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Abstract: Considerable development has been observed in the area of applying fractional-order
rheological models to describe the viscoelastic properties of miscellaneous materials in the last
few decades together with the increasingly stronger adoption of fractional calculus. The fractional
Maxwell model is the best-known non-integer-order rheological model. A weighted least-square
approximation problem of the relaxation modulus by the fractional Maxwell model is considered
when only the time measurements of the relaxation modulus corrupted by additive noises are
accessible for identification. This study was dedicated to the determination of the model, optimal
in the sense of the integral square weighted model quality index, which does not depend on the
particular sampling points applied in the stress relaxation experiment. It is proved that even when
the real description of the material relaxation modulus is entirely unknown, the optimal fractional
Maxwell model parameters can be recovered from the relaxation modulus measurements recorded
for sampling time points selected randomly according to respective randomization. The identified
model is a strongly consistent estimate of the desired optimal model. The exponential convergence
rate is demonstrated both by the stochastic convergence analysis and by the numerical studies. A
simple scheme for the optimal model identification is given. Numerical studies are presented for the
materials described by the short relaxation times of the unimodal Gauss-like relaxation spectrum and
the long relaxation times of the Baumgaertel, Schausberger and Winter spectrum. These studies have
shown that the appropriate randomization introduced in the selection of sampling points guarantees
that the sequence of the optimal fractional Maxwell model parameters asymptotically converge to
parameters independent of these sampling points. The robustness of the identified model to the
measurement disturbances was demonstrated by analytical analysis and numerical studies.

Keywords: viscoelasticity; linear relaxation modulus; fractional Maxwell model; stress relaxation test;
experiment randomization; differentiable Lipchitz models

1. Introduction

For several decades, fractional-order rheological models have been used to describe,
analyze and improve the viscoelastic properties of different materials. In addition to theo-
retical research dedicated to fractional-order rheological models [1–5], hundreds of studies
have been conducted on the applicability of such models for specific materials to describe
their mechanical properties. The applicability of such models to the description of different
polymers is well known, for example, poly-isobutylene [4], polyurea and PET [6], shape
memory polymers [7], amorphous polymers [8] and flax fiber-reinforced polymer [9]. Frac-
tional viscoelastic models are also used for modeling laminated glass beams in the pre-crack
state under explosive loads [10]; stress relaxation behavior of glassy polymers [11]; de-
scription of fiber-reinforced rubber concrete [12]; viscoelastic modeling of modified asphalt
mastics [13]; and modeling rate-dependent nonlinear behaviors of rubber polymers [14].
The modeling and simulation of viscoelastic foods, for example, food gums [15], carrot
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root [16], fish burger baking [17], is another field of application of rheological fractional
models. Due to the non-integer order of the operations of integration and differentiation,
the fractional-order models have improved flexibility and better adjustment to material
characteristics, both in the time and frequency domains, compared to those of the classic
integer-order models.

Although over the last several decades different fractional differential models have
been proposed for modeling the viscoelastic processes in materials, the fractional Maxwell
model (FMM) is the best known [4,5]. The relaxation modulus of the FMM, described by the
product of Mittag-Leffler and inverse power functions, allows for the modeling of a very
wide range of stress relaxation processes in materials. Describing the rheological properties
of polymers by the FMM [18,19] is well known. However, the FMM was also applied,
for example, for computational modeling and analysis on the damping and vibrational
behaviors of viscoelastic composite structures [20], viscoelastic flow in a circular pipe [21],
effect of temperature on the dynamic properties of mixed surfactant adsorbed layers at
the water/hexane interface [22,23] and constitutive equations of the Mn-Cu damping
alloy [24]. Fractional viscoelasticity described by the Maxwell model turned out to model
both exponential and non-exponential relaxation phenomena in real materials.

Different identification methods for the recovery of the parameters of the non-integral-
order models, including the FMM, from both static [16,25–28] and dynamic [12,29–31]
experiments data have been proposed so far. It is known that different identification
methods in association with different experiment plans result in different identification
data yield models, which may differ [32]. Generally, the identification result, i.e., the chosen
model, is influenced by the three entries that are necessary for model identification: the set
of models from which the best model is chosen, the rule for the optimal model selection
and the measurement data obtained in the experiment [32,33]. For the selected class of
models, here, the set of the fractional Maxwell models, the identified model depends on the
identification rule and the experiment data. The model parameters are usually determined
by guaranteeing the “best-possible” fit to the measurements. Therefore, parameters of
the optimal model are dependent on the measure applied for evaluating the “best” [32].
The mean-square approximation error is the predominant selection of the model quality
measure, which results in a standard least-squares identification task. For the selected
identification index, the model identified is usually dependent, sometimes even very
strongly, on the experiment data. This is the case with FMM identification methods known
in the literature [12,16,25–31]. This paper deals with the problem of the FMM identification
using measurement data from the stress relaxation test. Therefore, the sampling instants
used in the experiment and discrete-time measurements of the relaxation modulus compose
the set of the experiment data. To build the optimal fractional Maxwell model whose
parameters do not depend on sampling instants applied in the stress relaxation test is the
aim of this paper.

In the previous paper [33], the problem of the least-squares approximation of the
relaxation modulus has been considered for an assumed wide class of relaxation modulus
models. Models being continuous, differentiable and Lipschitz continuous with respect
to the parameters have been assumed. The main results in [33] refer to the models that
are determined asymptotically, when the number of measurements tend to infinity. When-
ever some applicability conditions concerning the chosen class of models are satisfied, the
asymptotically optimal FMM parameters can be determined using the measurement data
obtained for sampling instants selected randomly due to the appropriate randomization,
even when the true relaxation modulus description is completely unknown. For the expo-
nential Maxwell and the exponential stretched Kohlrausch–Williams–Watts models, the
applicability conditions are satisfied [33]. It should be noted that the concept of identifica-
tion being measurement point-independent comes from the Ljung paper [34] and the paper
of [35], in which the optimal identification problems for dynamic and static systems have
been considered.
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In this paper, the concept of introducing an appropriate randomization for the selection
of sampling instants at which the measurements of the relaxation modulus are recorded is
applied for the fractional Maxwell model identification. Following [33], the real material
description is completely unknown and only the measurement data of the relaxation
modulus are available for model identification. Identification consists of determining the
FMM that solves the problem of an optimal least-squares approximation of a real relaxation
modulus. The complicated form of the relaxation modulus of the FMM (the product of
Mittag-Leffler and inverse power functions) implies that the applicability of the sampling
points-independent identification for FMM identification is not obvious. It is known that
the relaxation modulus of the FMM is continuous and differentiable with respect to its
four parameters [36]. However, the satisfaction of the Lipschitz continuous property with
the bounded Lipschitz constant is proved in this paper for the first time, to guarantee the
applicability of the experiment randomization concept.

