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Abstract: MXenes are two-dimensional transition metal carbides, nitrides, and carbonitrides that have
become important materials in nanotechnology because of their remarkable mechanical, electrical,
and thermal characteristics. This review emphasizes how crucial MXene conjugates are for several
biomedical applications, especially in the field of cancer. These two-dimensional (2D) nanoconjugates
with photothermal, chemotherapeutic, and photodynamic activities have demonstrated promise for
highly effective and noninvasive anticancer therapy. MXene conjugates, with their distinctive optical
capabilities, have been employed for bioimaging and biosensing, and their excellent light-to-heat
conversion efficiency makes them perfect biocompatible and notably proficient nanoscale agents for
photothermal applications. The synthesis and characterization of MXenes provide a framework for
an in-depth understanding of various fabrication techniques and their importance in the customized
formation of MXene conjugates. The following sections explore MXene-based conjugates for nanoth-
eranostics and demonstrate their enormous potential for biomedical applications. Nanoconjugates,
such as polymers, metals, graphene, hydrogels, biomimetics, quantum dots, and radio conjugates,
exhibit unique properties that can be used for various therapeutic and diagnostic applications in the
field of cancer nanotheranostics. An additional layer of understanding into the safety concerns of
MXene nanoconjugates is provided by detailing their toxicity viewpoints. Furthermore, the review
concludes by addressing the opportunities and challenges in the clinical translation of MXene-based
nanoconjugates, emphasizing their potential in real-world medical practices.

Keywords: MXene; 2D materials; conjugates; cancer; nanotheranostics

1. Introduction

MXenes are a family of 2D materials that have attracted significant interest in the field
of materials science since their discovery [1]. They are derived from a class of layered
ternary compounds called MAX phases, which consist of transition metals such as carbides,
nitrides, or carbonitrides. The MAX phases follow the standard formula for Mn+1AXn. Here,
“M” denotes early d-block transition metals, “A” represents the main-group sp elements
(mostly IIIA or IVA), and “X” signifies carbon and/or nitrogen atoms (Figure 1) [2,3].
Their unique properties, which result from a rare blend of ceramic and metallic behaviors,
pique great attention. MAX phases exhibit low density, high hardness, and great corrosion
resistance in ceramics, while high thermal and electrical conductivities and outstanding
machinability are comparable to those of metallic materials. Because of these qualities,
MAX phases are attractive materials for high-temperature structural applications. MXenes
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are very attractive, being at the same level as transition metal dichalcogenides (TMDs)
or metal oxides, or even better in some aspects such as having strong bonds that inhibit
cleavage through shearing or other mechanical techniques [4]. Furthermore, compared
with metal oxides and TMDs, MXenes are more tunable and potentially more useful for
energy storage applications [4]. More than 150 MAX phases have been reported to date [5].
Over the years, the process of synthesizing MXenes has undergone several substantial
advancements, leading to the creation of multiple techniques and etching conditions that
produce precise MXene compositions, surface chemical information, and flake sizes [6].
Researchers have broadened the synthesis of MXenes, progressing from traditional wet-
chemical etching to more advanced methods such as molten salt and electrochemical
etching [7]. MXenes are extremely versatile materials with a wide range of applications,
including mechanical energy conversion, energy storage, drug delivery, water purification,
tissue engineering, regenerative medicine, and conductive coating [8]. MXenes have been
researched as nanozymes, and they have several benefits, including affordability, stability,
and strong catalytic activity [9]. Ongoing research has revealed the immense potential of
MXenes in various fields due to their exceptional properties.
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Figure 1. General element composition of MAX phase and MXene: M: early transition metal; A:
Group A element; X: C and/or N; Tx: surface functional group. Reproduced with permission
from [10]. Copyright © 2021, Springer Nature.

Owing to their adjustable morphology, biocompatibility, and ease of functionaliza-
tion [11], MXenes possess good potential for fabricating MXene-based composites, where
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they are incorporated with other materials to benefit from their combined properties. This
amalgamates the distinctive properties of MXenes and those of partner materials, offering
better functionality and performance [12–15]. The exploration of MXenes continues to ex-
pand in medical science, with ongoing research focused on synthesis methods, fundamental
properties, and novel biomedical applications. Cancer is a broad and complicated category
of disease characterized by the uncontrolled growth and division of aberrant cells that can
invade and spread throughout the body [16,17]. This disease appears in a variety of ways,
with genetic abnormalities, environmental exposures, and lifestyle decisions all contribut-
ing to its beginning. Our understanding of cancer has evolved over time, from ancient
ideas linking it to bodily imbalances to today’s recognition of its multiple characteristics,
which includes research into genetic complexities and the function of the immune system.
Despite breakthroughs in treatment methods, identifying targeted and effective medicines
remains an important task, necessitating novel approaches in the field of cancer [18,19]. In
recent years, the advent of two-dimensional (2D) materials has inspired significant inter-
est in cancer research. The ultrathin architectures, unique physicochemical features, and
large surface areas of these materials have shown significant potential for cancer diagnosis
and therapy. Graphene and black phosphorus are well-known 2D materials with high
biocompatibility and conductivity, making them promising candidates for targeted drug
delivery and imaging [20–22]. The use of 2D materials for cancer research is a new fron-
tier in which nanotechnology can potentially transform the approach to cancer detection,
therapy, and monitoring. On the basis of our previous publication on MXenes [23], we
discuss the various biomedical applications of MXenes in detail; however, the current article
comprehensively explores the properties of MXenes and their use in fabricating MXene
conjugates for cancer nanotheranostics. In this review article, we shed light on the potential
of different MXene conjugates, including polymers, metals, graphene, and other conjugates,
as promising candidates for advancing cancer diagnosis and therapy. This article also
highlights areas requiring further research and development, providing an overview of the
research gaps in exploring the potential of MXene conjugates for cancer theranostics. Addi-
tionally, this review delves into relatively unexplored areas of MXene conjugate synthesis
for biomedical applications, particularly in cancer management. Furthermore, this study
examined the characteristics and functionalization of MXene conjugates while highlighting
biosafety and stability concerns. This article also highlights areas requiring further research
and development, providing an overview of the research gaps in exploring the potential of
MXene conjugates for cancer theranostics.

2. Synthesis of MXenes

The MXene synthesis technique impacts the physicochemical features, electrical fea-
tures, and number of applications. The approaches utilized for MXene synthesis include
etching, top-down methods, sublimation methods, hydrothermal methods, and bottom-up
methods. These are discussed below in detail.

2.1. Top-Down Approach

Graphene, WS2 powder, carbon nanotubes, MoS2 crystals, black phosphorus, and
other 2D and 3D precursors have been converted to nanosheets and quantum dots using a
top-down approach [24]. This process involves exfoliation and delamination of the bulk
MAX phases to few-layered MXene sheets. This method is important because it can also
be performed at lower temperatures. Large-scale production can be achieved by utilizing
many raw materials via this technique. Nevertheless, this method has several drawbacks,
including its limited yield and requirement for particular treatments. The three most
popular top-down methods are acid refluxing, hydrothermal treatment, and ball milling.
The solvothermal method involves the reaction of raw materials dissolved in a solvent
and heating in an autoclave above the boiling point of water. The combined effects of
pressure, solution pH and high temperature could be utilized to alter the shape, size, and
morphology of MXenes [25]. The solvothermal process is a popular choice for preparing
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MXenes since it is more effective than the hydrothermal method. Figure 2 describes MXene
synthesis by the HF etching method followed by its conversion to quantum dots (QDs)
using the solvothermal method. In this method, temperature and the choice of solvent
play crucial roles. For instance, Peng et al. synthesized Ti3C2 MXene using a hydrothermal
method with the lower toxicity etching agents NaBF4 and HCl. Compared to the Ti3C2
produced through HF etching, the Ti3C2 MXene synthesized using the hydrothermal tech-
nique exhibited a greater c-lattice parameter, wider interlayer spacing, and larger BET
specific surface area. This is because the hydrothermal process involves a gradual release
mechanism. This approach not only avoided the use of higher HF concentrations but
also efficiently prepared Ti3C2 flakes [26]. Barkha Singh and coworkers reported a Ti3C2
MXene nanobipyramid (Ti3C2NB) obtained by a three-step procedure that included exfo-
liation, delamination, and hydrothermal treatment. The Ti3C2NB exhibited fluorescence
along with excitation-dependent emission. The MXene nanoprobyramids showed a 43%
increase in photoluminescence intensity with increasing pH from 3 to 7 and a 38% increase
with increasing temperature from 20 to 80 ◦C. These Ti3C2NB materials showed better
biocompatibility. These materials can be used as sensors for temperature and pH and in
bioimaging [27].
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Another approach is the molten salt etching process (MSE). The MSE approach pos-
sesses a faster processing time (30 min). Here, MXenes are prepared by heating MAX
phases such as Ti4AlN3 in a molten fluoride salt mixture (i.e., NaF, LiF, and KF (12:29:59
weight ratio)) at 550 ◦C under Ar shielding to obtain Ti4N3. Extra cleaning by washing with
deionized water and H2SO4 and delamination in TBAOH is mandatory. The crystallinity
of the delaminated Ti4N3 MXene is less than that of the MXene obtained by HF etching,
which was confirmed by the XRD patterns of Ti4N3. The MXenes obtained by this method
possess the disadvantages of low crystallinity, low purity, surface defects, and high energy
and heat consumption [24]. Urbankowski and coworkers used a mixture of molten NaF,
LiF, and KF salts for 30 min at 550 ◦C for etching Ti4AlN3 to obtain nitride MXenes [28].
It is very difficult to develop nitride MXenes by methods other than molten salt etching.
HF-etched Mo2C can be transformed to Mo2N MXene via heat treatment at 600 ◦C in an
ammonia atmosphere [24]. Liu and coworkers recently reported MS-Ti3C2Tx synthesis by
the intercalation of TBAOH and subsequent delamination by sonication. The obtained
MS-Ti3C2Tx with a -Cl termination was used as an anode in a Li-ion battery, achieving a
high specific capacity and good rate capability [29]. A nitride-based MXene was prepared
using the MSE approach. In this method, a molten fluoride salt mixture was mixed with
inert Ar gas at 550 ◦C to etch the Al layer from Ti4AlN3. Delamination was performed by
TBAOH to produce Ti4N3Tx MXene monolayers [28]. Alternatively, larger single flakes of
MXene can be isolated using the minimally intensive layer delamination (MILD) method
without sonication, resulting in less defective flakes [30]. The MILD approach has im-
proved research prospects for electrical, optical, and size-dependent material properties
while also improving scalability. The MILD process requires centrifugation to remove
large agglomerates and unexfoliated MXene particles. During centrifugation, the dispersed
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MXene solution is spun at high speeds, causing the heavier particles to settle to the bottom
of the centrifuge tube. The authors recommended using the MILD approach in applications
requiring larger flake sizes, high electrical conductivity, and environmental stability.

