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Abstract: The slag entrapment defect has become a big issue for the IF steel casting process. In
this study, the mechanism of mold flux entrapment in deep oscillation mark of an IF steel shell was
studied by a high-temperature mold simulator. Results show that both temperature and heat flux in
a copper mold become lower when mold flux B with lower melting and viscosity is used, compared
with these when mold flux A with higher melting and viscosity is used. The average thickness
of the slag film for mold fluxes A and B is 1.31 mm and 1.63 mm, and the consumption of them
is 0.33 kg/m2 and 0.35 kg/m2, respectively. The shell for mold flux A exhibits sharper oscillation
marks, while the shell for mold flux B has shallower oscillation marks. These deeper oscillation marks
capture the mold flux by overflow of molten steel at the meniscus, which finally produces the slag
entrapment defect in the shell.

Keywords: slag entrapment; mold flux; oscillation mark; mold simulator; IF steel

1. Introduction

Interstitial-free (IF) steel, with a high plastic strain ratio, low yield strength, good
formability and high strain rate sensitivity, is widely used for car body panels, such as
hoods or doors [1,2]. Except mechanical properties, a high surface quality that is defect-free
is also a necessary requirement for IF steel [3,4]. In the process of continuous casting, the
mold flux floating on the top of molten steel can be entrapped into the shell and leads to a
slag entrapment in the slab [5–7]. These entrapped slags cannot be eliminated but transform
into elongated silver defects on surface after rolling. The silver defects originated from the
slag entrapment have become one of the biggest issues, which causes the degradation of
IF panels.

The mold flux entrapment behavior has been investigated by many researchers.
Cho et al. [8] studied the changes in transient flow and surface slag behavior in molds
with different nozzle port angles using a 3D large eddy simulation (LES) numerical model,
and results showed that the undesirable flow variations, due to the improper nozzle port an-
gle, could cause severe instability at the interface of liquid flux/molten steel, which resulted
in slag entrapment. Mallikarjuna et al. [9] investigated the impact of immersion depth of a
submersed nozzle (SEN) on the mold flow profile and slag entrapment through a 0.5 scaled
water model. They suggested that surface velocity and slag entrapment decreased with
the increase in SEN depth. Zhang et al. [10] observed the entrapped inclusions beneath
the surface of ultra-low carbon steel slab by ASPEX microscope, and they found that those
inclusions were mainly located at the oscillation marks on slab. Sengupta et al. [11] also
found similar results. Due to the very low content of carbon, the solidification temperature
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of IF steel is quite high [12], which causes an easily forming solidified hook at the meniscus
in the mold. The solidified long hook is also an inducement of deep oscillation mark
and entrapment of mold flux [5,13,14]. In addition, a small quantity of Al and Ti is also
contained in IF steel. These active metals can be oxidated and transformed into oxide
inclusions, which is another defect source of slivers on rolling products [15,16].

Although mold flux entrapment has been investigated by using numerical models,
water models, microscopes, etc., high-temperature simulation experiments were rarely
conducted. In addition, previous works were mostly focused on the entrapment behaviors
on the interface of liquid flux/molten steel based on fluid flow, with very few of them
involved the systematic study of the intrinsic interactions between slag infiltration, slag
film in the gap between the mold wall and shell, heat transfer, formation of an oscillation
mark on the shell and slag entrapment at the oscillation mark. Therefore, in this study, the
mechanism of mold flux entrapment in the deep oscillation mark of an IF steel shell was
investigated using a mold simulator. Hopefully, the results obtained here can provide a
guide for reducing the silver defects and improving the surface quality of IF panels.

2. Experimental Materials and Apparatus
2.1. Materials

The chemical composition of the IF steel, which complies with the GB/T 5213-2008
standard [17], is provided in Table 1. Two mold fluxes were used in this experiment. Among
them, mold flux A is a typical commercial mold powder for casting IF steel. Mold flux B is a
newly designed mold powder with a lower melting temperature, higher break temperature
and lower viscosity through adding more fluxes (Na2O and F) and increasing the basicity
and MgO content. The reason why the mold flux with a lower melting temperature, higher
break temperature and lower viscosity was designed is because that this kind of mold flux
is a benefit for the formation of a liquid mold flux layer on top of molten steel and the
infiltration of mold flux into the gap between the mold wall and initial solidified shell,
consequently forming a thicker and uniform slag film in the gap. In addition, a mold flux
with a higher breaker temperature also means the formation of a thicker crystalline layer
in the slag film. Overall, a thicker and uniform slag film with a thicker crystal layer can
prevent the formation of severe oscillation marks and reduce the entrapment of slag, due
to its higher thermal resistance. Their composition and high-temperature properties are
shown in Table 2.

