coefficients of the laser-peened samples remained relatively stable under 

all tested loading conditions. This consistent response highlights the efficacy of LSP in 

decreasing friction. 

 

Figure 4. COFs of cast experimental specimens under different loading conditions [10]. 

Since it is known that the size of wear particles is tightly connected to friction [11], 

scanning electron microscope (SEM) images of untreated and LSP-treated experimental 

samples were obtained, and representative samples are illustrated in Figure 5a,b, 

respectively. The farthest end-to-end distances and projected areas of the five largest 

particles on each SEM image were measured: a total of 30 particles for the unenhanced 

sample and 50 particles for the laser-enhanced sample. The presented images demonstrate 

a noticeable disparity in size between the wear particles of the laser-peened experimental 

samples and those of the untreated specimens. Specifically, the former exhibit 

significantly reduced dimensions compared with their counterparts. The average farthest 

end-to-end distance among the obtained wear particles in the LSP-treated experimental 

samples was calculated to be 3.23 μm, and the projection area, 4.90 μm2; in the untreated 

samples, the corresponding values were 5.62 μm and 16.64 μm2, respectively. To allow for 

a comprehensive understanding of the size distribution, the wear particles are graphically 

represented in Figure 5c, which illustrates the distinctively smaller size and size 

resemblance of wear particles obtained with LSP. Given the significant association 

between wear particle size and friction, a smaller wear particle size, which can be obtained 

with LSP, results in an increase in surface hardness and a reduction in surface roughness, 

which, in turn, have a favorable effect on the reduction in the friction coefficient and 

consequent improvement in wear resistance. 

Figure 4. COFs of cast experimental specimens under different loading conditions [10].



Materials 2024, 17, 909 8 of 21

Since it is known that the size of wear particles is tightly connected to friction [11],
scanning electron microscope (SEM) images of untreated and LSP-treated experimental
samples were obtained, and representative samples are illustrated in Figure 5a,b, respec-
tively. The farthest end-to-end distances and projected areas of the five largest particles
on each SEM image were measured: a total of 30 particles for the unenhanced sample
and 50 particles for the laser-enhanced sample. The presented images demonstrate a
noticeable disparity in size between the wear particles of the laser-peened experimental
samples and those of the untreated specimens. Specifically, the former exhibit significantly
reduced dimensions compared with their counterparts. The average farthest end-to-end
distance among the obtained wear particles in the LSP-treated experimental samples was
calculated to be 3.23 µm, and the projection area, 4.90 µm2; in the untreated samples, the
corresponding values were 5.62 µm and 16.64 µm2, respectively. To allow for a comprehen-
sive understanding of the size distribution, the wear particles are graphically represented
in Figure 5c, which illustrates the distinctively smaller size and size resemblance of wear
particles obtained with LSP. Given the significant association between wear particle size
and friction, a smaller wear particle size, which can be obtained with LSP, results in an
increase in surface hardness and a reduction in surface roughness, which, in turn, have a
favorable effect on the reduction in the friction coefficient and consequent improvement in
wear resistance.
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Table 2 summarizes the mass reductions in specimens before and after both LSP
treatment and the friction test. The untreated samples exhibited a remarkable decrease in
average mass loss compared with the LSP-treated samples. This outcome clearly illustrates
the substantial enhancement in wear resistance in aluminum–silicon alloys achievable
with LSP.



Materials 2024, 17, 909 9 of 21

Table 2. Average mass loss results of experimental specimens before and after both LSP treatment
and friction test [10].