A complete identification scheme leading to the strongly consistent estimate of the
optimal model was specified. Assuming that the measurements are corrupted by additive
disturbances, the stochastic-type analysis of the model convergence was carried out, and
the exponential rate of convergence was demonstrated both analytically and by numerical
studies. For materials described by the unimodal Gauss-like spectrum of relaxation used
to describe the rheological properties of the materials [37–39] and by the Baumgaertel,
Schausberger and Winter (BSW) spectrum [40,41] successfully applied for modeling the
polymers [42,43], based on the simulation experiments, both the asymptotic properties and
noise robustness of the algorithm were numerically studied. To improve the clarity of this
article, the proof of the new FMM Lipschitz property is moved to Appendix A. The tables
with the results of the numerical studies are given in Appendix B.

2. Materials and Methods
2.1. Material

A linear viscoelastic material subjected to small deformations for which the uniaxial,
non-aging and isotropic stress–strain equation is given by a Boltzmann superposition
equation [44]

ς(t) =
∫ t

−∞
G(t − τ)

dε(τ)

dτ
dτ (1)

is considered, where ς(t) and ε(t) are, respectively, the stress and strain and G(t) denotes
the linear relaxation modulus. By Equation (1), the stress ς(t) at time t depends on the
earlier history of the strain rate described by the first-order derivative dε(τ)

dτ via the kernel
given by the relaxation modulus G(t).

The modulus G(t) is the stress induced in the material described by constitutive
Equation (1) by the unit step strain ε(t) imposed. It is assumed for the studied material that
the mathematical description of the modulus G(t) is completely unknown. However, the
real relaxation modulus G(t) is accessible by measurement with a certain accuracy for an
arbitrary time t ∈ T . Here, T = [t0, T] with the initial time t0 > 0 and T ≤ ∞.

We make the following assumption [33]:

Assumption 1. The relaxation modulus G(t) of the material is bounded on T , i.e., sup
t∈T

G(t) ≤

M < ∞.

2.2. Fractional Maxwell Model

Constitutive equation of the fractional order Maxwell model is as follows [2,4,45]:

τ
α−β
r

dα−βς(t)
dtα−β

+ ς(t) = Geτα
r

dαε(t)
dtα

, (2)

where Ge denotes the elastic modulus, τr means the relaxation time, α and β are non-integer
positive orders of fractional derivatives of the strain ε(t) and stress ς(t), respectively. In this
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paper, dα

dtα f (x) = Dα
t f (x) means the fractional derivative operator in the sense of Caputo’s

of a function f (x) of non-integer-order α with respect to variable t and with a starting point
at t = 0, which is defined by [1,4]

Dα
t f (t) =

1
Γ(n − α)

∫ t

0
(t − 1)n−α−1 dn

dtn f (t)dt,

where n − 1 < α < n and Γ(n) is Euler’s gamma function [1] (Equation (A.1.1)).
The FMM (2) can be considered as a generalization of the classic viscoelastic Maxwell

model being the series connection of the ideal spring with a dashpot (see Figure 1a)
described by a differential equation of the first order [44,46]:

dς(t)
dt

+
1
τr

ς(t) = Ge
dε(t)

dt
, (3)

with the elastic modulus Ge of the spring, the relaxation time τr = η/Ge, where η means
the viscosity of the dashpot.
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Figure 1. Viscoelastic models: (a) classic Maxwell model; (b) fractional Scott-Blair model of an order
α; (c) fractional Maxwell model; elastic modulus Ge, Ge1, Ge2, viscosity η, relaxation times τr, τ1, τ2.

A series connection (see Figure 1c), analogical to the classic Maxwell model, of two
elementary fractional Scott-Blair elements (Ge1, τr1, α) and (Ge2, τr2, β), both described by
the fractional differential equation of the general form [2,4,45]

ς(t) = Geτα
r

dαε(t)
dtα

, (4)

with the parameters (Ge, τr, α) (see Figure 1b), yields the FMM described by Equation (2),
where the parameters (Ge1, τr1, α) and (Ge2, τr2, β) uniquely determine the parameters E
and τr of the FMM (2); for details, see [16]. The four parameters (Ge, τr, α, β) of the FMM (2),
compared with only two parameters (Ge, η), or equivalently (Ge, τr) of the classic Maxwell
model (3), are important for the improvement in the FMM accuracy and flexibility.

The uniaxial stress response of the FMM (2) imposed by the unit step strain ε(t), i.e.,
the time-dependent relaxation modulus G(t), for an arbitrary 0 < β < α ≤ 1 is given by
the formula [2,4,5]:

G(t) = Ge

(
t
τr

)−β

Eα−β,1−β

(
−
(

t
τr

)α−β
)

, (5)

where Eκ,µ(x) is the generalized two-parameter Mittag-Leffler function defined by series
being convergent in the whole z-complex plane [1,2]:

Eκ,µ(x) = ∑∞
n=0

xn

Γ(κn + µ)
. (6)
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Further, for the description of the FMM identification task, relaxation modulus model (5) is
denoted as

GM(t, g) = Ge

(
t
τr

)−β

Eα−β,1−β

(
−
(

t
τr

)α−β
)

, (7)

to emphasize the dependence on a four-element vector of model parameters

g =
[
α β Ge τr

]T , (8)

where the subscript ‘M’ means the model.
For the special case α = β, the FMM (2) reduces to the Scott-Blair model (compare (4))

2ς(t) = Geτα
r

dαε(t)
dtα

, (9)

and the relaxation modulus is described by

GM(t, g) =
Ge

2Γ(1 − α)

(
t
τr

)−α

. (10)

Let us consider the following set of the FMM admissible model parameters:

G = {g : β0 ≤ β ≤ α ≤ 1; Gemin ≤ Ge ≤ Gemax; τrmin ≤ τr ≤ τrmax} (11)

where β0 > 0 is an arbitrarily small positive number and the maximal and minimal values
of elastic modulus Ge and relaxation time τr follow from the a priori knowledge concerning
the material under investigation and are such that Gemin > 0 and τrmin > t0. G is a compact
subset of the four-dimensional real space R4.