Table 1. Composition of the IF steel.

C Mn P S Altot Ti

≤0.0025 ≤0.14 ≤0.014 ≤0.006 0.03–0.08 0.06–0.09

Table 2. Composition and properties of mold fluxes.

Mold
Flux CaO SiO2 Al2O3 Na2O MgO F

Melting
Temperature
Range (◦C)

Viscosity at
1300 ◦C (Pa·s)

Break
Temperature

(◦C)

A 37–42 42–46 4–6 2.5–3.5 1–1.6 7 1113–1328 0.53 1171
B 32–39 36–43 4–6 3.5–6 2–3 4–7 1096–1323 0.44 1192

2.2. Mold Simulator

The entrapment of mold flux in the deep oscillation mark of an IF steel shell was
studied using a high-temperature mold simulator. The schematic figure of this device is
exhibited in Figure 1. It consisted of a mold oscillator system (1), water cooling system
(2), copper mold (3,4), heating furnace (5,6,7,8), control/acquisition system (9) and shell
withdrawal (extractor) device (10). It has been successfully used to study the initial solidifi-
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cation of molten steel in casting mold; the details of the high-temperature mold simulator
system have been presented in a previous paper [18].
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Figure 1. Schematic of the high-temperature mold simulator: 1 the drive of oscillation, 2 the inlet of
cooling water, 3 copper mold, 4 extractor, 5 molten steel bath, 6 mold flux, 7 furnace body, 8 induction
coil, 9 control and acquisition system, 10 extractor drive.

During the experiment, 25 kg of IF steel, which has been cut into smaller blocks with
size of 10 mm × 10 mm × 10 mm, was loaded into the furnace. Later, 0.6 kg mold powders
were also filled in the furnace after the steel was melted completely. The melting process
was protected by inletting pure Ar gas. After that, the copper mold together with extractor,
which works as a cover, was descended into the molten bath. Both the copper mold and
extractor were held for seconds to make sure that the initial solidified shell on the surface
of the mold formed before extraction. Then, the extractor drew the initial solidified shell at
a speed of 1.2 m/min downward to simulate the casting process. A slag film also formed
in the same process, due to the infiltration of liquid flux from the molten bath top into the
solidified shell and copper mold gap. When the casting process ended, the copper mold
together with extractor were lifted up from the molten bath, and then, they were cooled
in air.

In the whole process, the copper mold oscillated sinusoidally as the real mold in a
continuous caster. Its oscillation frequency and stroke are 164 cpm and 4.6 mm, respectively,
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according to Equations (1) and (2). The parameters of the simulation experiment are
consistent with the industrial casting process, and their specific values are listed in Table 3.

S = a1 + a2Vc (1)

f = a3 + a4Vc (2)

where S is the stroke, mm; f is the mold frequency, cpm; a1, a2, a3, a4 are the constants of
the mold, which are 3 mm, 1.34 × 10−3 min, 140 cpm, 20 m−1, respectively; and Vc is the
casting speed, m/min.

Table 3. Parameters of casting process.

Pouring Temperature (◦C) Casting Speed (m/min) Frequency
(cpm) Stroke (mm)

1563 1.2 164 (2.73 Hz) 4.6

After the simulation experiment, the shell and slag film were cut down from the
extractor (Figure 2) for further analyses. The morphology and composition of the two
shells and two slag films were characterized using a light microscope (OM, Leica DM4 M,
Wetzlar, Germany), scanning electron microscope (SEM, JSM-6360LV, Tokyo, Japan) and
X-ray Energy dispersion spectrometer (EDS, EDX-GENESIS 60S, San Diego, CA, USA). In
addition, the heat flux across from the molten steel to the mold wall was calculated using
a model of two-dimensional inverse heat conduction problem (2D-IHCP), based on the
measured temperature by the embed thermocouples, as in a previous paper [18].
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Figure 2. Solidified shell and slag film after the simulation experiment: (a) mold flux A; (b) mold flux B.