Before LSP After LSP

Number of samples 3 5

Average mass per sample (g)
Before test 27.1725 27.3241

After test 27.1571 27.3232

Mass loss per sample (mg) 15.4 (RSD = 7.5%) 0.9 (RSD = 28.2%)

Decrease in average mass loss (%) 94

Besides cast aluminum–silicon alloys, forged parts have also been improved in terms
of wear resistance by using LSP treatment. Forged components typically have high strength
and toughness, but their surface is prone to wear and corrosion [44]. The wear resistance of
titanium alloys treated with LSP was investigated by Shen et al. [45]. The laser parameters
applied in their work were 6.5 J laser pulse energy, 1064 nm wavelength, 20 ns pulse
width, 3 mm laser beam spot diameter, 11.5 GW/cm2 laser power density, and 65% overlap
rate. The SEM images of the experimental specimens treated by using LSP are shown
in Figure 6. Based on the SEM analysis results, prior to treatment, the microstructure
of the Ti-6Al-7Nb alloy comprised globular and acicular α-phases, along with some β-
phases, with non-uniform distribution, leading to the presence of coarse-grained regions
with well-defined phase boundaries. On the other hand, the microscopic observation
of the LSP-treated samples revealed that the grain size had decreased to 10~15 µm as a
consequence of the spontaneous generation of shock waves, which induces SPD under
high strain rates [46]. Consequently, globular and acicular α-phases were distributed
evenly, and the grain boundaries exhibited a blurred appearance. The findings suggest
that the reduced grain size and homogeneous phase distribution obtained with laser shock
treatment increase the hardness of a material. In addition, LSP leads to an increase in
dislocation density and induces residual compressive stress. A crystalline phase transition
alters the crystalline structure of the material, while residual stress can create a layer of
compressive stress. Both of these factors concurrently enhance the hardness and wear
resistance of the material.
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The microhardness values of Ti-6Al-7Nb before and after LSP treatment are shown in
Table 3. Microhardness affects wear resistance, and high hardness can effectively improve
wear resistance and fatigue life [47]. In the above study, surface hardness increased from
310 HV to 363.2 HV after one LSP pulse. With an increase in pulses by two and three
times, this value increased to 367.5 HV and 372.2 HV, or by 20.6% and 22.31%, respectively.
However, the improvement in work hardening depth induced by LSP treatment was
limited, with the affected layer being approximately 0.9 mm deep.
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Table 3. Microhardness of Ti-6Al-7Nb specimen before and after LSP treatment [45].

Parameter Untreated
Specimen LSP 1 LSP 2 LSP 3

Surface microhardness (HV) 310 363.2 367.5 372.2
Work hardening depth (mm) / 0.9 0.9 0.9

According to Figure 7, it is evident that the COFs of the as-received samples increased
more slowly during the first stage (0~25 s) in comparison to the treated samples and
subsequently rapidly reached a high, stable value of 0.48; on the other hand, the friction
coefficients of treated Ti-6Al-7Nb were reduced thanks to LSP treatment.
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Investigating the effect of LSP treatment on wear resistance in a material requires
examining alterations in the wear mass loss of the experimental specimen during the wear
process. Figure 8 presents the comparison of wear mass reduction in Ti-6Al-7Nb alloy
specimens after wear experiments. It is evident that the weight reduction in the treated
specimens was lower than that in the untreated samples. This decline showed a downward
trend as the number of pulses increased. Therefore, the use of LSP treatment can greatly
enhance wear resistance in Ti-6Al-7Nb. The wear mass loss of the material was reduced to
different degrees after LSP treatment, where the higher the number of pulses, the greater
the decrease in wear mass loss.
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In summary, the application of LSP enhances the grain boundary structure of cast
and forged components, resulting in grain refinement and increased density of the grain
boundaries [48]. Consequently, this process leads to improvements in material properties
such as microhardness, strength, and wear resistance.

3.2. Wear Resistance Improvement in Laser Additively Manufactured Parts

The desirable mechanical properties, wear resistance, and stress corrosion resistance
of laser additively manufactured parts have led to their extensive use in the domains of
aircraft components, marine facilities, and petroleum and chemical sectors [49,50]. The
term additive manufacturing (AM) refers to the process of building 3D parts layer by layer
by using malleable materials (plastics, metals, etc.) [51].