Most of the synthesis methods for MXenes require fluoride-based chemicals or HF,
which can form -F and -O terminations at the MXene interface. The -F terminations reduce
the electrochemical performance of MXene-based supercapacitors. Hence, fabrication
methods free from fluoride are required to provide favorable electrochemical properties [24].
Chen et al. utilized a simple and time-saving electrochemical etching approach to prepare
-Cl-containing and -F-free Ti3C2Tx in mixed LiCl and LiOH solutions. The method showed
an etching efficiency of 92.2%. For delamination, sonification alone was used without the
use of any organic intercalant [31]. Yang et al. adopted a redox coupling method involving
a Lewis acid molten salt cation and the A element for etching the MAX phases. Fluorine-
free Ti3C2 MXenes with -I, -Br, and -Cl were developed. The developed Ti3C2I2, Ti3C2Br2,
and Ti3C2Cl2 showed pseudocapacitive-like behavior in H2SO4 (3 M) and distinguishable
charge–discharge rates. These excellent super capacitive features of Ti3C2-MXenes as
electrodes with aqueous electrolytes are due to the higher electrochemical activity of Br, I,
or Cl [32].

The ball milling approach has been utilized for fabricating various QDs as a top-down
method to reduce nanoparticle (NP) size. The morphological and physical attributes of the
formed products are affected by many factors, including the milling speed, milling type and
duration, and ball-to-powder weight ratio [33]. Zhang and coworkers utilized this method
for fabricating Ti3C2Tx nanodots by mixing Ti3C2Tx and several solid-state precursors,
such as C, S, P, and Si. The powder-to-ball ratio was approximately 1:20, and the BM was
incubated at 550 rpm for 2 days in an Ar atmosphere. Red-P-aided ball milling leads to
the formation of QDs with a diameter in the 6–25 nm range [33]. An ultrasonic approach
is another environmentally friendly method used for the preparation of MXenes. The
ultrasonication technique converts both nonlayered and layered materials into QDs owing
to the reverberation and acoustic cavitation of the solvents. The delamination, separation,
and exfoliation of MXene sheets are important steps for producing high-quality 2D sheets.
Ultrasonication greatly affects the structure and dimensions of MXene materials. This
process can generate MXenes with a diverse range of particle sizes and morphologies [34].
Ultrasonic irradiation efficiently separates the MXene flakes, producing MXenes with lateral
dimensions ranging from 0.2 to 1 µm and thicknesses less than 10 nm. Under different
ultrasonication conditions, MXene particles can develop various shapes, including plate,
thin sheet, crumpled, spherical, and scroll morphologies. Improper sonication can lead to
impurities and flaws. The choice of solvent for ultrasonication can affect the delamination
performance, particle size, morphology, and concentration of MXene materials. Solvents
with elevated surface energy boiling points, such as DMF, NMP, DMSO, and TBAOH, can
effectively counteract the binding forces of the bulk and convert them into small QDs [35].

2.2. Bottom-Up Approaches

Unlike the top-down approach involving bulk material as the starting material, the
bottom-up approach utilizes molecular materials as the starting material. Employing this
method, MXene quantum dots can also be developed from small precursors of inorganic
and organic molecules. This technique has many advantages, such as fast functionalization,
increased atomic usage, and morphological and structural control, giving MXenes excellent
properties and structures [24]. Owing to the simple operating conditions in comparison
to those of top-down methods, a bottom-up approach could be utilized in the future for
preparing MXenes since there is limited research available on this approach. The most
widely used bottom-up approach is pyrolysis [24]. The process involves heating the raw
materials at higher temperatures in inert atmospheres to decompose the A layer and form
MXenes. However, the limited yield and the requirement for specific treatments are the
disadvantages of this technology. A group of researchers have prepared a quasi-MXene
structure C/Fe3C/Fe composite by employing a simple pyrolysis procedure. The impor-
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tance of ionic liquids in regulating product morphology was explored, and a probable
mechanism was proposed. The quasi-MXene hybrid was found to possess excellent electro-
chemical performance and a longer lifespan than other hybrid materials [36]. Wang and
coworkers developed Mo2C QD–carbon polyhedron hybrids by employing a pyrolysis
approach using zinc acetate, 2-methylimidazole and molybdic acid as starting materi-
als [37]. A higher pyrolysis temperature of the MXene/graphene polymer hybrid resulted
in destruction of the electromagnetic interference (EMI) shielding process [38]. Therefore,
in bottom-up methodologies, alterations in reaction parameters, such as reaction temper-
ature and duration, starting materials (precursors), and concentration, play crucial roles
in the development of MXenes. This method is straightforward and efficient and exhibits
monodispersity in contrast to the top-down approach. Nevertheless, it is imperative that
these techniques be further considered to effectively satisfy unfulfilled requirements.

Another method used in the bottom-up approach is chemical vapor deposition (CVD),
which involves the introduction of a gaseous precursor or a combination of precursors
into a chamber. These substances then undergo a reaction under carefully regulated
circumstances, resulting in the deposition of a solid material onto a surface. The reaction
often entails the breakdown of gaseous precursors, resulting in the creation of a thin layer
on the substrate. Wang et al. [39] reported direct synthesis for scalable and economic
preparation of MXenes by reacting metal halides or metals with methane, nitrogen, or
graphite. This type of direct synthesis procedure allows CVD growth of MXenes and
spherulite morphologies. Chuan Xu et al. developed defect-free and high-quality ultrathin
crystals of molybdenum carbide employing a CVD procedure. These crystals exhibited 2D
superconductivity at low temperatures with sizes up to or larger than 100 µ [40]. However,
its limitations include the production of hazardous byproducts, the need for specialized
equipment, and issues relating to material quality and scalability based on the choice of
metal catalysts.

3. Properties of MXenes

The properties of MXenes include improved thermal and electrical properties, an
adjustable electronic band gap, and a higher Young’s modulus. MXenes also possess
magnetic, electronic, mechanical, vibrational, and electrochemical properties. MXenes
possess high metallic conductivities and hydrophilic surfaces, which differentiates them
from graphene and other 2D materials. The performance and properties of MXenes can
be modified via (i) surface functionalization (by thermal and chemical treatments) and
(ii) composition (different transition metals, “M” and “X”, solid solution formation) [41,42].
It is crucial to understand and identify the properties of MXenes, which in turn lays the
foundation for fabricating MXene conjugates in which MXenes with different properties
can be amalgamated. In this section, a detailed overview of the different properties of
MXenes and their possible applications in the biomedical field are given.

3.1. Electronic and Transport Properties

Compared with those of MAX phases, the electronic and transport properties of MX-
enes are altered by alterations in solid solution formation, stoichiometry, and functional
groups [43]. According to the experimental results, the electrical conductivities of the
MXene pressed discs were greater than those of reduced graphene oxide materials, and
the electrical conductivities were analogous to those of multilayered graphene [44]. The
resistance of MXenes relies upon the layers and the types of functional groups. It increases
with increasing layer length [41]. Ti3C2Tx showed electrical conductivities ranging from
850–980 S m−1 because of the differences in (i) surface functional groups, (ii) defect concen-
trations, (iii) d-spacings among MXene flakes, (iv) delamination yields, and (iv) lateral sizes
induced by each etching process [44]. A lower concentration of HF and shorter etching
time led to the formation of MXenes with fewer defects and greater size, resulting in greater
electrical conductivity. Larger Mxenes have shown 5-fold greater conductivity than small
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Mxenes. The conductivities of Mxenes could also be affected by the background humidity,
resulting in their application in humidity sensing.

Mxenes display various electronic features, including semiconducting, semi metallic,
and metallic phases. Notably, Ti3C2Tx Mxene exhibits outstanding metallic behavior,
demonstrating its effectiveness in detecting ultralow gas concentrations (e.g., acetone:
50–1000 ppb; ammonia: 100–1000 ppb) with a signal-to-noise ratio two orders of magnitude
greater than that of other 2D materials [45]. Mxene-based RRAM devices have exceptional
bipolar resistive switching properties, such as a high ON/OFF ratio of 10,000 and a long
retention period (5 × 104 s), due to the thin atomic layers of Mxenes [46]. Moreover, Mo2CTx
Mxene thin-film photodetectors demonstrate a significant photocurrent in the 400–650 nm
wavelength range, attaining a maximum on/off ratio of approximately 200 under 660 nm
light. These results underscore their remarkable photodetection capabilities, stability under
continuous illumination, and durability against repeated mechanical stress [47].

Surface modification by alkaline processes is vital for enhancing the thermal and elec-
tronic properties of Mxenes [44]. These surface-modified composites exhibit an increase in
conductivity of up to 2-fold. This increase in conductivity is due to the removal/alteration
of functional groups (especially -F) and intercalated molecules [41]. Many studies on the
electrical properties of Ti3C2 have focused on the modification of surface terminations
by thermal treatment. However, a further increase in the calcination temperature above
800 ◦C led to the collapse of the Ti3C2 nanosheets and destruction of the 2D nanostruc-
ture [48]. Another method for altering the electronic conductivity of Mxenes involves
the use of reinforcing materials. An example of such a material is chitosan. Herein, with
increasing chitosan concentration, the electrical resistance of the respective Mxene also
increased [49]. To understand the mechanism by which some Mxenes become semicon-
ductors after functionalization, researchers have explored both pristine and functionalized
Mxene structures. The results showed that the Mxenes are analogous to bare MAX phases
and are metallic owing to the Fermi energy generated by the M d orbital. A small band
gap between the p and d bands of the X-ray p band is present somewhat beneath the d
band. The functionalization with F led to a downwards shift in the Fermi energy owing
to the gain of one electron from the system by each -F, whereas O functionalization led
to additional downwards shifting, allowing Ti2O2 to act as a semiconductor [50,51]. This
property of Mxenes is widely utilized in energy storage applications; nevertheless, Mxenes
can also be employed in biological research due to their exceptional electrical properties.
For instance, the electrical conductivity of Mxenes changes when biomolecules are bound
to their surface, enabling the identification of biomolecules. Additionally, Mxenes can be
utilized in electronics for monitoring physiological signals from the body [52].

