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Abstract: In this research, the adsorption performance of individual atoms on the surface of monolayer
graphene surface was systematically investigated using machine learning methods to accelerate
density functional theory. The adsorption behaviors of over thirty different atoms on the graphene
surface were computationally analyzed. The adsorption energy and distance were extracted as
the research targets, and the basic information of atoms (such as atomic radius, ionic radius, etc.)
were used as the feature values to establish the dataset. Through feature engineering selection, the
corresponding input feature values for the input-output relationship were determined. By comparing
different models on the dataset using five-fold cross-validation, the mathematical model that best
fits the dataset was identified. The optimal model was further fine-tuned by adjusting of the best
mathematical ML model. Subsequently, we verified the accuracy of the established machine learning
model. Finally, the precision of the machine learning model forecasts was verified by the method
of comparing and contrasting machine learning results with density functional theory. The results
suggest that elements such as Zr, Ti, Sc, and Si possess some potential in controlling the interfacial
reaction of graphene/aluminum composites. By using machine learning to accelerate first-principles
calculations, we have further expanded our choice of research methods and accelerated the pace of
studying element–graphene interactions.

Keywords: single atoms; graphene; surface adsorption; first-principles calculations; machine learning

1. Introduction

Two-dimensional materials have attracted a great deal of attention in the scientific
community, and in recent years, researchers have explored the unique electronic prop-
erties of single- and low-layer samples of these materials to develop new applications
in the fields of electronics, photonics, chemical sensing, catalysis, transport properties,
and energy storage. In addition, the rapid development of graphene and the preparation
of ultra-thin layers have triggered the exploration of other two-dimensional materials.
The basic chemical properties of graphene are similar to those of graphite, and its most
basic chemical bond is also a carbon-carbon double bond, but graphene has fewer layers
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of hexagonal honeycomb junctions, which gives graphene different chemical properties
from graphite, i.e., graphene can adsorb and desorb a variety of atoms and molecules.
Graphene, with its excellent optical, electrical, and mechanical properties, has important
application prospects in materials science, micro- and nanofabrication, energy, biomedicine,
and drug delivery and is considered to be a revolutionary material for the future. In the
last few years, graphene/aluminum composites have received extensive attention from a
wide range of scholars. However, graphene is prone to severe interfacial reactions with
conventional aluminum alloys, which in turn reduces the mechanical properties of the
composites. The analysis and prediction of material properties using machine learning
(ML) methods has become a hot research topic in the interdisciplinary field of material
science and computer science [1,2]. With the rapid development of computer science and
technology, ML algorithms have been widely applied. ML tools have broad applications in
various fields, such as natural language processing, image recognition, object detection,
pattern recognition, and robotics [3–5]. In recent years, significant research achievements
have also been continuously made in the implementation of ML techniques in material
analysis and design [6,7]. ML has obvious advantages in predicting materials and rapidly
discovering new materials; it can shorten the research and development cycle and improve
the design efficiency of new materials [8–11]. On the other hand, potential relationship
information hidden in material data can be automatically excavated, greatly promoting
theoretical research in the study of materials. Therefore, we will combine first principles
and ML algorithms to predict graphene adsorption atomic behavior, aiming to find suitable
elemental species to reduce the interfacial reaction between graphene and aluminum alloys.

Machine learning represents one of the most exciting fields in information technology
today. As computers and networks continue to advance, machine learning is becom-
ing increasingly valuable and holds the potential to transform our everyday lives and
work. Among the current trends in the realm of materials science, the selection of high-
performance novel materials and the modeling of quantitative structure-property relation-
ships are being focused on. In recent years, the utilization of ML in materials exploration
and development has gained significant recognition and has made notable advancements
in terms of temporal effectiveness and forecast precision. Balachandran et al. [12] proposed
an adaptive learning method to screen materials with desired structural features, which
played a significant role in expediting the innovation and advancement of novel mate-
rials. Takahashi et al. [13] used a dataset obtained through first-principles calculations
and successfully predicted the crystal structure types of materials using the support vec-
tor machine algorithm. Rupp et al. [14] accurately predicted the molecular atomization
energy using a Coulomb matrix-based molecular material quantification descriptor, with
an average error of less than 10 Kcal/mol. Schut et al. [8] proposed a crystal structure
descriptor based on partial radial basis distributions and used it to provide an accurate
prediction of the electronic density of states at the Fermi level. In addition, researchers
have used support vector machine algorithms to classify metal/insulator materials [15].
Isayev et al. [16] innovatively proposed the attribute-labeled material fragment approach
based on graph theory to describe the crystal structure of materials. Hence, dimensionality
reduction methods commonly used in ML, such as principal component analysis and
singular value decomposition, are employed and can be utilized to map high-dimensional
representations of material structures or property information to low-dimensional feature
spaces for subsequent research on material structure-property prediction classification, and
other related work.