The properties of the two-parameter Mittag-Leffler function and the model (7) have
been studied by many authors [1–5]. The function Eκ,µ(x) (6) is completely monotonic on
the negative real axis for 0 < κ ≤ 1 and µ ≥ κ, i.e., the function Eκ,µ(−x) is completely
monotonic for x > 0, Ref. [4] (Equation (E.32)). Whence, since t0 > 0, by virtue of (6), for
any t ∈ T , and any g ∈ G, we have

Eα−β,1−β

(
−
(

t
τr

)α−β
)

< Eα−β,1−β(0) =
1

Γ(1 − β)
≤ 1. (12)

Let us introduce the function [4] (Equation (E.53))

eκ,µ(x; λ) = xµ−1Eκ,µ(−λxκ), (13)

which, comparing (7) and (13), enables describing the relaxation modulus GM(t, g) (7) in
compact form as follows

GM(t, g) = Geτr
βeα−β,1−β

(
t; τr

β−α
)

. (14)

The function eκ,µ(x; λ) (13) is known to play a crucial role in many problems of
fractional calculus [4] (p. 372) because it has many excellent and useful properties; some of
them were used in this paper. The function eκ,µ(x; λ) is completely monotonic for x > 0
when 0 < κ ≤ µ ≤ 1 whenever the parameter λ > 0 [4] (p. 373) as the product of two
completely monotonic functions, which by (14) implies the complete monotonicity of the
relaxation modulus model GM(t, g) for t > 0 whenever 0 ≤ β < α ≤ 1. This means, in
particular, that for t > 0 and g ∈ G, such that 0 < β < α ≤ 1, the positive definite model
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GM(t, g) (7) monotonically decreases with increasing t > 0. Therefore, for any t > 0 and
any g ∈ G, such that 0 < β < α ≤ 1, in view of (12)–(14), we have

|GM(t, g)| ≤ Geτr
βt−β

0 Eα−β,1−β

(
−
(

t0

τr

)α−β
)

≤ Gemaxm0, (15)

where m0 is defined below by the sequence of inequalities valid for any t ∈ T and any
g ∈ G (

t
τr

)−β

≤
(

τrmax

t0

)β

≤ τrmax

t0
= m0, (16)

where t0 > 0.
For the case α = β, the relaxation modulus GM(t, g) (10) is also a completely monotonic

function of the time for t > 0, which in view of (16) is uniformly bounded for t ∈ T and
g ∈ G by Gemaxm0/2.

Therefore, there exists a positive constant M1 = Gemaxm0 such that

sup
t∈T ,g∈G

|GM(t, g)| ≤ M1 < ∞, (17)

i.e., the modulus GM(t, g) is uniformly bounded on the set T × G.
Inequality (17) combined with Assumption 1 implies the upper bound

sup
t∈T ,g∈G

|G(t)− GM(t, g)| ≤ M + M1 < ∞. (18)

The Lipschitz continuity of the model GM(t, g) with respect to parameter g, which
is not obvious, in particular, with respect to non-integer orders of fractional derivatives,
is fundamental to guarantee the convergence of the optimal models for the applied here
experiment randomization. Therefore, before the identification concept and the respec-
tive algorithm are presented, the Lipschitz property of the mapping GM(t, g) (7) will be
proved, as summarized in the following theorems. The quite tedious proofs are moved into
Appendix A.1.

2.3. Lipschitz Continuity of FMM with Respect to Model Parameters

Due to the relation between the parameter α and β, let us consider two cases separately
when (a) β < α and (b) β = α. Therefore, the set of admissible model parameters G (11) is
decomposed on two disjoint subsets:

G1 = {g : β0 ≤ β < α ≤ 1; Gemin ≤ E ≤ Gemax; τrmin ≤ τr ≤ τrmax} (19)

and
G2 = {g : β0 ≤ β = α ≤ 1; Gemin ≤ E ≤ Gemax; τrmin ≤ τr ≤ τrmax}, (20)

in which the relaxation modulus GM(t, g) is described by the formulas (7) and (10), respec-
tively. The bounded set G1 is non-closed, i.e., the compactness property of the set G (11) is
lost here, while G2 is compact.

The following spectral representation derived in [47]

GM(t, g) = Ge
τα

r
π

∫ ∞

0

(τrv)α−βsin(πβ) + sin(πα)

(τrv)2(α−β) + 2(τrv)α−βcos[π(α − β)] + 1
vα−1e−tvdv, (21)

which results from the known spectral representation of the two-parameter Mittag-Leffler
function [1] (Theorem 4.18, Equations (4.7.17) and (4.7.15)) and is valid for 0 < β < α ≤ 1,
will be used for g ∈ G1. Applying the differential approach in Appendix A.1, the next
result is proved.
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Theorem 1. Let G1 defined by (19) be the set of the fractional Maxwell model admissible parameters.
Then, the relaxation modulus GM(t, g) (7) of the FMM (2) is continuous and differentiable with
respect to g (8) for any time t ∈ T and

sup
t∈T ,g∈G1

∥∥∇gGM(t, g)
∥∥

2 ≤ M2 < ∞, (22)

where ∇gGM(t, g) denotes the gradient of the function GM(t, g) with respect to the vector g; here,
∥·∥2 is the Euclidean norm in the space R4.

The above theorem means, in particular, that for an arbitrary small positive β0, the
mapping GM : T × G1 → R defined according to Equation (7) is, uniformly with respect
to the time t ∈ T , a Lipschitz continuous function of the vector of model parameters g with
Lipschitz constant M2.

In the case (b) β = α, for the set of model parameters G2 (20), the FMM (2) is described
by the power-law relaxation modulus GM(t, g) (10) and the absolute boundness of the
gradient ∇gGM(t, g) is resolved by the next result proved in Appendix A.2.

Theorem 2. Let G2, defined by (20), be the set of the fractional Maxwell model admissible parameters
with equal parametersα and β. Then, the relaxation modulus GM(t, g) (10) of the model (9) is
continuous and differentiable with respect to g (8) for any time t ∈ T and

sup
t∈T ,g∈G2

∥∥∇gGM(t, g)
∥∥

2 ≤ M3 < ∞. (23)

From the proofs of the above theorems, especially from the nonnegative definiteness
of the derivatives ∂GM(t,g)

∂E (A5), ∂GM(t,g)
∂τr

(A6) and the two last elements of the gradient
∇gGM(t, g) (A53), the following property is derived.

Property 1. Let G defined by (11) be the set of the FMM (2) admissible parameters. Then, for
any fixed time t ∈ T , the relaxation modulus GM(t, g) described by (7) or (10) monotonically
increases with increasing parameters Ge and τr and other parameters being fixed, i.e., the greater
parameters Ge and τr are, the greater the relaxation modulus GM(t, g) is for the given t ∈ T .

2.4. Relaxation Modulus Measurements

Following [33,35], let T1, . . . , TN be independent random variables with a common
probability density function ρ(t); T is the support of ρ(t). Then, let Gi = G(Ti) be the
related relaxation modulus of the material for i = 1, . . . , N. Let Gi denote their measure-
ments corrupted by additive noise Zi, i.e., Gi = Gi + Zi, recorded in the stress relaxation
experiment [44,46,48].

The two assumptions concerning the measurement noises are taken (compare As-
sumptions 5 and 6 in [33]) as follows:

Assumption 2. The measurement noise {Zi} is a time-independent, i.e., independent of the
variables {Ti}, sequence of independent identically distributed (i.i.d.) random variables with zero
mean E[Zi] = 0 and a common finite variance E

[
Z2

i
]
= σ2 < ∞.

Assumption 3. The measurement noises Zi are bounded by δ, i.e., |Zi| ≤ δ < ∞ for i = 1, . . . , N.

Both the above assumptions and Assumption 1, concerning the real relaxation modu-
lus, are natural in the context of the relaxation modulus identification [33].