3.2. Optical Properties

In recent years, numerous optical properties, such as plasmonic behavior, scattering,
emission, photoluminescence, nonlinear refractive indices, saturation absorption, optical
transparency, and effective photothermal conversion, have been demonstrated for MX-
enes. The interaction of MXenes with light in different ways has an important influence
on MXene research [53]. Surface terminations play a vital role in regulating the optical
properties of MXenes. Muhammed and coworkers determined the effect of M (V or Ti) and
surface terminations (such as F and O) on the plasmonic and optical features of M2CT2
MXene nanoflakes. These authors revealed the development of localized surface plasmon
resonance (LSPR) at a very low energy level in the infrared (IR) region, an important region
specific for chemical sensing, biological imaging, optical communication, heat regulation,
and chemical sensing. The Janus MXene nanoflake Ti2CFO (with a -F top surface termi-
nation and a -O bottom surface termination) shows the narrowest and strongest IR LSPR
owing to its large time-dependent out-of-plane dipole moment. These M2CT2 MXene
nanoflakes indicate the potential for plasmonic behavior. These study results could be
helpful for exploring MXene plasmonics [54].
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Usually, MXenes exhibit very low photoluminescence (PL) in aqueous solution. To
widen the applicability of MXene-QDs (MQDs), especially in the optical and biological
arena, the formation of QDs is a suitable technique because edge effects and quantum con-
finement can occur when QDs are thin. Unlike nanosheets, QDs are very small and possess
luminescence [55,56]. The PL of 2D nanosheets of MXenes is less than that of QDs [57]. In
addition to the QDs obtained from traditional materials, a few MXene-based QDs with PL
characteristics, such as V2C MQDs and Ti3C2, have also been reported, among which the
latter is the most researched [55,56]. Reports have suggested that MQDs can be prepared
by cutting bulky Ti3C2 MXene layers via a hydrothermal approach with a quantum yield of
up to 10%. Colloidal MQDs with various morphologies, such as MQD-100, MQD-120, and
MQD-150, can be obtained. All the MQDs obtained were found to possess luminescence,
but MQD-150 was found to have greater cytotoxicity than the other two products; hence, it
was unsuitable for biomedical applications [58]. Some properties of MXenes that are useful
for industrial use include saturable MXene absorption, which is appropriate for ultrafast
laser applications. The MXene Ti3C2Tx exhibited a wide range of wavelengths, specifically
spanning from 1550 to 1620 nm. This range encompasses the C-band, which is a significant
telecommunication band utilized for communication and signaling purposes [59]. The
efficient nonlinear absorption coefficient was −10−21 m2/V2, indicating its usefulness in
optical switching areas [60,61]. Ti3C2 MXenes have shown efficacy in imaging, diagnosis,
and therapeutic monitoring. Hence, MXenes could be employed for synergistic therapy,
facilitating lesion monitoring. Mxenes possess various applications in sensing, photocataly-
sis, photothermal treatment, photoacoustic imaging, photodynamic therapy, biosensing,
and controlled drug release. Hence, MXenes have been studied for use in tumor ablation
and cancer therapy. Owing to their surface plasmon resonances, they display efficacious
near-infrared light absorption and intense photothermal conversion [62].

3.3. Magnetic Properties

Materials with controllable and strong magnetic moments are essential for application
in spintronics. For most MXenes (bare or otherwise), the ground states are nonmagnetic.
This is due to the very strong bonding between the X element and the transition metal.
However, several MXenes, including Ti2N52 and Cr2C51 (ferromagnetic) and Mn2C54 and
Cr2N53 (anti-ferromagnetic), are predicted to possess intrinsic magnetism. The reason for
this magnetism could be (i) defects in the monolayers, (ii) the innate characteristics of the
transition metal, and (iii) surface terminations [53]. However, the magnetic properties of
MXenes have been less explored. The theoretical predictions differ from the actual practical
experimental results. The predicted magnetic MXenes include magnetic transition metals
(Mn, V, Cr, Mo, Fe, Ni, and Co) or their doped configurations [63]. Recently, magnetism
was revealed in reduced Ti3C2. This is the first report on magnetic MXenes. The magnetic
sensitivities are temperature-dependent beyond a temperature of ~10 K, suggesting that the
reduced Ti3C2 is Pauli paramagnetic, whereas a Curie-like enhancement at temperatures
<10 K indicates that magnetism emerges from 2D layers rather than from the reduced TiO2
NPs. In conclusion, the reduction of Ti3C2Tx enhanced its paramagnetic properties. These
reduced MXenes could have various applications in magnetic devices [64].

The magnetic properties of MXenes are highly susceptible to the surrounding en-
vironment. Ly and his colleagues have shown that a monolayer of Ti2C changes from
a ferromagnetic, half-metal, magnetic metal, or nonmagnetic semiconductor to an AFM
semiconductor when an electric field is applied. Additionally, an electric field strength
above a specified threshold leads to a significant decrease in the magnetic moments of
titanium atoms, which results in a reduction in the effective mass of the atoms. Thus,
modifying the external electric field can alter the magnetic characteristics of MXenes [65].
MXenes possess electromagnetic interference shielding (EMI-S) related to the X-band that
exceeds 70 dB at a thickness of 0.8 mm, making them highly effective EMI-S materials.
Owing to the multilayered architecture of MXenes, the absorption efficiency is increased,
and the internal electromagnetic attenuation is strengthened. Due to their higher electrical
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conductivity, a high amount of electromagnetic reflection could also occur on the surface.
Due to these magnetic properties, MXenes could be useful as contrast agents in bioimaging.
However, further improvements in the shielding abilities of electromagnetic interference
are required to determine the usefulness of these materials in biomedicine [57].

3.4. Mechanical Properties

Although MXenes possess flexible characteristics 2–3 times less than those of graphene,
they possess a bending stiffness ~3.5 times greater than that of graphene (1.2 eV for
graphene vs. 4.47 eV for Ti2C), demonstrating that these materials could be utilized as
composite strengthening materials [66]. These materials exhibit superior contact potential
compared to graphene in hybrid applications due to their inherent inclusiveness. The
atomic layer thickness is responsible for the mechanical flexibility of MXenes. The physical
characteristics of MXenes might differ depending on the surface termination. Bai et al.
demonstrated a significant connection between Ti atoms and O terminations in Ti3C2 and
Ti2C, in contrast to the interaction observed with OH- and F-terminated MXenes. In addi-
tion, MXenes with O terminations have exceptional rigidity because of the strong bonding
between Ti and O (607 GPa), surpassing the binding strength of titanium–fluorine (Ti-F;
391 GPa) and titanium–hydroxyl (Ti-OH; 285 GPa) bonds [67]. Yorulmaz and coworkers
calculated the Young’s modulus and demonstrated that the MXene becomes stiffer with
increasing transition metal mass. This finding was not the same for nitrides [68]. Several
MXenes based on carbides exhibit mechanical stability and have greater elastic moduli
than MXenes made of nitrides. Moreover, individual MXene flakes exhibit instability in
settings containing oxygen and moisture, yet they remain stable in water when oxygen is
eliminated or in dry air. Numerous investigations [69–71] have shown that when exposed
to air and water, Ti3C2Tx MXene progressively oxidizes into titanium dioxide and carbon,
resulting in a decrease in its stability and performance. It has been discovered that dissolved
oxygen plays an important role in the breakdown of MXene nanosheets in water [71]. The
main oxidation mechanism is driven through hydrolysis [72,73]; thus, it is evident that
isolating air and water may impede the oxidation and hydrolysis of MXenes. The few
available approaches for improving the stability of MXenes include defect passivation,
the use of organic dispersions, and the use of polymer composites [74]. Polymers such
as PVA and PVP have been shown to improve the stability of MXenes by decreasing the
number of reaction sites. However, these polymer composites do not completely prevent
oxidation. For instance, the conductivity of a sample with 50 wt% filler (PVA) decreased to
20% of the initial value after 50 days [75]. This requires a greater filler content to attain the
necessary performance, which increases the cost and degrades the material’s mechanical
qualities. Polystyrene (PS)/MXene composites have also been reported [76] to improve
MXene stability. PS/MXene composite particles form a 3D conductive network structure
that resists oxidation and enhances electrical conductivity. The results showed that the com-
pact and ordered 3D conductive network structure has greater performance stability than
the usual random structure. The conductivity of the composite with a filler (PS) content
of 1.81 vol% maintained 53.4% of the initial value after 180 days. Surface modification of
MXenes with soybean phospholipids [77], polyethylene glycol (PEG) [78], or cellulose hy-
drogels [79] has been shown to increase their stability in anticancer applications. However,
detailed investigations addressing the stability of these materials are lacking. To address
this issue, a study [80] was conducted on the surface modification of MXenes utilizing
dopamine (DA) and sodium ascorbate (SA) to improve their stability and photothermal
therapy (PTT) against cancer. DA was chosen for its antioxidative characteristics due to
the presence of catechol moieties, while SA was chosen to decrease surface oxidation and
promote colloidal stability. The storage stability of surface-modified MXenes was explored
by comparing their UV–Vis spectra, and it was discovered that the absorbance spectra of
surface-modified MXenes after 40 days of storage were identical to those obtained after
0 days of storage. However, due to their instability, the unmodified MXenes showed a
decrease in NIR absorbance after 40 days of storage compared to 0 days.
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4. Fabrication of MXene Conjugates

MXene conjugates are functionalized materials made of MXene that have been com-
bined or chemically altered for a variety of applications. These conjugates can be engineered
to display particular characteristics or abilities according to their intended use. Surface
nanopore fabrication techniques have the potential to enhance factors such as drug de-
livery capabilities, hydrophilicity, stability/dispersion, biocompatibility, and mesoporous
structural characteristics of MXenes. However, to address concerns related to toxicity and
structural defects, additional research is needed to optimize surface modifications as well
as multifunctionalization strategies. Furthermore, comprehensive studies are required
to investigate factors such as biocompatibility, biodegradability, biodistribution, immune
system interactions, controlled delivery, and sensitivity to neurotransmitters for potential
clinical and biomedical applications [81]. MXene conjugates can be fabricated through a
range of methods, including hydrothermal synthesis, deposition techniques, hot pressing,
drop casting, solution processing, and in situ polymerization. These methods allow for
the creation of customized nanocomposites that possess improved properties for use in
energy storage, catalysis, sensing, and biomedical engineering. Each method of MXene
fabrication has its own advantages and disadvantages. It is important to prioritize investi-
gating one-step greener synthesis techniques that are cost-effective, safe, and efficient. The
focus should be on optimizing conditions to fabricate multifunctional nanostructures that
produce in high yields and exhibit good biocompatibility [82]. Table 1 details the different
fabrication techniques used for the preparation of MXene conjugates. This table shows the
numerous methods for producing MXene conjugates and their applications. The adaptabil-
ity of MXene conjugates, as illustrated by the numerous manufacturing processes and uses
outlined in the table, emphasizes their potential to address a wide range of disciplines.