3. Results and Discussion
3.1. Temperature in Mold

There are two row-embed thermocouples in the copper mold as shown in Figure 1,
and Figure 3 shows the temperature in the mold 3 mm away from the copper mold hot
face. According to the process of the experiment, there are four stages (I–IV) in the whole
temperature history. In stage I, the temperature increases rapidly from room temperature
to 86 ◦C when mold flux A is used and to 78 ◦C when mold flux B is used. This is because
the copper mold descends towards the molten bath, and it is heated up by the molten steel.
In Stage II, to generate the initial solidified shell, the copper mold is kept in the molten
bath for 5 s. So, the temperature reduces a little bit as the solidified shell increases the
thermal resistance. The temperature increases again in stage III, and it results from the
consecutive contact of fresh molten steel on the water-cooled mold wall at the meniscus
during the casting stage. Finally, when the copper mold is withdrawn from the molten bath
in Stage IV, the temperature starts to drop again gradually.
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Generally, the temperature in the copper mold becomes lower (Figure 3a) when mold
flux B is used, compared with that in Figure 3b when mold flux A is used. The highest
temperature is 120 ◦C for mold flux B, while it is 160 ◦C for mold flux A. Moreover, the
temperature fluctuation of these curves in Figure 3b becomes weaker than that in Figure 3a.
For example, the amplitude of the temperature fluctuation in Stage III is about 2.8 ◦C (T5)
for mold flux B, and it is 3.2 ◦C (T5) for mold flux A. All these phenomena are mainly due
to the difference in thickness and structure of slag films when the two mold fluxes are used.
The deeper analyses on the impact of thickness and structure of slag film on heat transfer
from molten steel to mold wall will be stated in Sections 3.2 and 3.3.

3.2. Slag Film Structure

As the heat transfer is affected by mold flux layers greatly, the slag film in the gap
between the mold wall and solidified shell were stripped from the copper mold after the
experiment. The thickness of the slag film from the meniscus to the bottom of the shell was
measured using a vernier caliper, and its results are shown in Figure 4. The thickness of
slag film at the meniscus is 2.1 mm and 2.75 mm for mold fluxes A and B, respectively, as
shown in Figure 4a. However, it decreases rapidly at the distance away from the meniscus.
The reason for that is because the slag film at the meniscus also belongs to part of the slag
rim which is cooled in two dimensions from both the mold wall and air on the top of the
mold flux.

The average thickness of the slag film and slag consumption of both mold fluxes were
also calculated and are exhibited in Figure 4b. Equation (3) is the empirical formula for
calculating the slag consumption in this simulation experiment.

Q = 0.55(
60
f
)
(

ηV2
c

)−0.5
+ 0.1 (3)

where, Q is the slag consumption, kg/m2; f is the mold frequency, cpm; η is the viscosity of
mold flux, Pa·s; and Vc is the casting speed, m/min.

From Figure 4, the average thickness of te slag film is 1.31 mm and 1.63 mm, and the
consumption of the mold flux is 0.33 kg/m2 and 0.35 kg/m2, respectively. So, both the
average thickness and consumption of mold flux B are larger than mold flux A. This is
attributed to that both the melting point and viscosity of mold flux B are smaller than for
mold flux A, which is beneficial for the infiltration of the mold flux into the gap between
the mold wall and shell.

Figure 4c,d show the SEM images of slag films. It seems that crystals precipitate in
whole slag films. But those near the mold side are of smaller size due to the rapid cooling
from the mold wall, while the crystals near the solidified shell are larger, as they form
in the liquid slag with a much slower cooling rate. The average thickness of the smaller
size crystalline layer is 940 µm and 990 µm for mold flux A and B, respectively, but the
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thickness of the larger size crystalline layer is almost the same (330 µm). The thickness
of the slag film and crystalline layer is affected by the viscosity, melting temperature and
break temperature, and it also further affects the heat transfer across through the molten
steel to the wall of the copper mold [19,20].
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3.3. Heat Flux Analysis

The heat flux contour map through the copper mold hot surface at the casting stage
was calculated by 2DIHCP and is exhibited in Figure 5. The heat flux for mold flux B
is generally smaller than that for mold flux A, as the color in Figure 5b is lighter than
that in Figure 5a. The maximum heat flux for mold flux B is about 2.5 MW/m2, and that
is about 2.7 MW/m2 for mold flux A. It is primarily attributed to the thicker slag film
and thicker crystalline layer in slag film B, which results in an increase in the thermal
resistance between the solidified shell and mold wall [21,22]. Moreover, in both cases, the
maximum heat flux occurs in the region of approximately 5–10 mm below the meniscus,
and this region is better for reflecting the early solidification phenomena associated with
the mold oscillation and molten steel flow. Therefore, the heat flux at y = 9 mm or y = 8 mm
is chosen as the typical heat flux for the subsequent characteristic analysis, providing a
more comprehensive understanding of the early solidification phenomena related to the
oscillation of the copper mold and solidification of molten steel.