In recent years, first-principles computational methods have gained popularity in
materials design as a means to expedite the material design process. The utilization of
density functional theory significantly enhances the precision of calculations and ensures
the reliability of obtained results. The time cost of first-principles calculations, in compari-
son to machine learning, is relatively high and can hinder the progress of new materials
development. There has been a flurry of research on graphene [17–21], making it a hot topic
in the field of materials. Although the use of first-principles calculations [22,23] alone can
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continuously improve the theoretical understanding of graphene and facilitate the design
of new structures, the development cycle remains excessively long. Therefore, it is of great
significance to explore new research methods to assist in accelerating the development of
graphene materials. To address these issues, this paper proposes an ML-based approach to
accelerate first-principles calculations for studying the adsorption performance of graphene
towards individual atoms. The focus is on predicting the adsorption energy and adsorption
distance of graphene using ML methods, which can help subsequent researchers quickly
identify materials with ideal properties. Additionally, we leverage the trained ML model to
identify the important features that influence adsorption distance and adsorption energy.
The best-performing model was subsequently further optimized using a genetic algorithm,
and the hyper-parameters were adjusted based on the root mean squared error to obtain
the final model. This final model was then utilized for predicting other remaining elements
in the periodic table. The results suggest that elements such as Zr, Ti, Sc, and Si possess
some potential in controlling the interfacial reaction of graphene/aluminum composites.
The paper is structured into the following sections: Section 2—Methods, Section 3—Results
and Discussion, and Section 4—Conclusions.

2. Methods

2.1. Crystal Structure and Calculations Method

Various ML algorithms were designed to predict the results (the absorption energy and
absorption distance of adsorption between different atoms and graphene); the calculation
is performed via first-principles calculation by utilizing the Cambridge Sequential Total
Energy Package (CASTEP) simulation package [24]. The Perdew–Burke–Ernzerhof (PBE)
functional [25,26], which is a generalized gradient approximation (GGA) method, is used to
study the exchange–correlation effect. LDA and GGA are two commonly employed density
functionals for density-functional theory [27–29] calculations in the field of computational
materials science. Density Functional Theory is a method for studying the electronic struc-
ture of multi-electron systems. Density functional theory has a wide range of applications
in both physics and chemistry, especially for studying the properties of molecules and
condensed states, and is one of the most commonly used methods in the fields of con-
densed matter physics, computational materials science, and computational chemistry. It is
based on the principles of physics and the theory of quantum mechanics and calculates
the behavior of electrons in molecular and material structures by solving the Schrodinger
equation. LDA approximates the exchange–correlation function based on the local electron
density, whereas GGA accounts for the density gradient. The choice of function depends
on the system under investigation and the properties of interest. It is important to note
that LDA may not accurately describe certain system properties, particularly the band
gap of semiconductors and insulators, which tends to be underestimated. Consequently,
the selection of either LDA or GGA should be based on the specific requirements of the
material system and the properties of interest. In our case, since graphene is a zero-bandgap
semiconductor, GGA is the more suitable choice for determining calculation parameters
in this paper. The plane wave uses a set cut-off energy of 450 eV, and the Brillouin zone
k-point is 4 × 4 × 1. A higher iterative convergence accuracy (2 × 10−6 eV/atom) has been
used; each atom is subjected to a force that is kept below 0.05 eV/Å, while the internal
stress is ensured to not exceed 0.1 GPa.