4.1. Hydrothermal/Solvothermal Synthesis

The synthesis of MXene nanocomposites with enhanced physiochemical and thermo-
mechanical properties using the hydrothermal/solvothermal method, a chemical strategy, is
a cost-effective and straightforward process [83]. The reaction involved mixing the mineral-
izer, liquid solvent, and precursor substance at high pressure and temperature for a specific
time and then washing. Nanocrystals produced through hydrothermal/solvothermal pro-
cesses exhibit excellent properties, such as strong crystallinity, good morphology, precise
NP size control, and outstanding dispersibility [15]. Therefore, this method is widely used
to produce controlled MXene-based nanocomposites. The hydrothermal method uses water
as the solvent, while organic solvents are employed in the solvothermal method [84]. By
subjecting the reaction mixture to high temperature and pressure using an autoclave, a
supercritical fluid is generated with increasing temperature and pressure above the critical
point of the solvent, allowing for efficient dissolution of chemical compounds that are
insoluble under normal conditions [85,86]. However, a significant drawback of this method
involves the formation of corrosion by hydroxyl units in the presence of high temperature
and pressure.

MXenes have been hybridized with several inorganic materials, such as transition
metal oxides, phosphides, nitrides, and chalcogenides, using hydrothermal/solvothermal
synthesis [87]. MXene-based nanocomposites produced through this method have demon-
strated potential in energy storage applications, particularly as supercapacitors, due to
their exceptional electrochemical energy storage efficiency and cycle life. Furthermore, the
solvothermal technique has been used to integrate MXenes into other material matrices,
such as SnTe, to improve their electrical and thermal transport properties, opening doors
for high-performance thermoelectric materials [88]. Researchers synthesized a nanohybrid,
Ti3C2Tx (MXene)/CoS2/CuCo2S4, through hydrothermal synthesis for application in the
design of supercapacitor devices. The process involved coating CuCo2S4 particles and
sheet-like CoS2 onto Ti3C2Tx nanosheets. By adjusting the ratio of MXene to CoS2/CuCo2S4,
the electrochemical efficiency of the hybrid nanocomposite electrode was significantly en-
hanced [89]. By adjusting the reaction temperature during hydrothermal synthesis, precise
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control of the lateral particle size of MQDs can be achieved, and large-scale production
can be achieved. Further research is necessary to optimize hydrothermal parameters and
develop new synthetic methods to overcome MQD oxidation while maintaining structural
integrity for practical applications. Ti3C2Tx quantum dots (MQDs) can be synthesized from
Ti3C2Tx MXene nanosheets using the solvothermal method. For the synthesis of MQDs
with various sizes and well-dispersed quantum yields, different organic solvents, such as
ethanol, DMSO, and DMF, can be used. The polarity, boiling point, and degree of oxidation
of the solvent may influence the characteristics of the MQDs. Solvothermal synthesis can be
used to precisely control the morphology of MQDs and create stable and evenly distributed
samples that have numerous possible applications [86].

4.2. Deposition Methods

A variety of deposition methods, including electrodeposition, atomic layer deposition
(ALD), photodeposition, and CVD, are applied to synthesize MXene composites. These
methods provide precise control of the deposition process, enabling the production of
customized materials with cutting-edge characteristics [85]. Large, high-quality 2D ma-
terials, electronic components, and flexible optoelectronics are all readily and efficiently
made using the CVD technique. A wide range of materials, including semiconductors,
nanocomposites, alloys, and metals, can be manufactured using this technique. [90]. ALD,
similar to CVD, divides reactions into two different halves and ensures that the precursor
materials do not interact while being deposited. By precisely controlling film development
at the atomic level, this technique enables the deposition of thin films that exhibit excellent
conformality (uniform and precise adhesion to the substrate’s contours, ensuring smooth
and uniform coating) and consistent thickness on complex substrates. ALD films have been
recognized for their superior homogeneity, chemical bonding to the substrate, and lack of
pinholes [91].

MXenes are combined with other transition metal oxides, phosphides, C-based materi-
als, and metals to produce MXene hybrids by electrodeposition techniques. By applying
an electric field, this approach uses MXene and other compounds to deposit them onto
electrodes or substrates. This method enables the creation of MXene composites with the
required characteristics by allowing user control of the composition, shape, and thickness
of the deposited layers. Metallic MPs are deposited onto MXene surfaces by a technique
known as photodeposition, which utilizes light irradiation. This simple and controlled
technique allows the integration of MXenes with metallic components and the selective
deposition of NPs [92,93]. Overall, the deposition methods offer very accurate control
and customization of MXene composites, but there are certain challenges that must be
addressed, including high production costs, oxidation protection, and scalability. Despite
these challenges and setbacks, MXene composites are still a valuable resource for creating
high-quality materials suitable for various applications and can be designed with this
approach with proper optimization.

4.3. Solution Processing

This method is often used to create polymer composites of MXenes. Due to their hy-
drophilic nature and functional groups, MXene nanosheets are extremely compatible with
polar solvents, including N,N-dimethylformamide (DMF), water, and dimethyl sulfoxide
(DMSO) [94]. This method disperses premodified MXenes and polymer components in
a variety of solvents to increase the dispersibility of the NPs. This approach results in
easier combinations of various polymers, such as cellulose, polyethylene oxide, chitosan,
polyvinyl alcohol, and polyacrylate, with MXenes. Inorganic compounds such as transition
metal oxides and chalcogenides can also be hybridized with MXenes through the use
of solution processing techniques [95,96]. Using processing techniques to create MXene
composites has produced a number of benefits despite a handful of possible downsides.
Small-scale manufacturing in laboratories is made possible by how easily MXenes can
be incorporated into polymers with proper optimization of the solvent removal process
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after blending. The flexibility of solution processing in utilizing different ingredients and
solvents allows for the development of MXene composites with a wide variety of highly
beneficial attributes.

In addition to developing composites with substandard mechanical properties, the
method itself may produce a sizable quantity of environmental waste. The scaling and
practicality of solution processing may also be hampered by the difficulty of removing
solvents after the blending process [85]. The selection of solvents and surface modifications
can also enhance the stability of MXenes and expand the range of compatible polymers.
Additionally, solution-based processing techniques, such as epoxy, polysulfone, PVDF,
polyacrylonitrile, and polycaprolactone, have been utilized for various polymer matrices,
highlighting the versatility and potential of this method for creating MXene composites [97].

4.4. Dropcasting and Adsorption

Dropcasting and adsorption are two nonreactive techniques used to synthesize MXene-
based composites. These methods have the advantage of avoiding high-temperature
treatment since they rely on electrostatic and van der Waals forces for self-assembly [98,99].
MXene/C-based hybrids are usually synthesized by the adsorption technique. By drop-
casting a colloidal solution of MXene onto a slot antenna array, an ultrathin film may be
created [100]. This approach allows quick processing, high uniformity, and effective loading
onto substrates. In general, drop casting and adsorption techniques offer straightforward
and effective solutions for producing MXene-based composites without requiring high-
temperature processing. This approach also offers flexibility in incorporating different
secondary materials.
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Table 1. Fabrication of MXene conjugates and their application.

Types of Conjugates Method of Preparation/Design Reason for Usage Application Reference

Metal conjugates

Pt-TBA−Ti3C2Tx
(Platinum nanoparticle

deposited MXene)

Atomic layer deposition (ALD)
Etching agent: HF

Delaminating agent: TBAOH

Excellent hydrogen evolution reaction (HER)
activity,

Stability, homogenous dispersion
Excellent conductivity

Effective commercial
catalysts for HER. [91]

Ti3C2/ZIF-67/CNTs In situ synthesis with mixing Amplified detection signal
High stability and reproducibility

Electrochemical sensors in
pharmacology [101]

Quantum dots
nanoconjugates

Nonoxidized MQDs-Ti3C2Tx
Self-designed micro explosion

method

Destruction of tumor blood vessel integrity
and cancer cell death

Excellent biocompatibility with normal cells
In vivo therapeutic performance shows highly
desired tumor suppression and killing effect

Cancer Catalytic Therapy [102]

PLL-protected Ti3C2 MQDs Sonication cutting
Hydrothermal synthesis

Excellent blue luminescence
High sensitive fluorescence for detection of

trypsin and Cyt-c

Fluorometric determination
of cytochrome c and trypsin [103]

MXene-Polymer
nanoconjugates

Ti3C2 functionalized with
soybean phospholipid (SP),
and poly (lactic-co-glycolic

acid) (PLGA)

Two-step exfoliation approach of
HF

etching then TPAOH
intercalation

Highly effective photothermal therapy (PTT)
agent for tumor therapy

Novel photothermal agent used for cancer
therapy

Anticancer therapy [104]

MnOx/Ti3C2–SP Simple redox reaction

Multifunctional theragnostic agent for MR/PA
imaging-guided PTT against cancer

In vivo biocompatibility evaluation ensures
safe clinical translation

pH-Responsive MRI-Guided
Tumor Hyperthermia [105]

MXene hydrogels

MXene Composite Hydrogels HF etching
Liquid-phase exfoliation (LPE)

Dual-modality PTT and chemotherapy against
cancer

Favorable biocompatibility

Light-Induced Swelling and
Bimodal Photothermal

Chemotherapy
[79]

Ti3C2/PAM NC hydrogels In situ free radical
polymerization

Excellent mechanical properties, high
deformability, and stretching ability due to

uniform fine structures
High drug load and drug release percentages,

making them suitable for biomedicine
applications

Enhanced mechanical and
drug release properties [106]
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Table 1. Cont.