By virtue of its usefulness in the creation of parts with complex geometries, AM has
recently gained a lot of attention [52]. Additively manufactured parts typically consist
of multiple layers of stacked molten metal, whose surfaces are prone to cracking and
wear [53]. Consequently, wear resistance tends to be low in AM metals. Many researchers
have proved that laser processing has substantial potential for improving surface character-
istics in steel additively manufactured parts [54]. For instance, the mechanical properties,
surface morphology, microstructural change, and wear behavior of experimental samples
of selective laser melting (SLM)-treated 15-5PH stainless steel subjected to LSP treatment
were investigated by Wu et al. [21]. In their study, first, 15-5PH stainless steel experimental
specimens were produced by using selective laser melting (SLM). Afterward, the LSP
process was employed to enhance their mechanical characteristics and wear resistance. The
laser parameters applied in this work were 6 J laser energy, 3 mm laser beam spot diameter,
and 15 ns pulse width.

Given that the COF and wear rate are significant factors in evaluating the wear
properties of metallic materials [55], the variations in these characteristics over time were
analyzed. The COF curves for SLM-treated 15-5PH stainless steel experimental samples
before and after LSP treatment are shown in Figure 9. Two stages can be observed in COF
curve changes: a primary break-in phase and a progressive stable phase. As the wear
time increases, the curves move towards the steady phase, indicating that the COFs have
stabilized, with fluctuations lying within a specific range [56]. Prior to LSP treatment, the
highest COF value was found to be approximately 0.248. The average COF of the samples
was reduced to 0.226 following LSP treatment, demonstrating a significant enhancement in
wear resistance. Therefore, these findings indicate that LSP treatment is critical to reducing
the COF by inducing plastic distortion in the near-surface layer of a material.
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Figure 10 shows the wear rates of SLM-treated 15-5PH stainless steel specimens before
and after LSP treatment. The obtained outcomes demonstrate that the average wear rate of
the experimental specimens before LSP treatment was 2.92366 × 10−5 mm3·N−1·m−1. How-
ever, following the application of LSP, it was reduced to 2.097311 × 10−5 mm3·N−1·m−1, a
decrease of about 28.26%. This indicates that the wear resistance of SLM-treated 15-5PH
stainless steel was significantly improved after LSP treatment. As the affected surface
of the specimen was ground and polished prior to LSP, its initial surface state presented
low surface roughness (0.275 µm), i.e., it was relatively smooth. After LSP treatment, the
surface roughness of the material increased to a certain extent, to about 2.515 µm. The
material’s near-surface layer experienced significant plastic deformation due to the laser-
induced plasma shock wave, which caused the surface morphology to change and its
surface roughness to increase [57]. Thus, the significant enhancement in wear resistance
in the experimental specimens achieved by using LSP is ascribed to the refinement of
the grains and the beneficial compressive residual stress layer formation, resulting in the
hardening of the near-surface layer up to a specific depth.
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Table 4 presents the residual stress and microhardness analysis of SLM-treated 15-5PH
stainless steel before and after LSP treatment. The near-surface layer exhibited the presence
of tensile residual stress, reaching a peak value of 122 MPa at the surface. This stress
gradually diminished with the increase in depth, which is potentially attributed to the
significant thermal gradients and rapid cooling experienced during the SLM fabrication
process. Following LSP treatment, consistent and compressive residual stress was observed,
reaching a maximum value of 340 MPa in the surface layer. The measurement of microhard-
ness is essential to comprehending the mechanisms of elastic and plastic deformation in
materials that have undergone LSP treatment. In the case of SLM-treated 15-5PH stainless
steel, the application of LSP treatment resulted in a notable 13.07% enhancement in surface
microhardness, reaching a maximum value of 422.3 HV. It is worth noting that the thickness
of the hardened layer exceeded that of the compressive residual stress layer, which may be
attributed to the generation of tensile residual stress during the SLM fabrication process
and subsequent removal of the electrolytic layer.



Materials 2024, 17, 909 13 of 21

Table 4. Residual stress and microhardness of 15-5PH stainless steel specimens before and after LSP
treatment [21].