2.2. Machine Learning Databases and Models

To overcome the challenges that DFT calculations pose to computer hardware, we
have designed various ML algorithms to predict the DFT calculation results. As shown
in Figure 1, the ML solution for accelerating the prediction of graphene adsorption proper-
ties includes three steps: (1) establishment of the adsorption properties database,
(2) establishment and selection of ML models, and (3) prediction of adsorption prop-
erties for elements in the periodic table. The machine learning process accelerates DFT
computation through three parts: data generation, model construction, and prediction.
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Cross-validation divides the dataset into smaller subsets and loops them as validation sets,
which can improve the reliability of small sample machine learning results. The genetic
algorithm obtains optimal connection weights through a cycle of selection, crossover, and
mutation. Compared with traditional DFT calculations, machine learning methods have
shown advantages in terms of time cost. Our machine learning method aims to estab-
lish a regression relationship between the adsorption performance of different atoms and
graphene based on a limited number of DFT calculation results. The ML process speeds
up DFT calculations through data generation, model construction, and prediction. The
genetic algorithm obtains the optimal connection weights through selection, crossover, and
mutation cycles. By comparing multiple ML algorithms, we have adopted the best-fitting
algorithm to establish four ML models, respectively, predicting adsorption energy and
adsorption distance. Four ML models, namely K-nearest neighbor (KNN), decision tree
(DT), Catboost, and Input Layer Drop-Out Multilayer(IDOM), are constructed using an
optimized algorithm for predicting both adsorption energy and adsorption distance, re-
spectively. CatBoost is a comprehensive decision tree approach that caters to classification
features and provides model interpretation. KNN is an instance-based learning method
that computationally predicts the distance between a new data point and each data point
in the training dataset. In the machine learning model training process, we divided the
dataset into two parts: a training set (80%) and a validation set (20%). In the machine
learning model accuracy validation process, we use the validation set calculated by DFT to
compare with the machine learning model prediction results.

Figure 1. Schematic diagram of the machine learning process.

3. Results and Discussion

As depicted in Figure 2, the carbon atoms are denoted by gray, and the adsorbed atoms
are represented by purple. A total of 32 C atoms and one adsorbed atom are contained,
all of which are adsorbed at the locations of the six-membered ring pores of graphene. As
described above, all surface geometry is modeled as a periodic flat plate system, with a 20 Å
vacuum between the surfaces sufficient to prevent interaction between periodic images.
The adsorption energy is calculated using the following equation [30]:

Eads = Etotal − Ev − Eatom (1)

The total energy of graphene following the adsorption of single atoms is denoted
by Etotal, while the total energy of graphene is represented by Ev, and the energy of
the adsorbed atom is represented by Eatom. The results for the distance and energy of
adsorption can be found in Table S1.

Using data obtained from DFT calculations, we compiled a set of more than ten
kinds of characteristic parameters to assess the adsorption distance and adsorption energy.
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These parameters include the Atomic number, Atomic radius, Ionic radius, Covalent
radius, Atomic volume, Relative atomic mass, Period, Electron configuration (s), Electron
configuration (p), Electron configuration (d), Electron configuration (f), Electron affinity, 1st
ionization energy, 2nd ionization energy, 3rd ionization energy, and Group.

Figure 2. Single atom adsorbed graphene surface model, the gray ones are carbon atoms, and the
purple ones are adsorption atoms.

3.1. Correlation Analysis and Selection of Eigenvalues

Correlation analysis refers to the analysis of two or more elements of a variable that are
correlated in order to measure the closeness of the correlation between two elements of the
variable. There needs to be a certain link or probability between the correlated elements for
correlation analysis to take place. The data regarding the distance and energy of adsorption
between graphene and thirty-four elements, obtained through DFT calculations, were
acquired as shown in Tables S1 and S2. Furthermore, more than ten kinds of features were
compiled to assess the adsorption energy and adsorption distance between graphene and
various elemental atoms, encompassing atomic number, atomic volume, et al. These data
are collectively displayed in Table S1, which served as the raw data used.

Further, we make a selection of descriptors. The adsorption distance descriptors and
adsorption energy descriptors were screened from the above 16 characteristic quantities.
The Pearson correlation coefficient is an indicator of the degree of correlation between
response variables. Pearson correlation coefficient was calculated to find out the factors that
had the greatest influence on adsorption distance and adsorption energy, and then their
respective descriptors were determined. The descriptors for the distance and energy of
adsorption were separately selected from more than ten kinds of features mentioned above.
The correlation strength among the response variables is measured by the correlation
coefficient, serving as an indicator. Factors that have the most significant impact on the
adsorption distance and adsorption energy were identified through the calculation of
the correlation coefficient, respectively. Their respective descriptors were determined
through this process. The formula used to calculate the correlation coefficient is expressed
as follows [31–33]:

ρX,Y =
∑(Xi − X̄)(Yi − Ȳ)√

∑(Xi − X̄)
2 ∑(Yi − Ȳ)2

(2)