Types of Conjugates Method of Preparation/Design Reason for Usage Application Reference

Biomimetic MXene

Nb2C plasmon In situ preparation

Effective in destroying tumor cells due to
lower heat resistance compared to normal cells

Photoacoustic imaging revealed increased
blood perfusion at the tumor site

Targeted cancer treatment [107]

MXene and AuNP@BLM
(biomimetic bilayer lipid

membrane)
Drop-casting method

Specificity shown by discriminating
noncomplementary DNA and mismatched

sequences
Possibility of microfluidic platform assembly

for BRCA1 diagnosis

Bilayer lipid membrane
biosensor for zeptomole
detection of BRCA1 gene

[108]

MoS2 QDs-MXene
heterostructure and Au

NPs@biomimetic lipid layer

Microwave-assisted
hydrothermal method

Clinical detection of miRNA-135b in exosomes
in the ascites of gastric cancer patients

Application as a potential diagnostic tool for
gastric cancer

ECL sensor in cancer
detection [109]

MXene-graphene

Au-Pd/MXene/LSG
(Laser-scribed graphene) Drop-casting

It is a cost-effective electrode material and
biocompatible

High electrocatalytic activities towards the
oxidation of ascorbic acid, dopamine, and uric

acid
Skin-adaptable, user-friendly, and label-free

direct measurement

Detection of ascorbic acid,
dopamine, and uric acid [110]

TiC2Tx nanolinks and
graphene

Liquid-phase exfoliation
HF etching

Delamination

Integrated temperature sensing with strain
sensors allows accurate strain measurement
without complex temperature compensation
Superior sensitivity in strain and temperature

measurements

All-printed thin-film bimodal
sensor [111]
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5. MXene-Based Conjugates for Nanotheranostics

Nanocomposites are gaining popularity due to their unique ability to integrate two or
more species. Two-dimensional MXenes have gained widespread attention from scientists
owing to their distinctive structural properties, metallic conductivity, diverse surface chem-
istry, large surface area, hydrophilicity, biocompatibility, and customizable particle size.
These characteristics make them useful for generating multifunctional nanocomposites.
One such advanced application of nanocomposites is the preparation of nanotheranos-
tic platforms that integrate diagnostic and therapeutic functions into a single nanoscale
platform. Photothermal treatment, which involves near-infrared (NIR) laser irradiation
between 700 and 1300 nm, is a less intrusive approach to cancer treatment than standard
approaches such as chemotherapy and radiotherapy. Photothermal agents play an im-
portant role in optimizing PTT and must meet certain requirements, such as an excellent
extinction coefficient (α) for efficient laser absorption, exceptional photothermal conversion
efficiency (PCE) (η) to convert light into heat, and excellent photothermal stability. MXenes,
particularly Ti3C2, have demonstrated outstanding light absorption and inherent efficiency
(nearly 100%), outperforming other photothermal nanomaterials, such as CNTs [112]. The
localized surface plasmon resonance (LSPR) effect caused by the semimetal characteristics
of MXenes accounts for their outstanding light absorption and conversion capacity [104].
However, the practical application of MXenes is limited by their sensitivity to oxidative
breakdown, which has a specific influence on their prospective use in biological situations.
This problem may be solved by conjugating the MXene with the proper components.

5.1. MXene–Polymer Conjugates

MXenes suffer from limitations in biomedical applications despite their substantial
features, such as a high surface area, improved hydrophilicity, reduced toxicity, conductivity,
and size tunability. These limitations include reduced stability in physiological settings,
insufficient sustained and regulated active release, and limited biodegradability. MXene–
polymer nanocomposites have evolved as a solution to these problems. Lin and coworkers
fabricated ultrathin Ti3C2 MXene nanosheets of atomic thickness for efficient photothermal
destruction of tumor cells [104]. The nanosheets were exfoliated via exfoliation via HF
etching followed by tetrapropylammonium hydroxide (TPAOH) intercalation. The LSPR
effect exhibited by the Ti3C2 nanosheets resulted in a good PCE of 30.6% at 808 nm. The
physiological stability of Ti3C2 was enhanced by modifying it with soybean phospholipid
and PLGA. In vivo studies revealed efficient 808 nm NIR-induced cancer ablation by
intratumoral injection of Ti3C2-SP nanosheets (20 mg/kg) or by 2 mg/kg Ti3C2-PLGA
nanosheet implants. Significantly, the phase transformation features of the PLGA/Ti3C2-SP
implant enable cancer cell death while also ensuring that no implanted component leaks
into the circulation, resulting in great in vivo biosafety. Szuplewska et al. described the
localization of Ti2C-PEG nanoflakes in cancerous cells and suggested that MXene has
different affinities for membranes of normal and cancerous cells, which may be related to
its selectivity and nanosized planar configuration [113].

Feng et al. constructed Mo2C MXenes for photothermal tumor hyperthermia for the
first time [114]. The exfoliated Mo2C was functionalized with polyvinyl alcohol (PVA) to
form Mo2C-PVA nanoflakes, which degraded faster and exhibited improved biocompatibil-
ity. The as-prepared Mo2C-PVA nanoflakes displayed broad absorption spectra in both the
NIR I and II regions, with better PCEs of 24.5% and 43.3%, respectively. The photothermal
cancer ablation potential of Nb2C-PVP in the NIR I and II regions was explained by Lin and
coworkers [115]. The PCE of the prepared nanocomposites was 36.5% and 46.5% for the NIR
I and II regions, respectively. The PVP coating (20.36%) on the Nb2C nanosheets confirmed
the efficient intratumoral localization of the nanocomposite, with a systemic circulation
half-time of 1.31 h. PT ablation at 808 nm and 66 ◦C was observed at a temperature of 61 ◦C
under a 1064 nm NIR laser (Figure 3). Its biosafety and biocompatibility were demonstrated
by its rapid excretion and absence of phototoxicity. Enzyme-activated biodegradation of
the Nb2C-PVP nanocomposite was achieved using human myeloperoxidase (hMPO) and
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hydrogen peroxide. Liu and coworkers developed a Ti3C2 MXene-based nanocomposite for
synergistic phototherapy against cancer [78]. The exfoliated ultrathin MXene exhibited an
exceptional extinction coefficient (28.6 Lg−1·cm−1) and a good PCE of approximately 58.3%
upon 808 nm NIR irradiation. The nanosheets were endowed with multiple functions
through layer-by-layer surface functionalization with doxorubicin (DOX) and hyaluronic
acid (HA). The prepared nanocomposite system exhibited an enhanced permeability and
retention (EPR) effect and precise targeting of CD44+ T cells, leading to improved tumor
accumulation at a low dose.
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for in vivo photothermal tumor ablation.

The presence of functional groups on the MXene surface enables polymer functionaliza-
tion. As a result, MXene–polymer nanocomposites have a number of favorable properties.
These include excellent photothermal conversion efficiency, selectivity, and stimulus reac-
tivity, particularly when targeting cancer cells. Furthermore, these nanocomposites have
improved electron sensitivity, antimicrobial capabilities, and a variety of other advanta-
geous qualities. The resultant nanocomposites offer significant potential for enhancing
biological applications by combining the unique features of MXenes with the adaptability
of polymers.

5.2. MXene–Metal Conjugates

MXene-based metal-conjugated hybrids are created by integrating metallic nanocom-
ponents such as Ag, Au, Pd, and Pt onto the surface of MXenes, increasing the stability
and activity of the nanocomposite and enhancing its suitability for biomedical applications.
Compared with bulk materials, metallic NPs offer superior magnetic, electrical, and optical
characteristics, making them interesting diagnostic agents in MXene–metal nanocomposite
fabrication. Several limitations of traditional chemotherapy can be solved by combin-
ing surface-modified MXenes with metal NPs. In a recent study by Xi and coworkers,
Ti3C2Cl2 MXene-based nanocomposites were developed via an HF-free technique [116].
The Au/Pt/Ti3C2Cl2 nanocomposite was developed by a single-step self-reduction ap-
proach, where MXene can act as an efficient reducing agent. Because of their large specific
surface area and characteristic accordion arrangement, the MXene nanoflakes acted as
both a reducing agent and a supporter during the reduction process. The as-prepared



Materials 2024, 17, 1423 17 of 35

nanocomposite demonstrated outstanding catalytic activity in H2O2-TMB and O2-TMB
systems, as well as low cytotoxicity and acceptable biocompatibility. The biosensor enabled
in situ sensing of H2O2 produced by HeLa cancer cells along with GSH sensing. Compared
to other previously published approaches, the colorimetric biosensor created in this re-
search has a lower detection limit and a wider detection range, indicating its possible utility
for future development. Furthermore, the biosensor’s sensitivity and repeatability for
colorimetric detection of H2O2 were assessed. Liu et al. synthesized an MXene@Au-PEG
nanoplatform for improved loading of DOX with pH-triggered and NIR light-induced
drug release [117].

The exfoliated MXene nanosheets were functionalized with PEG aldehyde chains via
Au NPs, forming an MXene@Au-PEG-DOX nanocomposite that exhibited efficient pho-
tothermal stability and biocompatibility both in vitro and in vivo. Furthermore, the com-
posite demonstrated synergistic photo/chemotherapy for cancer therapy due to the good
photothermal conversion capacity of both the Au and MXene particles. Tang and coworkers
fabricated Ti2C3@Au nanocomposites via a seed growth approach for image-guided tumor
treatment [118]. The exfoliated nanosheets were modified with poly(allylamine hydrochlo-
ride) to form Ti3C2-PAHs with a change in zeta potential from −24 mV to 40 mV, which
assisted in the negative charge of the Au particles via electrostatic interactions. The growth
of Au particles on the surface of the Ti3C2 nanosheets occurred via electrostatic interactions
between the Ti3C2 nanosheets and negatively charged Au seeds. The biosafety and compat-
ibility of the Ti3C2@Au composite could be efficiently enhanced by the addition of thiol
functional groups. Furthermore, this approach greatly improved the optical absorbance
in the NIR biological window. The excellent X-ray attenuation capability and better opti-
cal efficiency of the nanocomposite enabled dual-modal imaging (Figure 4). Compared
with PVP-modified Ti3C2 nanosheets, the PEGylated Au composite of MXene improved
tumor cell killing, which indicated that the Au-MXene composite had a greater PCE. The
in vivo PTT efficacy and radiotherapy efficacy of the nanocomposite were assessed in 4T1
tumor-bearing BALB/c mice. As predicted, the PTT + radiotherapy combination group
demonstrated the most severe tumor cell destruction, while the other groups showed
minimal or no cancer cell destruction.
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For PTT applications, MXenes cannot be used to accurately diagnose and treat the
effective killing of tumor cells. To address this issue, An et al. developed an “all-in-one”
nanoconjugate of Ti3C2 MXene nanosheets for MRI-guided hyperthermia and chemothera-
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peutic tumor destruction [119]. This was accomplished by bonding manganese (Mn) ions on
the Ti3C2 nanosheet surface, followed by functionalization with biocompatible PEG to form
PEG@Ti3C2-Mn. As the Mn particles exhibit Fenton-like catalytic characteristics (the ability
of a material to catalyze the generation of highly reactive hydroxyl radicals (·OH) from
hydrogen peroxide (H2O2)) along with magnetic properties, the prepared nanocomposite
could act as a chemodynamic agent by converting H2O2 to OH radicals and MRI contrast
agents. Although prior research has revealed the efficacy of cancer cell killing, only a few
studies have integrated different therapeutic modalities to produce superior outcomes.
Furthermore, as developing inorganic nanomaterials, MXene and MnO2 nanozymes have
excellent size fits. As a result, to improve the efficacy of multimodal tumor ablation, Li
et al. developed a simple and fast process for preparing MnO2-Ti3C2 nanocomposites and
evaluating their photothermal potential [120].