2.5. Identification Problem

FMM identification involves selecting from a given class of models defined by (7) and
(10) the model that best fits the measurement data. Suppose an identification experiment
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resulted in a set of measurements
{

G(Ti) = G(Ti) + Zi
}

at the sampling times Ti ≥ t0 > 0,
i = 1, . . . , N. The mean-squares index

QN(g) =
1
N ∑N

i=1

[
G(Ti)− GM(Ti, g)

]2, (24)

is taken as a measure of the FMM model accuracy. Here, the lower index denotes the
number of measurements. Then, the problem of the optimal model identification consists
of the solution of the minimization task

min
g∈G

QN(g) = QN(g∗N), (25)

where g∗N is the optimal model parameter. Since, due to the continuity of the model
GM(t, g) with respect to the parameter g, the index QN(g) is a continuous function of g
and the set of admissible parameters G (11) is compact, the existence of the solution to the
optimization problem (25) immediately results from the Weierstrass theorem about the
extreme of continuous function on the compact set [49]. Since the minimum g∗N can be not
unique, let G∗

N denote the set of vectors g∗N that solve the optimization task (25).
The parameters g∗N of the identified relaxation modulus model GM

(
t, g∗N

)
are depen-

dent on the measurement data, in particular, on the sampling instants Ti. To make the model
independent of specific sampling instants Ti, the optimal sampling points-independent
approximation problem is stated in the following subsection.

2.6. The Optimal FMM

Let us consider the following problem of determining such an FMM that minimizes
the global approximation error:

Q(g) =
∫
T
[G(t)− GM(t, g)]2ρ(t)dt, (26)

where the selected weight function, such that 0 ≤ ρ(t) ≤ M0 < ∞, is a density on the set T ,
i.e.,

∫
T ρ(t)dt = 1.
The integral (26) is absolutely integrable, uniformly on G, both for the bounded or

unbounded domain T as the product of a function [G(t)− GM(t, g)]2, in view of (18)
bounded uniformly for (t, g) ∈ T × G, and absolutely integrable function ρ(t). Therefore,
the integral (26) is well defined for any g ∈ G.

The problem of the optimal approximation of the real modulus G(t) within the class
of the fractional Maxwell models relies on determining the parameter g∗ that minimizes
Q(g) over the set G, i.e., in solving optimization task

min
g∈G

Q(g) = Q(g∗). (27)

Due to continuity of GM(t, g) with respect to the vector g, the index Q(g) (5) is a
continuous function of g, and thus, the existence of the solution g∗ follows from the
previously mentioned Weierstrass theorem concerning the extreme of continuous function
on the compact set. Let the set of model parameters g∗ solving (27) be denoted by G∗. Any
parameter g∗∈ G∗ does not depend on the specific time instants applied in the experiment.

3. Results and Discussion

In this section, the analysis of the asymptotic properties of the identified fractional
Maxwell model, when the number of measurements tend to infinity, is conducted. The
rate of the convergence of this model to the optimal FMM, which does not depend on
the experiment data, is studied. The resulting identification algorithm is outlined. Next,
the analytically proven properties of the identification method are verified by numerical
simulations and studies. Two example materials are simulated. In the first, the “real”
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material is described by a unimodal Gauss-like relaxation spectrum [37–39] with short
relaxation times and the Baumgaertel, Schausberger and Winter (BSW) spectrum [40,41]
with long relaxation times. Such models are used to describe the rheological properties of
various materials, especially polymers and biopolymers. Based on the noise-corrupted data
from the simulated randomized stress relaxation experiment, the optimal FMM models are
determined. The asymptotic properties and noise robustness have been studied.

3.1. Convergence

The empirical index QN(g) (24) can be obtained by the replacement of the integral in
Q(g) (26) with the finite mean sum of squares, which is clear from a practical point of view.
For i = 1, . . . , N, by Assumption 2, the expected value is

E[G(Ti) + Zi − GM(Ti, g)]2 = Q(g) + σ2,

whence, by (24), the expected value is

EQN(g) = Q(g) + σ2. (28)

To investigate the stochastic-type asymptotic properties of the empirical identification
task given by (25), some properties derived in [35] will be used. Note, that Assumptions A1–A3
from [35], concerning the compactness of the set of model admissible parameters, con-
tinuity, differentiability and Lipshitzness of the model are satisfied here. Taken above,
Assumption 2 is identical with Assumption A5 in [35], while property (18) also means that
Assumption A4 from [35] is satisfied, i.e., all the assumptions from [35] hold here.

By (28), Property 2 from [35] implies the next result.

Property 2. When Assumptions 1 and 2 are satisfied, then

sup
g∈G

|[Q(g) + σ2]− QN(g)| → 0 w.p.1 as N → ∞, (29)

where w.p.1 means “with probability one”.

By (28) and (29), the empirical identification index QN(g) (24) is arbitrarily close to
its expected value, uniformly in g over the set G. In consequence, the model parameter
g∗N solving empirical identification task (25) can be related to the parameter g∗ that solves
the sampling points-independent minimization task (27). From the uniform in g ∈ G
convergence of the index QN(g) in (29), we conclude immediately the main result of this
subsection, c.f., Assertion in [35] or Equation (3.5) in [34].

Property 3. Assume that Assumptions 1 and 2 hold, T1, . . . , TN are independently and randomly
selected from T , each according to the distribution with probability density function ρ(t). If the
solutions to the minimization problems (25) and (27) are unique, then

g∗N → g∗ w.p.1 as N → ∞ (30)

and
GM(t, g∗N) → GM(t, g∗) w.p.1 as N → ∞. (31)

for all t ∈ T . If the minimization problems (25) and (27) do not have unique solutions, then for
any convergent subsequence of the sequence

{
g∗N
}

, where g∗N ∈ G∗
N ,

g∗N → G∗ w.p.1 as N → ∞ (32)

and for any t ∈ T and some g∗ ∈ G∗,the convergence in (31) holds.
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The existence of a convergent subsequence of
{

g∗N
}

so that the asymptotic property
(32) holds results directly from the compactness of G (11). Therefore, under Assumptions
1 and 2, the optimal parameter g∗N of the FMM is a strongly consistent estimate of some
parameter g∗ ∈ G∗.

Since, by Theorems 1 and 2, the model GM(t, g) is Lipschitz on G uniformly in t ∈ T ,
then the almost-sure convergence of g∗N to g∗ in (30) implies that, c.f., (Ref. [35]: Remark 2):

sup
t∈T

|GM(t, g∗N)− GM(t, g∗)| → 0 w.p.1 as N → ∞. (33)

i.e., that GM
(
t, g∗N

)
is a strongly consistent estimate of the optimal FMM GM(t, g∗), uni-

formly on T .
Concluding, when Assumptions 1 and 2 are satisfied, the arbitrarily fine approximation

of the FMM with the optimal parameter g∗ can be determined (almost everywhere) as
the number of measurements N grow enough, even if the real description of the material
modulus is fully unknown.