Figure 6 shows the corresponding relationship between the heat flux and profile of the
solidified shell. The heat flux of low frequency and high frequency is decomposed from the
original heat flux by an FFT filter. The threshold frequency of this filter is 1.37 Hz, which
is equal to half of the mold oscillation frequency [23]. The heat flux with low frequency
increases a little bit during the casting period, as the fresh molten steel consecutively
touches and solidifies. The heat flux with high-frequency in both Figure 6a,b exhibits a
strong correlation (one-to-one) with the oscillation mark on the shell surface. The cycle
of the high-frequency heat flux is also kept the same as the mold oscillation. The main
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reason for those is because the high-frequency heat flux is from the oscillation of the
copper mold, which is periodically in and out of the molten bath at the meniscus. In the
meantime, the oscillation of the mold also causes the formation of an oscillation mark,
through the overflowing or pushing back of molten steel to the tip of the shell. In addition,
the amplitude of the fluctuation in the heat flux with both low frequency and high frequency
for mold flux B is relatively smaller than that for mold flux A. This is also due to the thicker
slag film and crystalline layer which has a stronger heat transfer control ability.
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3.4. Solidified Shell Profile

The initial solidified shells were split along the casting direction for the profile analysis
after the simulation experiment. Figure 7a,b show the cross-section of the shells for mold
flux A and mold flux B, and Figure 7c is the cut-off parts from the shells for further analysis
of entrapped slag.
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To observe the shape and distribution of the shell oscillation mark more clearly, the
cross-section of shell in Figure 7a,b were characterized using the contact profilometer
and shown in Figure 8. The difference is significant in the profile of the two shells. The
shell for mold flux A exhibits sharper oscillation marks, while the shell for mold flux
B has shallower oscillation marks. According to the previous research [24,25], there are
two typical oscillation marks on the slab. One is the “hook” type, and the other is the
“depression” type. From the profile of oscillation marks in Figure 8, it seems that the
oscillation marks on mold flux A shell are more likely to be “hook” type, while those on
mold flux A shell may be of “depression” type.
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The depth of each oscillation mark was also measured and is listed in Table 4. The
depth of oscillation marks on the shell for mold flux B (0.20 mm) is shallower than that
for mold flux A (0.24 mm). As a deeper of oscillation mark indicates that the mold flux is
easier to be captured, the oscillation mark when mold flux A is used is more severe than
that for mold flux B. This means that a slag entrapment defect is more likely to be produced
for mold flux A.

Table 4. The measured depth of oscillation marks.

OM1 OM2 OM3 OM4 OM5 OM6 Ave. STD

Depth (mm) A 0.08 0.19 0.30 0.13 0.21 0.55 0.24 0.15
B 0.08 0.20 0.40 0.07 0.15 0.30 0.20 0.12



Materials 2024, 17, 1435 9 of 12

Figure 9 shows the change in shell thickness with time. In theory, the thickness
(S) of the solidified shell depends on time ts for casting steel, and it is approximated by
Equation (4) [26].

S = Ks
√

ts (4)

where ts is the solidification time, s, and it is equal to l/Vc (l is the distance from the tip of
the shell, mm; Vc is the casting speed, mm/s). Ks is the solidification coefficient, mm/s1/2,
and it is influenced by the copper mold cooling capacity, as well as molten steel superheat.
So, the solidification coefficient Kt can be calculated using Equation (5).

Ks = S (5)
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The calculation result suggests that the solidification coefficient of the shell for mold
flux B is 2.325 mm/s1/2, which is smaller than that for mold flux A (2.766 mm/s1/2). This
also implies that the shell for mold flux B grows under a lower cooling-capacity condition
due to the thicker slag film and crystalline layer which has a stronger heat transfer control
ability. These results are consistent with the results of temperature and heat flux in the
mold wall.

Samples in Figure 10a were taken from shells as shown in Figure 7 for slag entrapment
analysis. Figure 10b,c are the cross-section of the oscillation mark location for mold flux
B and mold flux A. It can be found that there are some substances, which are different
from the steel substrate, appearing at the oscillation marks for mold flux A. However, the
bareness steel substrate without entrapped substances occurs at the oscillation marks for
mold flux B. The compositions of those substances at the oscillation marks for mold flux
A were further identified by EDS. It shows that it is composed by Ca, Si, Al, Na and Mg
(spectrum 3 and 4), which are the main components of the mold flux. In addition, the
contents of C in spectra 3 and 4 are 4.63 and 3.43 wt.% due to the original C content in the
mold powder and the C gathered in the slag rim at the meniscus.