Parameter Before LSP Treatment After LSP Treatment

Surface residual stress (MPa) 122 −340
Surface microhardness (HV) 373.5 422.3

Compress residual stress depth (mm) / 0.74
Work hardening depth (mm) / 1

Compared with the classical wear morphologies of SLM-treated 15-5PH stainless steel
before LSP treatment (Figure 11a,b), the surface roughness of specimens after LSP treatment
was decreased significantly (Figure 11c,d). Furthermore, the surface of the experimental
specimens exhibited a rough texture with plenty of patches and wider and deeper grooves,
indicating more severe damage prior to LSP treatment. Additionally, under alternating
contact stress, flake-like wear debris detached from the specimens’ surface, suggesting
that peeling was the primary wear mechanism in the experimental specimens prior to LSP
treatment. In contrast, the sample that had undergone LSP treatment displayed plowing
grooves decorated with a substantial amount of small-flake wear debris, indicative of
the standard adhesive wear mechanism [58]. Hence, it can be seen that wear resistance
improved following LSP treatment in the experimental samples, which aligns with the COF
curve and the change in wear rate.
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3.3. Wear Resistance Improvement in Laser Cladding Coatings

Laser cladding (LC) is a surface treatment technique that includes the deposition
of a protective layer onto a substrate using a laser beam. This process offers numerous
advantages, such as accurate control over the coating composition, minimal heat-affected
zones, and the ability to reinforce the substrate’s surface properties. Therefore, coatings
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are often used to provide a protective layer and enhance surface properties, but they are
susceptible to flaking and abrasion.

Several researchers have reported that using laser cladding coatings is a highly effec-
tive technique for enhancing the toughness and wear resistance of materials. For instance,
Lu et al. [59] researched the LSP-induced modification in the wear properties of H13 tool
steel with laser cladding Ni25 coating. In their work, in the LC procedure employed to
manufacture the Ni25cladding layer, the laser parameters were as follows: the laser power
was set at 2000 W; the overlap rate was 60%; the scanning velocity was 400 mm/min;
and the powder-feeding velocity was 15 g/min. The LSP treatment parameters were as
follows: pulsed laser duration of 10 ns, rated power of 7.6 J, and laser beam spot diameter of
3 mm. For simplicity, the Ni25 cladding coatings fabricated by using LC are designated as
LC-treated experimental specimens, while the LC-treated experimental specimens further
treated with LSP are denoted as LSP-treated experimental specimens.

The COF curves depicted in Figure 12 illustrate the behavior of the three different
types of test specimens. The as-machined specimens exhibited the maximum COFs, with
an average value of 0.352, while the COFs of the LC-treated samples were relatively lower,
0.331 on average. Following the application of LSP treatment, the average COF decreased
to 0.313. During the early stages of the wear test, the refinement of the grain structure and
the formation of a hardened layer, induced by LSP treatment, enhanced the surface wear
resistance of the Ni25 coating. Nonetheless, as the wear depth increased and wear debris
started to peel off, the hardness and strength of the coating gradually decreased, resulting
in a reduction in wear resistance and an associated increase in the COF value. The main
wear mechanism observed on the surface of the coated parts was flaking.
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The hardness values were measured at 0.1 mm intervals along the depth five times. In
order to conduct a more comprehensive analysis of wear performance, the wear rates of
the three specimen types were computed, and the results are depicted in Figure 13. The un-
derlying material still demonstrated the maximum wear rate, measuring 9.1843 × 106 mm3

N−1·m−1. In contrast, the LC-treated samples and LSP-treated samples exhibited average
wear rates of 6.5756 × 106 mm3 N−1·m−1 and 5.4592 × 106 mm3 N−1·m−1, respectively.
The wear loss of the coating during the wear process was effectively reduced as a result
of the LSP treatment, as evidenced by decreases of 29.0% and 41.1% compared with the
as-machined and LC-treated specimens. There was evidence of an SPD layer following LSP
application, leading to the emergence of abundant dislocation structures. As a consequence,
a shift in grain type occurred, accompanied by additional grain refinement.



Materials 2024, 17, 909 15 of 21Materials 2024, 17, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 13. Wear rate comparison of as-machined specimens, LC-treated specimens, and LSP-
treated specimens [59]. 