3.2. Exponential Rate of Convergence

Analyzing the convergence in (30) and (32), the question immediately arises of how
fast g∗N tends to some g∗ ∈ G∗ as N grows large. As in [35], the distance between the model
parameters g∗N and g∗ will be evaluated by means of the integral identification index Q(g)
(26), i.e., in the sense of the difference

∣∣Q(g∗)− Q
(
g∗N
)∣∣. For this purpose, it will be checked

how fast, for a given small ε > 0, the probability P
{∣∣Q(g∗)− Q

(
g∗N
)∣∣ ≥ ε

}
tends to zero,

as N increases. From the well-known Hoeffding’s inequality [50], the upper bound of this
probability can be derived, analogous to inequality (15) in [35] or inequality (22) in [33] (for
details, see Appendix A.1 in [33]):

P{|Q(g∗)− Q(g∗N)| ≥ ε} ≤ 2exp
(
−Nε2

8M̂2

)
, (34)

for any ε > 0, where

M̂ = 2(M + M1)
2 + σ2 + δ2 + 2(M + M1)δ, (35)

with the constants M and M1 defined in Assumption 1 and Equation (17), respectively, the
noises’ variance σ2 and upper bound δ are introduced by Assumptions 2 and 3.

The inequality (34) describes the influence of the number of measurements N and
the noises’ ”strength” on the rate of convergence. For ε being fixed, the bounds for
P
{∣∣Q(g∗)− Q

(
g∗N
)∣∣ ≥ ε

}
decrease exponentially to zero as N increases. The convergence

rate is the higher, the lower is M̂ (35). In particular, a quick inspection of (35) shows
that for stronger measurement noises, the rate of convergence is reduced. Larger δ and σ
yield a greater decrease in the rate. This is as expected, since with large disturbances, the
measurements are not very adequate. Simultaneously, the larger M + M1, i.e., in view of
the estimation (18), the greater the discrepancy between the real modulus and the FMM,
the worse the convergence.

3.3. Identification Algorithm

In view of the convergence properties (30), (31) the computation of the parameter g∗N
approximation the parameter g∗ of the optimal FMM requires the next steps:

1. Select randomly from the set T the sampling times t1, . . . , tN , choosing each ti inde-
pendently, according to the probability distribution of the density ρ(t) defined given
by the weight function in the integral Q(g) (26).

2. Conduct the stress relaxation experiment [44,46,48], measure and store the measure-
ments

{
Gi
}

of the relaxation modulus for the selected time instants ti, i = 1, . . . , N.
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3. Solve the identification optimization task (25) and compute the identified model
parameter g∗N .

4. Put N = N and g∗
N
= g∗N . To extend the set of experiment data, select new N ≫ N.

5. Repeat Steps 1–3 for a new N, that is, randomly choose new sampling times, conduct
the rheological experiment once more for a new sample of the material and determine
the next g∗N .

6. Examine if ∥g∗
N
− g∗N∥2 < ε, where ε is a small positive number, to check if g∗

N
is an

adequate approximation of g∗. If yes, stop the scheme and take g∗
N

as the approximate
value of g∗. Otherwise, go again to Step 4.

Remark 1. A less restrictive testing regarding whether |QN(g
∗
N
)− QN(g∗N)| < ε holds can be

used as an alternative for the stopping rule from Step 6. Both types of stopping rules are commonly
used in numerical optimization techniques.

3.4. Numerical Studies

The results of the numerical studies are concerned with the asymptotic properties of
the determined optimal FMM and the influence of the measurement noises on this model.
Apart from the theoretical analysis above, these simulation studies make it possible to show
the respectability and effectiveness of the method developed for FMM identification.

Firstly, it is assumed that the rheological properties of the material are described
by the Gaussian-like distribution of the relaxation spectrum, which were used to rep-
resent the viscoelastic properties of numerous materials, e.g., polyacrylamide gels [48],
native starch gels [38], glass [39], poly(methyl methacrylate) [37], polyethylene [51] and
carboxymethylcellulose (CMC) [52]. The spectra of various biopolymers determined by
many researchers are Gaussian in nature, for example, cold gel-like emulsions stabilized
with bovine gelatin [53], fresh egg white-hydrocolloids [52], some (wheat, potato, corn and
banana) native starch gels [38], xanthan gum water solution [52] and wood [54,55].

Next, it is assumed that the material is modeled by the Baumgaertel, Schausberger
and Winter (BSW) spectrum [40,41], which was used to describe the viscoelasticity of vari-
ous polymers; for example, polydisperse polymer melts [42,43], polymethylmethacrylate
(PMMA) [56], polybutadiene (PBD) [56] and polymer pelts [57].

The “real” material and the FMM model were simulated in Matlab R2023b, The
Mathworks, Inc., Natick, MA, USA. Functions MLFFIT2 [58] and MLF [59], provided
by Podlubny, were used for the FMM simulation and numerical solution of the optimal
identification tasks.

3.5. Material I

Consider the material whose relaxation spectrum is described by the unimodal Gauss-
like distribution:

H(τ) = ϑe−( 1
τ −m)

2
/q/τ,

where the parameters are as follows [60]: ϑ = 31520 Pa·s, m = 0.0912s−1 and
q = 3.25 × 10−3s−2. The related relaxation modulus is [60]

G(t) =
√

πq
2

ϑ e
1
4 t2q−mter f c

(
1
2 tq − m
√

q

)
, (36)

where the complementary error function er f c(x) is given by [4] (Equation (C.2))

er f c(x) =
2√
π

∫ ∞

x
e−z2

dz.

Following [47], for numerical simulations, the time interval T = [0, 200] seconds is
chosen. Hence, the weighting function in Q(g) (26) is ρ(t) = 1

200 s−1. The elements of the
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optimal parameter vector g∗ solving the measurement-independent optimization task (27)
are given in Table 1.

Table 1. The components α∗, β∗, G∗
e and τ∗

r of the FMM parameter g∗ solving the optimal identification
problem (27) and the optimal integral quadratic indices Q(g∗) defined by (27) for the “real” relaxation
modulus G(t) (36).

Q(g∗)
[
kPa2

]
α∗[−] β∗[−] G∗

e [kPa] τ∗
r [s]

5.2054279 × 10−4 0.920029 1.469033 × 10−2 3.086723 12.949456

The N sampling instants ti for the simulated stress relaxation test were selected ran-
domly according to the uniform distribution on T . A normal distribution with zero mean
value and variance σ2 was applied to the random independent generation of the addi-
tive measurement noises {zi}. In the noise robustness analysis, the standard deviations
σ = 2, 5, 8 [Pa] were used. In the analysis of the model asymptotic properties, for any σ num-
bers of measurements, N ∈ N have been applied, where N = {50; 100; 200; 500; 1000; 2000;
5000; 7000; 10,000; 12,000; 15,000} .