ρXY represents the Pearson correlation coefficient. Xi and Yi refer to the eigenvalues
and target values, while X and Y represent the averages of X and Y, respectively. The
Pearson correlation coefficient ranges from −1 to 1 in magnitude, where 0 indicates no
correlation between the variables.
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As demonstrated in Figure 3, the electron configuration (d) and atomic volume exhibit
the most significant impact on the distance and energy of adsorption; the Pearson corre-
lation coefficients were found to be 0.31 and 0.39, respectively. The Pearson correlation
coefficients of s, p, d orbital and adsorption energy reached 0.18, 0.22, and 0.33, respectively.
The size of the atomic volume is positively correlated with the adsorption distance, mean-
ing that as the atomic volume increases, there is a tendency for the adsorption distance
to increase. Consideration of various factors allows for the identification of descriptors
that determine the adsorption energy magnitude, such as the covalent radius, Atomic
volume, Electron affinity, 1st ionization energy, and Group. The descriptors determining
the adsorption distance are identified as the Atomic radius, Covalent radius, Electron
affinity, 1st ionization energy, 2nd ionization energy.

Figure 3. Correlation analysis results of eigenvalue inputs and outputs.

The descriptors of the distance and energy of adsorption, along with their correspond-
ing target data, are used to construct the training data for the ML model based on the
correlation analysis conducted above. The input data for the ML dataset are served by the
descriptors, while the target data comprises the adsorption energy and adsorption distance.
Table S2 presents the database of adsorption performance, which is based on ML. In order
to ensure that all variables fall within the same range, both input and output variables are
normalized between 0 and 1 during the training process using the following equation [34]:

X′
i =

Xi − Xmin

Xmax − Xmin
(3)

where Xi represents the data individual, Xmax is the maximum value within that specific
category of data that needs to be determined and analyzed accurately, and Xmin is the
minimum value.

3.2. Machine Learning Model Building and Selection

In order to accurately evaluate the performance of different ML models when applied
to novel data and optimize data utilization, cross-validation methods are utilized. The
utilization of cross-validation, a statistical technique that assesses a model’s ability to
generalize by dividing the dataset into distinct partitions, enables the achievement of this
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goal. In this section, a commonly used 5-fold cross-validation approach was employed.
With this approach, the original data was initially divided into five subsets in a random
manner. Subsequently, the model was trained and validated five times. During each
iteration, the model was trained on four subsets, forming the training set, and then tested
on the remaining subset, referred to as the validation set. This process was repeated
five times, and the outcomes were averaged to obtain more accurate estimations of the
model’s performance. The mentioned algorithms were implemented in Python, utilizing
scientific computing packages such as pandas and numpy. In our study, three evaluation
metrics were introduced to assess the effectiveness of various models: mean square error
(MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), and
coefficient of determination (R2). The calculations for MSE, RMSE, MAPE and R2 are
outlined as follows [35]:

MSE =
1
N

N

∑
i=1

(yi − ŷ)2 (4)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷ)2 (5)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (6)

R2 = 1 − ∑N
i=1(yi − ŷ)2

∑N
i=1(yi − ȳ)2 (7)

where ŷi is the ML algorithm predicted value and yi is the DFT calculated value, yi is the
mean of the calculated DFT results, where N is the number of samples.

It is indicated by the cross-validation results of various algorithms that the other
algorithms are significantly outperformed by Catboost, as shown in Figure 4. The worse
performance is observed in the KNN algorithm. The cause of these results can be attributed
to the requirement of a significant number of training parameters in the neural network,
making it unsuitable for this small sample data problem. A notable advantage over the
traditional DT algorithm is demonstrated by Catboost among the tree-based algorithms. In
the predictions of adsorption distance and adsorption energy, it achieves an RMSE of 0.61
and 0.39, respectively. Regression analysis confirms the substantial correlation between the
ML predicted values and the DFT calculated values, and a well-fitted model is indicated
by the even distribution of data samples around the reference line (Y = X), as shown
in Figure 5. Errors for Ed and G are 0.96% and 0.28%, respectively, meeting the target
accuracy requirements. Therefore, the Catboost algorithm was selected as the model for
subsequent ML tasks.

Figure 4. Root mean square error corresponding to different learning models.
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Figure 5. Scatter plots representing the regression results of the complete dataset using the Catboost
model for (a) adsorption distance and (b) adsorption energy.