Table 5 shows the distributions of residual stress and microhardness in the specimens, 
with LC-treated experimental specimens and LSP-treated experimental specimens exhib-
iting depth-dependent variations. The application of high heat and the subsequent rapid 
cooling during the cladding process induced elevated tensile stress levels, thereby exacer-
bating the propensity for coating fracture. Conversely, the implementation of LSP resulted 
in the formation of a high-level compressive stress layer, characterized by a peak value of 
−453 MPa. However, it is important to note that at depths ranging from 0 to 0.5 mm, the 
formation of a high-density compressive residual stress layer was compromised due to 
the influence of laser shock wave effects, thereby weakening the overall effectiveness of 
this technique. LC-treated specimens showed a peak microhardness value of 432 HV at 
the upper surface, which gradually decreased with the increase in depth. The LSP treat-
ment induced a significant increase in microhardness, of approximately 100 HV, with a 
peak value of 550 HV having been recorded at the coating surface. The increase in micro-
hardness and residual stress was particularly pronounced at depths greater than 0.3 mm. 

Table 5. Residual stress and microhardness values of experimental specimens before and after LSP 
treatment [59]. 

Parameter As-Machined 
Specimen 

LC-Treated 
Specimen 

LSP LC-Treated 
Specimen 

Surface residual stress (MPa) 0 167 −453 

Surface microhardness (HV) 250 432 550 

Compress residual stress depth (mm) / / 1 

Work hardening depth (mm) / / 0.8 

Figure 14 illustrates the microstructural differences among the three types of speci-
mens. Significant plastic deformation and extensive fatigue spalling were visible in the as-
machined experimental specimens (Figure 14a), showing severe adhesive wear and tear. 
In contrast, in LC-treated specimens, flaking pits with substantial deformations were not 
observed (Figure 14b). Despite some large spalling scales, the spalling depth reached by 
the grinding ring was clearly reduced. Furthermore, the sliding wear process resulted in 
the preservation of multiple small sections of the original coating. This observation 
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specimens [59].

Table 5 shows the distributions of residual stress and microhardness in the specimens,
with LC-treated experimental specimens and LSP-treated experimental specimens exhibit-
ing depth-dependent variations. The application of high heat and the subsequent rapid
cooling during the cladding process induced elevated tensile stress levels, thereby exacer-
bating the propensity for coating fracture. Conversely, the implementation of LSP resulted
in the formation of a high-level compressive stress layer, characterized by a peak value of
−453 MPa. However, it is important to note that at depths ranging from 0 to 0.5 mm, the
formation of a high-density compressive residual stress layer was compromised due to the
influence of laser shock wave effects, thereby weakening the overall effectiveness of this
technique. LC-treated specimens showed a peak microhardness value of 432 HV at the
upper surface, which gradually decreased with the increase in depth. The LSP treatment
induced a significant increase in microhardness, of approximately 100 HV, with a peak
value of 550 HV having been recorded at the coating surface. The increase in microhardness
and residual stress was particularly pronounced at depths greater than 0.3 mm.

Table 5. Residual stress and microhardness values of experimental specimens before and after LSP
treatment [59].