3.5.1. Asymptotic Properties

Then, for every pair (N, σ), the optimal parameter g∗N was determined through solving
the minimization task (25). The elements of the vectors g∗N , the mean square indices QN

(
g∗N
)

and integral Q
(
g∗N
)

indices, and the relative percentage errors of the approximation of the
measurement-independent parameter g∗, defined as

ERR = ∥g∗N − g∗∥2
2/∥g∗∥2

2·100%, (37)

are given in Tables A1–A3 for the three standard deviations of the noises. The model ap-
proximation error was also estimated via the relative mean error defined as (compare (24))

QNrel(g) =
1
N ∑N

i=1

[
G(Ti)− GM(Ti, g)

]2[
G(Ti)

]2 . (38)

The optimal model parameters g∗N as the functions of the number of measurements N
are illustrated by Figure 2 for the noises of σ = 2, 5, 8 [Pa]. In any subplot, the values of the
related parameters of the sampling points-independent model g∗ are depicted by horizontal
purple lines. The asymptotic properties are also illustrated by Figure 3 juxtaposing the
empirical index mean-square index QN

(
g∗N
)
, Equation (24), and the integral quadratic

sampling instants-independent index Q
(
g∗N
)
, Equation (26), as the functions of N with the

index Q(g∗), marked with horizontal lines. In Figures 2 and 3, a logarithmic scale is applied
for the horizontal axes. These plots confirm the asymptotic properties of the proposed
identification algorithm. The convergence of g∗N to the parameter g∗ is directly translated
into the convergence of Q

(
g∗N
)

into Q(g∗), especially for N ≥ 5000. The values of the index
QN
(
g∗N
)

for N = 50, small compared to those for N ≥ 100 (see Tables A1–A3), result from
the good fit of the FMM, whose four parameters are optimally selected in problem (25), to
only 50 measurement points. For more measurement points, such a good fit is, generally,
impossible whenever the real characteristic does not depend on the pre-assumed class of
models. A comparison of Figures 2 and 3b with Figure 3a shows that the impact of stronger
noises on the values of the empirical index QN

(
g∗N
)

is much stronger than the impact of the
noises on the values of the FMM parameter g∗N and, consequently, also on the integral index
Q
(
g∗N
)
, which does not directly depend on the measurement noises. Given Equation (28),

this property is natural and fully justified.
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(
g∗N
)
, Equation (24), (b) the integral quadratic sampling instants-
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The quality of the real modulus G(t) approximation by the FMM is illustrated in
Figure 4, where the measurements Gi of the real modulus G(t) fitted by the optimal model
GM
(
t, g∗N

)
are plotted for the N = 100 and N = 10, 000 measurements and the strongest

disturbances; σ = 8 [Pa]. Although, for the N = 100 measurements, the models GM
(
t, g∗N

)
and GM(t, g∗) differ slightly (see small subplot), for the N = 10, 000 measurements, they
are practically identical, which is confirmed by the values of ERR (37) equaling 0.52% for
N = 100 and equaling only 5.58 × 10−4 % for N = 10, 000 (see Table A3). Even for the
strongest noises, the relative errors ERR (37) of the parameters g∗ and g∗N discrepancy is
smaller than 0.002% for N ≥ 200. This almost excellent fitting of the experiment data by the
model GM

(
t, g∗N

)
is confirmed by the values of the relative square model approximation

index QNrel
(
g∗N
)

(38), which for N ≥ 200 and the weakest noises does not exceed 0.015%,
while for the strongest noises, it does not exceed 0.28%. For the noises considered, the
values of the model fit indices QN

(
g∗N
)

(24) and QNrel
(
g∗N
)

(38) and the integral quadratic
index Q

(
g∗N
)

(26) indicate an excellent fit of the model to the experiment data and the fast
convergence of g∗N to g∗ as N tends to infinity; compare Tables A1–A3.
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(
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)
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3.5.2. Noise Robustness

To examine the effect of the measurement noises, for every pair (N, σ), the simulated
experiment was repeated n = 50 times. In each experiment repetition, the measurement
noises {zi} were generated independently and randomly with a normal distribution, with
a zero mean value and variance σ2.

Having in mind the definition of the index QNrel(g) (38), for the n-element sample, the
mean relative relaxation modulus approximation error was determined as follows:

ERRQNrel =
1
n∑n

j=1 QNrel

(
g∗N,j

)
, (39)

for any pair (N, σ), where the vector of the optimal FMM parameters g∗N,j was computed
for j-th experiment repetition, j = 1, . . . , n.

For the true relaxation modulus approximation, the mean optimal integral error

ERRQ =
1
n∑n

j=1 Q
(

g∗N,j

)
(40)

was determined for every pair (N, σ).
The distance between the vector g∗N,j and the measurement-independent vector g∗ for

the n element sample was estimated by the mean relative error defined as follows (compare
ERR (37)):

MERR =
1
n∑n

j=1 ∥g∗N,j − g∗∥2
2/∥g∗∥2

2·100%. (41)

The indices ERRQNrela (39) and ERRQ (40), as the functions of N and σ, are depicted
in the bar in Figure 5, while the index MERR (41) is shown in Figure 6.

From Figure 5b, it is seen that for N > 2000, the number of measurements do not
essentially affect the integral index ERRQ, either for weak or strong noises, while both
the empirical index ERRQNrel and mean relative error MERR decrease exponentially
with the increasing number of measurements, which confirms the analytical analysis
performed above. The MERR index is of order 0.55% for N = 100, it does not exceed
10−3 % for N ≥ 1000 and is smaller than 5 × 10−5 % even for the strongest disturbances.
This, practically, means determining the sampling points-independent parameter g∗. The
algorithm ensures the very good quality of the measurement approximation even for large
noises. The values of the relative relaxation modulus approximation error ERRQNrel , which
due to the “real” modulus model difference is lower bounded by 3.191 × 10−4%, already
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for N ≥ 100 measurements do not exceed 0.35%, and for N ≥ 1000, fall below 0.028%.
The course of the mean integral sampling points-independent index ERRQ (40) as the
function of N indicates the asymptotic independence of the model from the sampling
points, especially for N ≥ 5000.
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3.6. Material II

Consider the material described by the empirical spectrum of relaxation times τ
introduced by Baumgaertel, Schausberger and Winter [40,41],

H(τ) =

{
β1

(
τ

τc

)ρ1

+ β2

(
τ

τc

)ρ2
}

e−
τ

τmax , (42)

which is known to effectively describe polydisperse polymer melts [42,43], with the co-
efficients [43,47,61] as follows: β1 = 6.276 × 10−2 MPa, β2 = 0.127 MPa, τc = 2.481 s,
τmax = 2.564 × 104 s, ρ1 = 0.25 and ρ2 = −0.5. The spectrum H(τ) uniquely defines the
relaxation modulus G(t) by the following integral [44]:

G(t) =
∫ ∞

0

H(τ)

τ
e−t/τdτ. (43)
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Following [47], the time interval T = [0, 2000] seconds is taken for the experiment
simulations; the weighting function is ρ(t) = 1

2000 s−1. The elements of the optimal parame-
ter vector g∗, which solve the measurement-independent optimization task (27), are given
in Table 2.