5.3. MXene–Graphene Conjugates

MXene nanosheets have demonstrated high efficiency as a hybridization matrix com-
pared to graphene. Various MXene–graphene hybrid composites exhibit exceptional struc-
tural robustness, conductivity, and flexibility qualities, as well as unique electrical, elec-
trochemical, and mechanical features. When used in a PEG matrix, these composites
demonstrated increased through-plane heat conductivity. The improved electromagnetic
interference (EMI) shielding performance of the developed composites reached 36 dB
at a thickness of 2.5 mm. Magnetic MXene (Ti3C2Tx)-reduced graphene oxide aerogels
with magnetic nickel nanochains were shown to have appropriate multifunctionality, hy-
drophobicity, and heat insulation activity. The 2D materials, such as macroscopic hydrogels,
continue to be very fascinating for constructing 3D structures. Wychowaniec and colleagues
reported a unique method for producing chemical intersheet crosslinks between Ti3C2Tx
and graphene oxide via an ethylenediamine-mediated process to produce an rGO-MXene
hydrogel [121]. They introduced a temperature-sensitive crosslinking technique resulting
in the formation of hydrogels with characteristic chemical and 3D architectural properties.
The first synthesized hydrogel composite demonstrated an improved hydrophobic surface
with a stiffer surface and an elastic modulus of approximately 40 kPa. Fluorescent confocal
microscopy analysis of three human cell lines, namely, SH-SY5Y, MSU 1.1, and HeLa,
demonstrated that these cells created an extended 3D cellular network on these hydro-
gel composites. After two days of incubation with the rGO-MXene hydrogel composite,
the neuroblastoma cell line SH-SY5Y self-assembled into neurosphere structures, which
further disassembled into diffusive cellular networks on the seventh day of incubation.
The rGO-based hydrogel structures facilitated cell migration and allowed nutrients to
diffuse throughout the scaffolds. Prolonged production of cells with migration-driven
cytoskeletal characteristics, such as filopodia, neurites, and lamellipodia, demonstrated
strong interpore penetration capacities in all cultivated cell types. This behavior seems to be
more pronounced in the rGO-MXene hydrogel composite than in the rGO hydrogels them-
selves, resulting in unique cellular interactions with the Ti3C2Tx flakes, which are cell-type
independent. These findings point to the distinct biological activities of these materials and
their potential application in the realms of tissue engineering and customized medicine. A
unique 3D composite aerogel (3D patent blue (PB)/rGO/MXene composite aerogel (GMA))
was created by Zhao and colleagues and is used to sense the secretion of H2O2 from live
cells in real time [122]. The excellent peroxidase-like activity and clear porous structure
of the 3D composite aerogel were demonstrated. The outstanding electrocatalytic activity
towards H2O2 was demonstrated by an electrochemical sensor based on 3D PB/GMA. It
could successfully separate cancer cell lines from normal cell lines when used for real-time
tracking of H2O2 release from live cells, suggesting that it has significant potential for use
in clinical diagnostics. In another study by Zhao et al., a biosensor of a ZnO nanorod sensor
was fabricated with an rGO-MXene nanocomposite for GSH sensing [123]. It was found
that covering ZnO nanorods with RGO/MXene-derived TiO2 could effectively promote
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ZnO nanorod development and greatly enhance the performance of ZnO nanorod-based
GSH sensors.

5.4. MXene–Hydrogel Conjugates

The conjugation of MXenes with hydrogels is highly important due to their critical
function in the treatment of cancer. Hydrogels, which are recognized for their ability to
hydrate substances, high loading capacity, and controlled release characteristics, can be used
to effectively transport and deliver various molecules to specific target sites. By regulating
the clearance and denaturation of proteins and other therapeutic moieties in challenging
physiological environments, this integration effectively preserves localized concentrations
at disease sites while reducing the occurrence of adverse effects associated with burst or off-
target release [124]. Despite this, hydrogels encounter numerous obstacles due to the limited
spatial–temporal controllability exhibited by diffusive triggering molecules. These issues
can be addressed by having an exogenous control or trigger (such as ultrasound, magnetic
fields, or light) to monitor and regulate the release of such molecules. With this concept of
employing a hydrogel–MXene conjugate, a study [125] developed an injectable composite
hydrogel system that responds to near-infrared (NIR) light (Figure 5). This was achieved
by combining Ti3C2 MXene and protein therapeutics with an agarose hydrogel, which
enabled the controlled release of functional proteins in response to specific cellular signals
upon exposure to NIR light. The platform’s adaptability was demonstrated through the
development of a composite hydrogel system (MXene@agarose/TNF-α) that incorporates
tumor necrosis factor-α (TNF-α) and enables the use of NIR light to modulate proapoptotic
signaling in tumor spheroids in vitro. By utilizing the strong ability of the NIR laser to
diffuse deep into tumors, MXene@agarose/TNF-α enabled the effective elimination of
tumors from a xenograft animal model. The MXene@hydrogel/protein system allowed
multichannel modification of the release rate as well as precise “on/off” controlled drug
release.

Materials 2024, 17, x FOR PEER REVIEW 20 of 37 
 

 

sensitivity, and ability of this conjugate to minimize tumor recurrence, highlighting its 

potential against cancer while minimizing adverse effects. 

 

Figure 5. Schematic illustration of the potential of MXene–hydrogel conjugates for cancer treatment. 

Reproduced with permission from [125]. 

5.5. Biomimetic MXenes 

Recent progress in enhancing the biocompatibility of NPs has involved coating or 

fusing NPs with cell membranes (Figure 6). This endows NPs with exceptional biocom-

patibility and enhances their tumor targeting ability and circulation time [128,129]. By in-

tegrating diverse immune cell membranes, including bacteria, erythrocytes, platelets, and 

white blood cells, the physicochemical characteristics of core NPs synergize with the bio-

logical attributes of native source cells. Such immune-cell engineering is evolving as a 

promising research area with potential applications in nanoscale biomedicine to overcome 

the limitations of core NPs. In this context, the nature-inspired modification of MXenes is 

nascent, yet few reports utilize this concept. 

Figure 5. Schematic illustration of the potential of MXene–hydrogel conjugates for cancer treatment.
Reproduced with permission from [125].

Stimulus-responsive DNA hydrogels, notable for their biocompatible three-dimensional
network architectures, show great potential as options for cancer therapy. In the context
of exploring the potential of MXene-hydrogel conjugates for cancer treatment, another
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study [126] developed a robust framework by combining Ti3C2TX-based MXenes with
DNA hydrogels, resulting in a highly effective synergistic photothermal–chemical cancer
treatment system. When exposed to NIR, the MXene material generated heat, which led
to a reversible change from a gel to a solution in the MXene-DNA hydrogel loaded with
DOX. This approach enables precise and controlled delivery of the medicine for targeted
cancer treatment. After the NIR irradiation stopped, the system returned to its initial state,
demonstrating its ability to adapt and efficiently achieve targeted cancer treatment with
minimal adverse effects. After surgery, residual tumors are highly likely to recur; thus,
techniques for eliminating residual tumors must be developed. Antitumor drugs adminis-
tered locally after surgery have been demonstrated to be effective at eradicating surviving
tumor cells. Nevertheless, there are still issues with using these drugs to treat patients
consistently and effectively over the long term. Focusing on this issue, Wang et al. [127]
introduced an innovative strategy by developing a photothermal-responsive biopaster
created by systematically arranging propyl gallate (PG)-grafted MXenes onto a calcium-
alginate hydrogel. This biopaster aimed to inhibit tumor recurrence after surgery. The
organized configuration of the MXene nanosheets with PG grafting exhibited an extended
degradation period in comparison to that without PG grafting, resulting in a consistent
photothermal response that persisted for 14 days. As a result, the biopaster that was created
showed a long-lasting ability to use heat from light to treat diseases, effectively eliminating
any remaining tumors and preventing tumor recurrence after surgery. To summarize,
MXene–hydrogel conjugates offer a promising approach for precise cancer treatment. The
studies demonstrated the controlled drug release, photothermal sensitivity, and ability of
this conjugate to minimize tumor recurrence, highlighting its potential against cancer while
minimizing adverse effects.

5.5. Biomimetic MXenes

Recent progress in enhancing the biocompatibility of NPs has involved coating or
fusing NPs with cell membranes (Figure 6). This endows NPs with exceptional biocom-
patibility and enhances their tumor targeting ability and circulation time [128,129]. By
integrating diverse immune cell membranes, including bacteria, erythrocytes, platelets,
and white blood cells, the physicochemical characteristics of core NPs synergize with the
biological attributes of native source cells. Such immune-cell engineering is evolving as a
promising research area with potential applications in nanoscale biomedicine to overcome
the limitations of core NPs. In this context, the nature-inspired modification of MXenes is
nascent, yet few reports utilize this concept.