Parameter As-Machined Specimen LC-Treated Specimen LSP LC-Treated Specimen

Surface residual stress (MPa) 0 167 −453
Surface microhardness (HV) 250 432 550

Compress residual stress depth (mm) / / 1
Work hardening depth (mm) / / 0.8

Figure 14 illustrates the microstructural differences among the three types of speci-
mens. Significant plastic deformation and extensive fatigue spalling were visible in the
as-machined experimental specimens (Figure 14a), showing severe adhesive wear and tear.
In contrast, in LC-treated specimens, flaking pits with substantial deformations were not
observed (Figure 14b). Despite some large spalling scales, the spalling depth reached by
the grinding ring was clearly reduced. Furthermore, the sliding wear process resulted
in the preservation of multiple small sections of the original coating. This observation
suggests an increment in wear resistance in the coated surface following LSP treatment.
The surface profile of the LSP-treated experimental specimens (Figure 14c) also revealed the
presence of several parallel grooves, in agreement with the abrasive wear mode described
by Fu et al. [60]. Accordingly, it can be deduced that the grinding ring’s compressive effect
on the contact surface was successfully reduced, thus leading to a decrease in adhesive
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wear. Additionally, the LSP-treated experimental specimens’ wear mechanism had shifted
to a combination of abrasive and adhesive wear, resulting in an overall enhancement in
wear resistance.
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In conclusion, the plasma shock wave generated by using a pulsed laser resulted in the
refinement of the grain size on the surface of the LC-treated samples, a significant increase in
low-angle grain boundaries within the surface layer, and a reduction in the length of austenite
grains from 30~40 µm in the deep layer to 4~8 µm in the surface layer. The application of LSP
resulted in enhanced surface hardness and abrasion resistance in the laser cladding coatings,
thereby mitigating the occurrence of coating flaking and wear [61–63]. Additionally, according
to surface characterization, the LSP treatment improved the bond between the coating and
the substrate, thereby augmenting the adhesion and wear resistance of the coating.

4. Discussion

Grain size, microhardness, and surface roughness play key roles in determining wear
resistance [64]. In this paper, we summarize the changes in wear resistance in conventional,
additively manufactured, and coated components following LSP treatment, including
changes in surface roughness, microhardness, and residual stress, which determine the
wear properties of the COF, wear rate, and wear mechanism. The laser shock pressure
generated with LSP greatly surpasses the Hugoniot elastic limit of solidified metal at
elevated temperatures [65], thereby causing plastic deformation in the outer layer of the
metal surface subjected to treatment [66]. SPD occurs near the surface of the material
when the original sample is very smooth, indicating that LSP can greatly increase surface
roughness. Generally, lower surface roughness results in lower COF and wear rate [67].
However, LSP treatment has been observed to clearly reduce the COFs and wear rates of
conventional metallic materials, additively manufactured materials, and coated materials
(Figures 9, 10, 12, and 13). LSP treatment induces significant, deep, beneficial compressive
residual stress in the near-surface layer, which is discharged during wear, preventing plastic
deformation. Following LSP treatment, the material experiences a considerable increase in
microhardness, which reduces the negative effect of increased surface roughness on the
material’s wear resistance, improving the latter. The pulsed laser in LSP induces the surface
effect of cold work hardening on forged components, thereby enhancing the material’s
grain boundary continuity and grain refinement [68]. According to the results reported in
Figure 6, following LSP treatment, the surface of cast components becomes denser and more
uniform, improving the crystalline structure, eliminating internal defects, and increasing
the continuity of grain boundaries. Consequently, in accordance with the changes in wear
morphology in specimens before and after LSP treatment, this strengthening technique
effectively improves wear resistance in metallic materials.

The main forms of plastic deformation in metals involve dislocation slip and de-
formation twinning. As shown in Figure 15, pulsed laser irradiation generates a shock
wave, imparting both tensile and compressive deformation to the layer near the material
surface. Additionally, LSP application causes the formation of micro-indentations and
micro-bulges on the material surface. Therefore, the LSP treatment method enhances the
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grain boundary structure, promotes grain refinement, and increases surface hardness and
wear resistance [69]. Specifically, the application of LSP to the target surface, i.e., the direct-
ing of repeated high-intensity laser pulses at the same location, results in the generation of a
deformation zone (DZ) presenting both compressive and tension deformations (Figure 15).
Consequently, the wear mechanism of the material is altered, resulting in a reduction in the
incidence of abrasive wear and fatigue wear.
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In LSP, the high-density energy affects grain orientation and triggers grain slip, result-
ing in a significant number of dislocations [70]. Dislocations multiply and result in grains
moving around in bulk materials, as well as near the surface. The concentration of these
dislocations within the material restricts grain slip, causing grain refinement. This, in turn,
contributes to the enhancement in the mechanical properties of the material.