Table 2. The elements α∗, β∗, G∗
e and τ∗

r of the FMM parameter g∗ solving the optimal identification
task (27) and the optimal integral quadratic indices Q(g∗) defined by (27) for the “real” relaxation
modulus G(t) (42), (43).

Q(g∗)
[
MPa2] α∗[−] β∗[−] G∗

e [MPa] τ∗
r [s]

2.383349 × 10−5 0.736706 8.088257 × 10−2 1.2634125 6.397636 × 103

As previously described, in the simulations, the sampling points ti were randomly se-
lected according to the uniform distribution on T . The standard deviations σ = 3, 6, 8 [kPa]
of the random normally distributed noises {zi} combined with the number of measure-
ments N ∈ N were used for the analysis of the model asymptotic properties.

3.6.1. Asymptotic Properties

For every pair (N, σ), the elements of the optimal model parameter g∗N , the empirical
QN
(
g∗N
)
, QNrel(g∗N) and integral Q

(
g∗N
)

indices and the relative percentage errors ERR (37)
are given in Tables A4–A6 in Appendix B. The dependence of the optimal model parameters
g∗N on the number of measurements N for the noises of σ = 3, 6, 8 [kPa] are illustrated
by Figure 7. Figure 8 illustrates the empirical QN

(
g∗N
)

and integral Q
(
g∗N
)

indices as the
functions of N; the value of Q(g∗) is marked with purple horizontal lines. These plots
confirm the asymptotic properties of the proposed identification algorithm. Figure 8a
shows the impact of noises on the values of the empirical index QN

(
g∗N
)
.
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The approximation of the real modulus G(t) by the FMM is illustrated in Figure 9,
where the measurements Gi of the real modulus G(t) along with optimal models GM

(
t, g∗N

)
and GM(t, g∗) are plotted for the N = 100 and N = 10, 000 measurements and the strongest
noises σ = 8 [Pa]. However, for N = 100, the model parameter error ERR = 5.35%,
while for N = 10, 000, we have ERR = 0.15%; both for N = 100 and N = 10, 000, the
models GM

(
t, g∗N

)
and GM(t, g∗) differ slightly and the respective empirical indices are

QNrel
(
g∗N
)
=3.33 × 10−4 % and QNrel

(
g∗N
)
=2.0 × 10−7%, respectively.
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Figure 9. The measurements Gi (red points) of the real relaxation modulus (43) of the material
described by the BSW spectrum (42) and the fractional Maxwell optimal models: sampling points-
independent GM(t, g∗) and empirical GM

(
t, g∗N

)
for N measurements and additive random normally

distributed noises with standard deviation = 8[Pa] and zero mean value: (a) N = 100; (b) N = 10, 000.

3.6.2. Noise Robustness

For every pair (N, σ), the simulated experiment was repeated n = 50 times. The mean
relative relaxation modulus approximation error ERRQNrel (39), the mean optimal integral
error ERRQ (40) and the mean relative error of the parameter g∗ approximation MERR
(41) were determined. The indices ERRQNrela and ERRQ are depicted in Figure 10 as the
functions of N and σ. Figure 11 illustrates the dependence of the index MERR on N and σ.
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The mean integral error ERRQ for N ≥ 12, 000 does not depend essentially on the
number of measurements, either for small or large noises (see Figure 10b), while both the
empirical index ERRQNrel and mean relative error MERR decrease exponentially with the
increasing number of measurements, the MERR for N ≥ 7000. For N ≥ 1000, the MERR
index does not exceed 1.01%, for N ≥ 7000 it does not exceed 0.22%, while for N ≥ 10, 000,
it falls below 0.05% even for the strongest disturbances. The globally optimal parameter g∗

was determined. As is seen from Figure 9, the algorithm practically ensures an excellent
quality of the relaxation modulus approximation even for the strongest noises. The values
of the relative relaxation modulus approximation error ERRQNrel , already for the N ≥ 100
measurements, do not exceed 3.3 × 10−4% and for N ≥ 1000, fall below 8.3 × 10−6%. From
the course of the mean integral sampling points-independent index ERRQ (40), as the
function of N, we can conclude that the model is practically independent on the sampling
instants for N ≥ 12, 000, independently on the measurement noises. The above combined
with the close to zero values of ERRQNrel means the determining of the globally optimal
model with the parameter g∗. In conclusion, the courses of both the index ERRQNrel (38),
and the indices MERR (41) and ERRQ (40) as the functions of N, indicate the asymptotic
independence of the model from the sampling points for a sufficiently large number of
measurements.

4. Conclusions

The fractional Maxwell model allows for the modeling of a very wide range of stress
relaxation processes in materials. The goal of the FMM identification is, generally, not to
achieve a true description of the genuine relaxation modulus, but one that is “optimally
accurate” in the assumed sense of the square weighted approximation error and does
not depend on the particular sampling instants used in the stress relaxation experiment.
The stochastic-type analytical analysis and numerical studies demonstrated that, despite
the fact that the real description of the relaxation modulus is completely unknown, an
arbitrarily exact approximation of the sampling points-independent optimal FMM can be
identified based on the relaxation modulus data sampled randomly, according to respective
randomization, when the number of the measurements applied in the experiment appro-
priately grow large. The four parameters of the approximate FMM are strongly consistent
estimates of the parameters of the sampling points-independent model minimizing the
integral square approximation error. The resulting identification scheme is simple and
useful in application. It requires only the a priori, before the experiment is performed, inde-
pendent random choice of the time instants at which the relaxation modulus is recorded
from the assumed set according to a stationary rule.
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Although this article is about modeling the relaxation modulus, the proposed identifi-
cation scheme can also be successfully applied to the identification of the fractional-order
models of creep compliance using the measurements obtained in the retardation test, when-
ever the respective set of sampling instants is open to manipulation during experimental
data collecting. Therefore, the applicability of the identification asymptotically independent
of the time instants used in the rheological experiment, to other fractional-order models de-
termination, in particular, Kelvin–Voight, Zener and anti-Zener models, can be the subject
of future research.
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Appendix A

Appendix A.1. Proof of Theorem 1

Note, firstly, that the assumption g ∈ G1 means, in particular, that 0 < β0 ≤ β < α ≤ 1.
The assumption t ∈ T , by definition of the set T = [t0, T], where t0 > 0, implies inequality
t > 0.

Differentiability and whence continuity of the relaxation modulus model GM(t, g)
(7) with respect to parameter Ge is obvious. The two-parameter Mitteg-Leffler function
Eκ,µ(x) (6) is known to be differentiable and continuous with respect to real argument x
and parameters κ and µ [36]. Therefore, by (13) and (14), the differentiability of the function
GM(t, g) with respect to the positive relaxation time parameter τr and parameters α and
β directly results. To show that the condition (22) is satisfied, it is enough to prove that
the partial derivatives of GM(t, g) with respect to the four model parameters are bounded
uniformly on T × G1.