Therefore, through the comprehensive analyses of the slag film in the gap, in-mold
temperature, heat flux, oscillation mark on shell and entrapped slag at the location of
oscillation mark, it can be concluded that the mechanism of the slag entrapment in the
oscillation mark is mainly due to the formation of the slag film and crystalline layer with
different thicknesses which affects the heat transfer (in-mold temperature and heat flux)
from molten steel to the mold wall, and then leads to the production of a thicker or thinner
solidified shell with a shallower or deeper oscillation mark. The deeper oscillation marks
are more likely to be the “hook” type, which can easily capture the mold flux and produce
an entrapped slag defect by overflow of molten steel at the meniscus.



Materials 2024, 17, 1435 10 of 12Materials 2024, 17, x FOR PEER REVIEW 11 of 13 
 

 

 
Figure 10. The entrapped slag at the location of oscillation mark: (a) sample, (b) metallographic 
images, (c) SEM image and (d) EDS results. 

Therefore, through the comprehensive analyses of the slag film in the gap, in-mold 
temperature, heat flux, oscillation mark on shell and entrapped slag at the location of os-
cillation mark, it can be concluded that the mechanism of the slag entrapment in the os-
cillation mark is mainly due to the formation of the slag film and crystalline layer with 
different thicknesses which affects the heat transfer (in-mold temperature and heat flux) 
from molten steel to the mold wall, and then leads to the production of a thicker or thinner 
solidified shell with a shallower or deeper oscillation mark. The deeper oscillation marks 
are more likely to be the “hook” type, which can easily capture the mold flux and produce 
an entrapped slag defect by overflow of molten steel at the meniscus. 

4. Conclusions 
The temperature in the mold, slag film structure and heat flux across the mold and 

solidified shell profile during the IF steel casting process were investigated using a high-
temperature mold simulator. The following important conclusions are summarized: 
(1) The temperature in the copper mold becomes lower when mold flux B was used, 

compared with that when mold flux A was used. Also, the temperature fluctuation 
becomes weaker for mold flux B than that for mold flux A. 

(2) The average thickness of slag films for mold fluxes A and B are 1.31 mm and 1.63 
mm. The slag consumption of them is 0.33 kg/m2 and 0.35 kg/m2, respectively. So, 
both the average thickness and consumption of mold flux B are larger than mold flux 
A. 

(3) The heat flux for mold flux B is smaller compared with that for mold flux A, and the 
amplitude of fluctuation in heat fluxes with both low frequency and high frequency 
for mold flux B is relative smaller than that for mold flux A. It is due to the thicker 
slag film and crystalline layer which has a stronger heat transfer control ability. 

(4) The shell for mold flux A exhibits sharper oscillation marks, while the shell for mold 
flux B has shallower oscillation marks. The sharper and deeper oscillation marks for 

Figure 10. The entrapped slag at the location of oscillation mark: (a) sample, (b) metallographic
images, (c) SEM image and (d) EDS results.

4. Conclusions

The temperature in the mold, slag film structure and heat flux across the mold and
solidified shell profile during the IF steel casting process were investigated using a high-
temperature mold simulator. The following important conclusions are summarized:

(1) The temperature in the copper mold becomes lower when mold flux B was used,
compared with that when mold flux A was used. Also, the temperature fluctuation
becomes weaker for mold flux B than that for mold flux A.

(2) The average thickness of slag films for mold fluxes A and B are 1.31 mm and 1.63 mm.
The slag consumption of them is 0.33 kg/m2 and 0.35 kg/m2, respectively. So, both
the average thickness and consumption of mold flux B are larger than mold flux A.

(3) The heat flux for mold flux B is smaller compared with that for mold flux A, and the
amplitude of fluctuation in heat fluxes with both low frequency and high frequency
for mold flux B is relative smaller than that for mold flux A. It is due to the thicker
slag film and crystalline layer which has a stronger heat transfer control ability.

(4) The shell for mold flux A exhibits sharper oscillation marks, while the shell for mold
flux B has shallower oscillation marks. The sharper and deeper oscillation marks for
mold flux A capture a substance composed of Ca, Si, Al, Na and Mg, which are the
main components of the mold flux.

(5) From the results above, it can be concluded that the mechanism of slag entrapment in
the oscillation mark mainly results from the formation of different thicknesses of the
slag film and crystalline layer, which affects the heat transfer in the mold, and then
leads to a deeper oscillation mark. Those deeper oscillation marks capture the mold
flux and produce slag entrapment defect by overflow of molten steel at the meniscus.
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