According to the Hall–Petch theory, the relationship between the microhardness and
grain size of a material can be indicated as [60]

H = Hm + αGbρ (7)

where H is the microhardness, Hm is the initial microhardness, α is the material’s constant,
G is the shear modulus, b is the Burgers vector, and ρ is the dislocation density. According
to Equation (7), an enhancement in the density of dislocations results in greater microhard-
ness. Following the LSP process, a substantial plastic deformation layer and numerous
dislocation structures are generated, leading to a modification in the grain type and further
grain refinement [71]. According to the results in Figures 12 and 13, both the coefficient of
friction and the wear rate of the coatings after LSP treatment declined significantly, and
evidence of the abrasive wear mechanism was found. Following the application of LSP
treatment, small-sized carbides are effectively joined with the matrix by the shock wave,
thereby acting as a barrier against deformation and enhancing wear resistance [72]. In the
region affected by the shock wave, the grain size reduces, leading to a substantial increase
in the quantity of grain boundaries [73]. Additionally, LSP-treated cladding parts are more
prone to adhesive wear than to peeling wear, unlike untreated materials [74].

Under high-strain-rate conditions, the response of materials can be significantly differ-
ent from that under low-strain-rate conditions. Adiabatic shear bands (ASBs) are narrow
localized bands of intense plastic deformation that form due to severe shear stress imposed
on the material [75]. In the context of dislocation slip and twinning, ASBs play a crucial role
in the deformation of HCP materials. Grain refinement is regarded as the optimal mode of
plastic deformation during the LSP process, and the density of dislocations is calculated as
follows [21]:
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ρ =
∆θ

db
(8)

where ρ is the shear strain within the adiabatic shear band; ∆θ is the change in angle
between adjacent crystallographic planes; d is the spacing between the crystallographic
planes across which the shear deformation occurs; and b is the magnitude of the Burgers
vector, which characterizes the magnitude and direction of the dislocation slip or twinning.
Microhardness and wear resistance are well known to be correlated, and their relation is
described as follows [59]:

V = K
PL
HV

(9)

where V represents the amount of wear, K represents the wear coefficient, P represents the
load, L represents the sliding distance, and Hv represents the material’s microhardness.
Based on Equation (9), an increase in microhardness reduces weight loss. According to the
results in Figures 10 and 13, LSP-treated additively manufactured and coated parts present
a reduced wear rate and increased wear resistance. The collective reinforcement effect
induced with LSP is ascribed to the strengthening mechanisms of fine-grain formation and
dislocation strengthening [76]. These mechanisms not only improve the microhardness of
the coating but also increase wear resistance.

During surface hardening, plastic strain and residual stress induce a modified von
Mises stress state. The LSP-induced modification of the surface layer effectively enhances
the microhardness of the material. Hence, the enhancement in wear resistance in conven-
tional metallic materials, laser additively manufactured parts, and laser cladding coatings
through LSP treatment is due to the improvement in wear patterns as a result of enhanced
microhardness, grain refinement, and beneficial compressive residual stress.

5. Conclusions

In the present work, we comprehensively explored the mechanical properties, mi-
crostructural evolution, and wear resistance of conventional metallic materials, laser addi-
tively manufactured parts, and laser cladding coatings treated with LSP. Below, we report
our main findings:

(1) In metallic materials, LSP treatment imparts beneficial compressive residual stress
to the material surface and improves the grain boundary structure, leading to grain
refinement and enhanced grain boundary continuity, consequently augmenting the
material’s mechanical properties.

(2) The application of LSP enhances the microhardness and wear resistance of the surface
of cast and forged parts, additively manufactured components, and laser cladding
coatings and reduces their COF and wear rate. Additionally, LSP treatment effectively
eliminates surface cracks and defects, consequently enhancing the overall quality of
the components.

(3) The wear resistance enhancement mechanism of metallic materials treated by using
LSP effectively reduces the infiltration of abrasive grains and minimizes both abrasive
wear and fatigue wear. Furthermore, LSP treatment effectively eliminates internal
defects and stress within metals, thereby enhancing their overall structural stability
and durability.
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