Photonic crystal arrays were fabricated in one such study [130], inspired by the wet-
tability and adhesion of the Stenocara beetle. The fluorescence resonance energy transfer
mechanism was employed to successfully inhibit the fluorescence signals of DNA probes
modified with quantum dots using MXene nanosheets, even in the absence of specific
targets. In addition, the development of nanosheets led to an improvement in the contrast
of the structural colors. The bioinspired MXene films derived from Ti3C2Tx exhibited
exceptional flexibility. The MXene family has been identified as a very effective group
of near-infrared II (NIR-II) photothermal agents. These agents are distinguished by their
significant specific surface area and impressive ability to convert light into heat. One
study [131] explored the ability of MXenes to combine PTT with immunotherapy. The de-
veloped Nb2C nanosheets demonstrated a significant PCE upon irradiation with a 1064 nm
laser. The application of NIR light was found to improve tissue penetration. The stability
and loading efficiency of the nanosystem were enhanced by coating with polydopamine,
and to further address the issue of excessive blood clearance, a red blood cell layer coat-
ing was used. The efficacy of the created Nb2C@PDA@RBC nanoplatform was observed
through primary tumor suppression and inhibition of secondary tumor development. This
effect was primarily ascribed to the enhanced immune response, and overall, the results
demonstrated that the Nb2C@PDA@RBC NPs exhibit potential as promising nanoplatforms
for effective photothermal therapy and immune therapy in the treatment of tumors.
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Another study [107] presented an innovative approach for the treatment of tumor
cells by utilizing a biomimetic plasmonic assembly that emulates the physiological mech-
anisms of the human body. The assembly consisted of a plasmon core made of Nb2C,
which was coated with a cancer cell membrane. This membrane coating incorporates Pt
nanozymes and DOX. The catalytic nature of Pt nanozymes in producing O2 and ROS
can be enhanced by the generation of hot electrons from the Nb2C plasmon when ex-
posed to NIR-II laser light. These compounds can mitigate tumor hypoxia, suppress
P-glycoprotein (P-gp) expression, and synergistically interact with DOX to counteract
multidrug resistance and ultimately enhance tumor therapy efficacy (Figure 7). A novel
biosensor intended for biosensing BRCA1 gene mutations in breast cancer patients was
described in another study [108]. In addition to gold NPs, biosensors integrate biomimetic
bilayer lipid membranes (BLMs) with MXene nanosheets. The electrochemical activity
of the designed biosensor was illustrated through the attachment of a DNA probe to the
BLM/MXene surface, followed by hybridization with the DNA target. The biosensor
exhibited remarkable specificity, reproducibility, and sensitivity for the BRCA1 gene, along
with a low sensing limit. The authors claim that the remarkable performance of their
biosensor can be ascribed to the unique attributes of MXene and BLM. Recent findings have
integrated the biomimetic characteristics of MXenes for diverse applications, such as the
detection of miRNA-135b [132], cuproptosis-based immunotherapy [133], and the design
of cascaded-enzyme nanoreactors [134]. To summarize, the use of biomimetic approaches
to alter MXenes holds great potential for various nanoscale biomedical applications. With
continued research efforts, it is very likely that we will see additional ground-breaking uses
of this technology in the near future.
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5.6. MXene–Quantum Dot Conjugates

Conjugating quantum dots is crucial in the field of cancer theranostics because they
efficiently combine both diagnostic and therapeutic abilities [135]. When combined with
cancer-specific biomarkers, these QDs possess distinct optical properties that allow them
to display remarkable sensitivity and specificity in detecting tumor cells. Furthermore,
the ability of these entities to effortlessly integrate with other imaging methods, including
fluorescence, magnetic resonance imaging (MRI), and photoacoustic imaging, enables
comprehensive assessments of tumor characteristics. The application of quantum dot
fluorescence enables real-time monitoring of therapeutic responses, allowing timely modi-
fications of treatment regimens. In one such study [136], the authors utilized the properties
of Ti3C2Tx MXenes, such as the PCE, cargo loading and ability to scavenge free radicals.
The common limitation associated with PTT and hyperthermia is heat shock protein (HSP)
overexpression by impaired malignant cells. These HSPs tend to protect and repair dam-
aged proteins and thus reduce therapeutic efficacy. To address this issue, the authors
developed metal-polyphenol nanodot-coated nanosheets. The compound epigallocatechin
gallate (EGCG) was chosen as the polyphenol for the development of metal-polyphenol
nanodots. EGCG is known for its capacity to decrease HSP70/90 expression in tumor cells,
and it also has anti-inflammatory properties that ultimately enhance the effectiveness of
PTT against cancer. These nanosheets, which measure approximately 240 nm in size, were
optimized for accumulation in tumors by employing optimal etching, intercalation, and
ultrasonication techniques. The purpose of this optimization was to take advantage of the
enhanced EPR effect, which promotes therapeutic agent accumulation in tumor tissues. The
nanodots were generated by combining Fe3+ ions with EGCG through metal-polyphenol
interactions. When irradiated at 808 nm, the MXene@EGCG composite demonstrated a sig-
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nificant PCE of 29.2%. Furthermore, when irradiated, this composite revealed the potential
to considerably increase the temperature of the tumor. The formulation also suppressed
HSP70 expression both in vitro and in vivo (Figure 8a–d). Furthermore, the combination of
MXene@EGCG showed great efficacy in decreasing the inflammation generated by PTT
both in vitro and in vivo while causing little harm to animals. These data demonstrated
that MXene@EGCG could be a promising cancer therapeutic candidate. The MXene-QD
conjugate has also proven important in cancer biosensing.
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Figure 8. Applications of MXene-QD conjugates. (a) Photothermal images of 4T1 tumor-bearing
BALB/c mice administered MXene@EGCG (illumination: 808 nm laser) and (b) the temperature
increase curves of the tumors. (c) Western blots showing HSP70 and HSP90 expression in tumor cells
from mice. (d) Relative expression of HSPs. Fluorescence emission spectra of (e) aptamer-CGQDs
with and without FL-V2CTx, (f) the aptasensor with the addition of PSA, and (g) the ∆F of the
aptasensor for PSA, CEA, CA125, AFP, BSA, and HSA. (a–d) Adapted with permission from [136]
and (e–g) adapted with permission from [137].

For instance, one study [137] employed an MXene-QD conjugate as a fluorescent
aptasensor to detect the prostate-specific antigen (PSA). Upon the conjugation of graphene
QDs with few-layer vanadium carbide nanosheets, the fluorescence intensity of the QDs de-
creased in proximity to that of PSA, with good specificity and a sensing limit of 0.03 ng/mL
(Figure 8e–g). The developed aptasensor also demonstrated successful biosensing of PSA in
serum obtained from patients with prostate cancer. These findings emphasize the potential
of the aptasensor for clinical application. Several other studies have reported on its applica-
tion in the sensing of different biomolecules, especially RNA, such as miRNA-135b [132],
miRNA-221 [138], and miRNA-421 [139]. Overall, complete exploration of the potential of
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MXene-QD conjugates has not yet been achieved, leaving open the prospect of conducting
clinical trials.

5.7. MXene–Radio Conjugates

Radiotherapy involves the application of ionizing radiation (internally or externally) to
restrict abnormal tumor cell growth and to inhibit tumor relapse after surgical removal [140].
In the context of nanoconstructs, radioisotopes are conjugated to achieve either therapeutic
effects (177Lu, 67Cu, 186Re, 90Y, 111Ag) or diagnostic abilities (99mTc, 131I, 67Ga, 111In, 18F).
The preparation of precise radionuclide delivery platforms is crucial in the field of internal
radiation therapy, with the objective of optimizing tumor destruction while minimizing ad-
verse effects [141]. These platforms may be employed in conjunction with other therapeutic
approaches to achieve synergistic antitumor activity. The US FDA has approved many
radiopharmaceuticals for cancer treatment [142]. Due to their unique properties, MXene
materials hold great promise for both internal and external radiotherapy applications.
Internally, MXenes can be utilized as efficient carriers for radioisotopes, which can facilitate
targeted internal radiation therapy. Externally, the high X-ray attenuation capability of
MXenes makes them potential candidates for enhancing the efficacy of external beam
radiotherapy [143]. This approach could improve imaging and treatment outcomes in
cancer therapy. In light of this, a study reported [118] the synthesis of Ti3C2 nanosheets
using a seed growth technique. The addition of gold to the Ti3C2 nanosheets increased
their optical NIR absorption, which was crucial for effective radiotherapy. The resulting
nanocomposites were effective for photoacoustic and computed tomography dual-modal
imaging, and their mild photothermal activity helped to improve tumor oxygenation,
greatly increasing the efficacy of radiotherapy. Importantly, the administered dose did
not cause any discernible long-term toxicity, demonstrating the potential of MXene-based
multifunctional nanocomposites for external radiotherapy.

MXenes are emerging as promising contenders for biomedical applications, partic-
ularly in diagnostic modalities such as positron emission tomography (PET), computed
tomography (CT), and magnetic resonance imaging (MRI). However, their intrinsic diamag-
netic nature limits their bioimaging applications. To overcome this limitation, a covalent
functionalization approach was employed in a previous study [144] in which the chelating
agent diethylenetriaminepentaacetic acid (DTPA) was incorporated into MXenes, followed
by complexation with Gd3+ ions. This approach imparted paramagnetic characteristics that
made the MXenes conducive to T1-MR imaging. The covalent approach also enhanced
MXene stability, mitigated self-aggregation, and facilitated a high degree of PCE, demon-
strating potential applications in photothermal therapy. This work not only introduces
an MRI contrast mechanism but also advances covalent functionalization approaches for
MXenes, expanding their bioapplication potential. This study further revealed the apparent
concentration-dependent magnetic relaxation time of MXene flakes, enabling spatially
resolved flake distribution estimation, surface protection against oxidation and increased
cytocompatibility in physiological environments. The chelation of Gd3+ ions in this covalent
approach proves superior to electrostatic chemisorption, revealing a versatile and robust
avenue for MXene bioapplications. MXenes offer a promising avenue for radiolabeling,
which can be achieved either directly or through the utilization of chelating agents. The
versatility of surface modification techniques available for MXenes opens up numerous
possibilities for incorporating radioisotopes, presenting a compelling opportunity for en-
hancing internal radiotherapeutic applications. Despite this potential, a noticeable research
gap exists, as there are currently no studies examining the ability of MXenes to be radiola-
beled and, consequently, their applications in biomedicine. This unexplored territory poses
a significant research challenge that awaits investigation by the scientific community.

6. Toxicity Perspectives of MXene Nanoconjugates

Recent advances in MXene-based composites are quite exciting because of the potential
results in the therapy and diagnosis of many ailments. Nevertheless, to advance clinical
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interpretation, several difficulties must be overcome. A significant challenge in utilizing
these composites for cancer treatment lies in the lack of standardized parameters for safety
testing. For safety research, numerous cell lines, dosages, and animal models have been
used in diverse studies. Moreover, because diverse nanocomposites are fabricated using
various MXenes under different chemical conditions and configurations, comprehensive
research is required to better understand the relationships between the respective conjugate
particles and MXenes.