3.3. Prediction and Verification of Results

A trained Catboost algorithm ML model was used to predict the energy and distance
of adsorption for the remaining elements of the periodic table when adsorbed on the
surface of graphene as shown in Table 1. However, the absence of partial descriptors for
certain rare elements, such as lanthanides and actinides, was not taken into account in
this study. The best performing Catboost model identified in step 3.2 was employed to
estimate the adsorption energy and distance for the remaining elements. The predicted
energy and distance of adsorption for different elemental atoms on the surface of graphene
are illustrated in Figure 6. It is very important to select appropriate elements to inhibit the
interfacial reaction of graphene/aluminum composites. From Figure 6a, we can see that
elements such as Li, B, Zr, Ti, Sc, Si, and Ta have relatively low adsorption distances when
adsorbed on a graphene surface. From Figure 6b, we can see that elements such as N, O,
Zr, Sc, Ti, and Si have relatively low adsorption energy when adsorbed on the graphene
surface. The above results suggest that elements such as Zr, Ti, Sc, and Si possess some
potential in controlling the interfacial reaction of graphene/aluminum composites.
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Table 1. MSE (eV2 for adsorption energy and Å2 for adsorption distance), R2, RMSE (eV for adsorption
energy and Å for adsorption distance), MAPE of the final model.

MSE R2 RMSE MAPE

Adsorption distance 0.0096 0.9752 0.0982 3.6181
Adsorption energy 0.0028 0.9946 0.0525 4.5995

Figure 6. Full periodic table display of (a) adsorption energy and (b) adsorption distance.

The computed results and ML predictions were compared with the research findings
by Pasti et al. [9], as presented in Table S3. It is apparent that both the computed results
and prediction results closely match the results of Pasti et al. [9], and the reliability of
our calculations and the accuracy of our ML predictions are affirmed. The demonstration
of the remarkable efficiency of the ML approach for predicting adsorption energy and
distance highlights its superiority over DFT-based calculations, considering that it is tens
of thousands of times faster. This accelerated approach to material calculations using
ML provides a solution to the limitations of inefficient DFT calculations and significantly
reduces computational costs. To ensure the accuracy and reliability of the ML prediction
results, a comparison was made between the ML predictions and the DFT calculation
results in the dataset, as shown in Figure 7. The results presented in Figure 7 unmistakably
establish the validity and credibility of the ML predictions, as they exhibit minimal relative
error compared to the results obtained through first principle calculations.

Figure 7. Comparison of adsorption energy and adsorption distance predicted by the Catboost model
with DFT results.
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4. Conclusions

In this paper, we investigate the adsorption behavior of single atoms adsorbed on
the surface of graphene using machine learning-accelerated first-principles calculations.
The behavior of individual atoms adsorbed on the graphene surface has been investigated
through accelerated first-principles calculations enhanced by machine learning techniques.
We generated a database by computing the energy and distance of adsorption using first-
principles calculations. In order to improve ML performance, we utilized characteristic
parameters like atomic and ionic radii to create a dataset. Multiple ML models, such as
KNN, DT, Catboost, and IDOM, were utilized to construct mathematical models. Based
on decision coefficients and root mean square error, it was indicated that the dataset was
best suited for the Catboost model. The Catboost model was further refined with the aim
of enhancing the coefficient of determination and minimizing the root mean square error.
The adsorption behavior of atoms across the entire periodic table was anticipated using
the subsequently employed refined Catboost model. In order to verify the accuracy of
these predictions, we compare the ML predictions with first-principles calculations, which
are shown to have a very low error. The development time was substantially reduced by
integrating ML techniques to expedite the first-principles approach, thereby facilitating
expedited research in the field of elemental modifications of graphene. We pick out a series
of elements that are appropriate to inhibit the interface reaction; elements such as Li, B,
Zr, Ti, Sc, Si, and Ta have relatively low adsorption distances when adsorbed on graphene
surface, and elements such as N, O, Zr, Sc, Ti, and Si have relatively low adsorption
energy when adsorbed on the graphene surface, elements such as Zr, Ti, Sc, and Si possess
some potential in controlling the interfacial reaction of graphene/aluminum composites.
This study offers a comprehensive understanding of the adsorption properties of single
atoms from the entire periodic table on the surface of graphene, enabling experimental
modifications of graphene.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma17061428/s1, Figure S1. Variation of mean square
error with the number of eigenvalues in feature elimination; Table S1. Final selection of feature values
to be used as a machine learning dataset for adsorption distance. Table S2. Final selection of feature
values to be used as machine learning dataset. Table S3. Comparison of adsorption energy results
with first-principle calculations by other scholars.
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