Only a few studies have been published on the biocompatibility of MXenes. Table 2
details the toxicity effects of different MXene conjugates. MXenes have been significantly
researched in terms of their biodistribution, clearance and accumulation characteristics, and
cellular absorption. Because of their variable shape, acceptable biocompatibility, and strong
physiological stability, MXenes have outstanding clinical translation capabilities [145,146].
Researchers evaluated the biosafety of MXene (Ti3C2Tx) in an embryonic zebrafish model
by examining its in vivo hazardous potential in a recent study. The authors examined the
effects of MXenes on movement and the nervous system. MXene-treated embryos displayed
normal movement with no alterations in neuron number, as observed in locomotion and
neurotoxicity tests. Ti3C2Tx MXenes have no toxicological impact on muscular or neural
activity. The authors determined that MXene had no neurotoxicity or ecotoxicity. The
toxicological properties of MXene were assessed in early stage embryos. MXenes may
have a negative impact on the initial stages of development since 46% of MXene-treated
embryos died within 1–5 days after exposure. After 5 days of incubation, angiogenesis of
the embryonic chorioallantoic membrane was impeded, indicating the potential toxicity
of these structures during the early stages of development [147]. However, additional
research is required to address the associated toxicity processes, as well as other critical
elements of long-term biosafety, biodegradability, biocompatibility, dispersibility, and
solubility [148]. Han and coworkers synthesized a 2D MXene-based nanocomposite of
soybean phospholipid (SP) for the treatment of cancer via photo/chemotherapy. The as-
prepared Ti3C2-SP nanocomposite showed no significant acute toxicity and exhibited good
histocompatibility [149]. MXenes are typically eliminated from the body through feces
and urine, excreting a total of approximately 10.35%. SP-functionalized MnOx/MXene
(Ti3C2) nanocomposites exhibited increased stability as well as strong biocompatibility and
dispersibility, suggesting promising prospects for clinical translation [149].

To be classified as “practically nontoxic”, nanocomposites must undergo compre-
hensive biosafety evaluations using animal models. These evaluations are crucial for
understanding the acute and chronic effects of these agents on various organs. However,
conjugating MXenes with polymers, proteins, and other nanomaterials can drastically
modify their toxicity profile. The inclusion of biocompatible polymers or proteins can
protect the reactive surface groups of MXenes, decreasing their cytotoxicity or immuno-
genicity. Furthermore, conjugation with targeting ligands or functional groups enables the
targeted distribution of MXene-based nanomaterials to specific cells or tissues, reducing
off-target effects and overall toxicity. In addition, this modification improves the stability of
MXene-based nanomaterials, lowering the degradation and potential toxicity caused by the
release of free MXene particles or ions. Although the overall effects of MXene composites
on cancer therapy, tissue healing, and infection therapy are well known, the molecular
processes underlying these reactions remain poorly understood. Close collaboration with
molecular scientists is essential for fully comprehending specific therapeutic processes. The
development of MXene composites is still in its early stages, necessitating research on the
creation and utilization of extremely small quantum dots made of MXenes for treatment
and regeneration.
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Table 2. Toxicity effect of different MXene conjugates.

MXene Composite
Particle

Delaminating
Agent Etching Agent Dose Cell Line Used Toxicity Reference

Ti3C2 Au Ultrasound LiF-HCl
mixture

1 to 200 µg mL−1,
48 h

HaCaT,
A375

Approximately 50% of
the cells were still

viable at concentrations
greater than
50 µg mL−1

[150]

Ti3C2
SP

MnOx
TPAOH HF 10 to 160 µg mL−1,

48 h
4T1

At 160 µg mL−1, no
substantial toxicity was

identified, indicating
acceptable

biocompatibility

[151]

Ti3C2 Cellulose TPAOH HF 78.4–313.6 ppm
HepA1-6,

SMMC-7721,
HepG2,

U-118MG

Integration into the
hydrogel decreased the
toxicity as compared to
the dispersed MXene

solution

[79]

Nb2C MSN Ultrasound HF 18.75–300 µg mL−1,
24 h

U87

No notable toxicity
with the formulation

Observed
CTAC-mediated

toxicity

[152]

Ti3C2 Chitosan Ultrasound HF 0–300 µg mL−1,
24 h

HeLa No notable toxicity [153]

Ti3C2

Chitosan/HA
hollow

microcapsules
Au

TPAOH HF 0–100 µg mL−1,
24 h

MCF-7

Concentration
dependent toxic effect

The increase in
cytotoxicity with

concentration indicates
chemotherapy activity

[154]

Ti3C2 PVP DMF HF 50 and
500 µg mL−1, 24 h 293T, MCF-7 100% cell viability at all

concentrations [155]

Ti2N SP
Ultrasound

Higher
temperature

KF-HCl
mixture 0–80 µg mL−1, 24 h 293T,

4T1, U87

Excellent
biocompatibility at

80 ppm, with no
cytotoxicity

Complete tumor cell
eradication was seen

under 808 and 1064 nm
NIR radiation

[156]

Ta4C3
SP

MnOx
Ultrasound HF 25–400 µg mL−1,

48 h
4T1

4T1 cells displayed
toxicity to 808 nm

irradiation
[77]

Nb2C PLL Ultrasound
and TBAOH HF 500 µg mL−1, 48 h HaCaT, A375 Exhibited a dose- and

cell-mediated toxicity [157]

7. Clinical Translations: Chances and Challenges

Owing to their distinct physicochemical characteristics, biocompatibility, and ease of
functionalization, inorganic 2D MXene nanoplatforms have exhibited outstanding potential
in the biomedical field compared to conventional organic materials. Their prospective
applications include bioimaging, drug delivery, and biosensing. To find entry into clinical
studies, MXene-based systems are being explored for their versatile biomedical applica-
tions. In this context, a team of researchers [158] developed a “hospital-on-a-chip” that
utilizes advanced MXene nanosheets to create multifunctional microneedle electrodes for
electrostimulation together with biosensing. The microneedles were composed of several
small needles that may be employed for medication administration or biosensing (Figure 9).
Wearable 2D MXene-incorporated microneedles could detect differences in the electric
potential produced by eye movements or muscle contractions even when a person closes
his or her eye. This makes them useful for monitoring disorders involving neuromuscular
irregularities such as myasthenia gravis. These microneedles have the potential to become
an integral part of the hospital-on-a-chip system, providing real-time examination of a
patient’s vital signs and health parameters. This technology allows healthcare providers to
continuously monitor patients without the need for invasive procedures, reducing the risk
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of infection and improving patient comfort. Moreover, the use of wearable biosensors can
help detect diseases at an earlier stage, leading to better treatment outcomes.
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However, there are challenges in implementing practical translation due to the po-
tential nonspecific hazards of 2D MXene nanomaterials, which could pose risks to their
safe clinical application [159]. Consequently, a comprehensive estimation of the harmful-
ness and compatibility of these materials with living organisms is necessary. Although
short-term trials indicate biocompatibility, long-term safety assessments are needed to
determine the potential specific neurotoxic effects on offspring [160]. Studies have explored
surface modification strategies, such as collagen-based modifications, to enhance selectiv-
ity, minimize adverse effects on healthy cells, and reduce toxicity. Precise regulation of
drug release is crucial for optimizing therapeutic outcomes while minimizing damage to
healthy cells. This is achieved by the utilization of pH and NIR induction approaches. The
characteristics of MXenes can be altered by meticulously crafting their composition and
dimensions and performing surface functionalization. Enhancing the biomedical appli-
cations of MXenes can be achieved by investigating other morphological aspects, such as
nanotubes and nanocages, and by combining MXenes with various functional materials
to generate hybrids. Increasing the scale of MXene production is essential for clinical
translation. Resolving these issues is crucial for maximizing the promise of MXenes in
biomedical applications and advancing their widespread clinical acceptance.

8. Conclusions and Future Standpoints

Over the last few decades, researchers have been looking for perfect nanomateri-
als with characteristics such as high biocompatibility and tailored qualities for cancer
therapeutic applications. MXene conjugation research in cancer theranostic applications
is still in its early stages. The simplicity of the manufacturing process and the diverse
alternatives available for surface functionalization of nanostructures for particular appli-
cations are critical factors for effectively exploring the biological characteristics of these
nanoconjugates. These manufacturing processes will gain traction if integrated biological
approaches are quicker, more economical, and more environmentally friendly. Based on the
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available research, there is no practical and acceptable green synthesis procedure for the
manufacture of MXenes. This feature requires special attention since creating an effective
and practical synthesis technique can broaden the use of MXenes for cancer theragnostic
benefits. In vitro cell line evaluations are an essential aspect of researching the biomedical
impacts of nanoformulations. In vitro evaluations of developed MXene conjugates for
tumor therapeutic and diagnostic benefit are highly important because they provide early
indications of anticancer activity, biodegradation characteristics, and apoptotic mechanisms
such as oxidative stress and, primarily, of the effect of these nanoconjugates on normal cells.
According to recent findings, the cytotoxic properties of MXene-based conjugates require
further exploration. MXene conjugates developed for cancer therapy must be aggressive
toward cancer cells while being harmless to healthy tissues and cells. We expect that this
topic will be extensively examined in future studies to provide a clear picture.

Following successful cell line experiments, the theragnostic activity of these nanocon-
jugates should be evaluated in live animals to prove their biocompatibility. These animal
models are critical because they provide a good picture of the effectiveness of MXene conju-
gates against tumor cells and because of the many adverse consequences they might cause
in the body after treatment. Furthermore, the biocompatibility and excretion mechanisms
of MXene conjugates must be explained to rule out any adverse reactions they may have
in the body due to their in vivo biodistribution. These elements must be given special
consideration because they offer useful insight into the use of MXene conjugates in different
cancer theragnostic applications, such as photothermal treatment, multimodal imaging,
and combination therapy, in addition to other traditional therapeutic techniques. Clinical
trials are important for evaluating the biocompatibility and anticancer properties of MXene
conjugates. Unfortunately, the use of MXene-conjugated cancer theranostics has yet to
reach this stage. Because malignancy treatment continues to constitute one of the most
challenging parts of the health care industry, this component of the investigation of MXene
conjugates must be properly explored and addressed as soon as possible. Promising in vitro
and in vivo experiments with outstanding results have been described in the literature,
providing vital insights into the development of an effective multifunctional MXene plat-
form. There is a wealth of research on phytochemicals with interesting anticancer potential
that may be studied utilizing the drug delivery effectiveness of MXenes. To advance these
findings to clinical trials, the issue of cytotoxicity must be extensively investigated.

Despite major advances in cancer research, cancer management remains challeng-
ing, particularly in the later stages of the disease. Different kinds of pathophysiological
mechanisms related to cancer and metastatic routes are important impediments that ren-
der traditional treatment techniques ineffective. The application of nanotechnology for
treating lethal illnesses such as cancer is critical. Using the unique features of different
nanomaterials, innovative biomedical devices, such as those for drug delivery, imaging,
and sensing probes, have been effectively constructed. MXene conjugates are a unique
kind of approach that are still in their early stages of use in cancer treatment for medication
delivery and diagnostic purposes. Significant progress has been made by researchers
worldwide in researching alternative functional groups and fabricating MXene conjugates
for particular tumor types and tactics, with encouraging outcomes. Efficient utilization
of MXenes in conjunction with imaging modalities can yield excellent findings in cancer
diagnosis, paving the way for substantial advances in oncology research.
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