To prove the boundness of the partial derivatives with respect to the relaxation time
parameter τr and the orders α and β of the stress and strain derivatives, the spectral
representation (21) of the FMM will be applied together with the property concerning the
absolute boundness, uniform on the set T × G1, of some definite integrals, which results
from the following known [62] property concerning the absolute integrability of the product
of absolutely integrable and bounded functions.

Property A1 ([62]). If the function f (x) is absolutely integrable in the interval [a, ∞) and the
function g(x) is bounded in [a, ∞) , then the product f (x)g(x) is absolutely integrable in [a, ∞) .

Let us consider definite integral

I0(t, g) =
∫ ∞

0
r0(v, t, g) f0(v, t, g)dv, (A1)

where the function f0(v, t, g): R+ × T × G0 → R is absolutely integrable with respect to the
variable of integration v in R+, uniformly on the set T × G0, where R+ = [0, ∞), G0 ⊂ Rk,
k ≥ 1 and the function r0(v, t, g) : R+ × T × G0 → R is absolutely bounded, uniformly on
R+ × T × G0. The first assumption means that there exists a positive constant m such that∫ ∞

0
| f0(v, t, g)|dv ≤ m < ∞, (A2)

for any t ∈ T and any g ∈ G0, while the second assumption yields

|r0(v, t, g)| ≤ =
m < ∞, (A3)
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for any (v, t, g) ∈ R+ × T × G0. From Property A1, the convergence of the integral∫ ∞

0
|r0(v, t, g) f0(v, t, g)|dv, (A4)

and, in consequence, of the integral I0(t, g) (A1) for any t ∈ T and any g ∈ G0 follows. In
view of (A3) and (A4), we have

|I0(t, g)| ≤
∫ ∞

0
|r0(v, t, g) f0(v, t, g)|dv ≤ =

m
∫ ∞

0
| f0(v, t, g)|dv ≤ =

mm = M.

Therefore, the next result holds.

Property A2. If the function f0(v, t, g) is absolutely integrable with respect to v in the inter-
val R+ = [0, ∞) , uniformly on the set T × G0 of the rest arguments (t, g), and the func-
tion r0(v, t, g) is bounded uniformly on R+ × T × G0, then the product r0(v, t, g) f0(v, t, g) is
absolutely integrable in R+ for any (t, g) ∈ T × G0 and the integral I0(t, g) (A1) is absolutely
bounded uniformly on T × G0.

Below, the proof is divided into four parts related to the four model parameters.

Appendix A.1.1. Uniform on T ×GGG1 Boundness of the FMM Derivative with Respect to Ge

From (7), we have

∂GM(t, g)
∂Ge

=

(
t
τr

)−β

Eα−β,1−β

(
−
(

t
τr

)α−β
)

, (A5)

whence, by (12) and (16), the uniform boundness of the above derivative on the set T × G1
follows.

Appendix A.1.2. Uniform on T ×GGG1 Boundness of the FMM Derivative with Respect to τr

By (7) and (13), we can express GM(t, g) as follows

GM(t, g) = Geeα−β,1−β

(
t
τr

; 1
)

.

Whence, the partial derivative with respect to the relaxation time, in the respective notation,
is given by

∂GM(t, g)
∂τr

= Ge
(−1)t

(τr)
2

d
dx

eα−β,1−β(x; 1)
∣∣∣∣
x= t

τr

, (A6)

where, due to the complete monotonicity of the function eα−β,1−β(x; 1), the negative deriva-
tive d

dx eα−β,1−β(x; 1) monotonically increases to zero for x > 0.

From (A5) and (A6), the nonnegative definiteness of ∂GM(t,g)
∂Ge

and ∂GM(t,g)
∂τr

, being
positive for any g ∈ G1 and t < ∞, follows; therefore, Property 1 is formulated.

To examine the asymptotic properties of ∂GM(t,g)
∂τr

as t → ∞ and as t → t0 , let us
express (A6), applying the known differentiation formula [4] (Equation (E.55))

eκ,µ(x; λ) =
d

dx
eκ,µ+1(x; λ),

in the form
∂GM(t, g)

∂τr
= Ge

(−1)t

(τr)
2 eα−β,−β

(
t
τr

; 1
)

,
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or, having in mind definition (13), directly in terms of the Mittag-Leffler function

∂GM(t, g)
∂τr

= (−1)
Ge

τr

(
t
τr

)−β

Eα−β,−β

(
−
(

t
τr

)α−β
)

. (A7)

The following asymptotic approximation [63] (Equation (12)), see also [4] (Equa-
tion (E.30)):

Eκ,µ(−tκ) ∼= ∑∞
n=1 (−1)n−1 t−κn

Γ(µ − κn)
,

which holds for t → ∞ , applied to (A7), yields

∂GM(t, g)
∂τr

∼= (−1)
Ge

τr

(
t
τr

)−β


(

t
τr

)−(α−β)

Γ(−α)
+ ∑∞

n=2 (−1)n−1

(
t
τr

)−(α−β)n

Γ[−β − (α − β)n]

,

whence, for large times, especially for
(

t
τr

)α−β
≫ 1, we obtain the asymptotic long-time

approximation
∂GM(t, g)

∂τr
∼= (−1)

Ge

τrΓ(−α)

(
t
τr

)−α

,

where ∼= means “approximately equal”. Therefore, derivative ∂GM(t,g)
∂τr

tends to zero as
t → ∞ for any admissible parameter g ∈ G1.

To estimate the value of ∂GM(t,g)
∂τr

(A7) for t = t0, the series representation

∂GM(t, g)
∂τr

=
Ge

τr

(
t
τr

)−β

∑∞
n=0

(−1)n+1
(

t
τr

)(α−β)n

Γ[(α − β)n − β]

resulting directly from (6) and (A7), is used. The first summand of the series is positive,
while the next elements are positive or negative, depending on the index n and the relation
between parameters α and β. Since∣∣∣∣∣∣∣

(
t
τr

)−β

∑∞
n=0

(−1)n+1
(

t
τr

)(α−β)n

Γ[(α − β)n − β]

∣∣∣∣∣∣∣ ≤
(

t
τr

)−β

∑∞
n=0

(
t
τr

)(α−β)n

|Γ[(α − β)n − β]| , (A8)

and the argument of the gamma function is such that

(α − β)n − β ≥ −β > −1,

which in view of the monotonicity of the gamma function implies

|Γ[(α − β)n − β]| ≥ Γ[xmin] = 0.8856032 > 0.8856, (A9)

where xmin
∼= 1.4616321 is the real nonnegative argument at which a minimum of the

function Γ(x) occurs [64]. In view of (A8) and (A9), having in mind the nonnegative
definiteness of ∂GM(t,g)

∂τr
, we obtain the following estimation

∂GM(t, g)
∂τr

<
Ge

1.1292τr

(
t
τr

)−β

∑∞
n=0

(
t
τr

)(α−β)n
,
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which, by the inequalities τrmin ≤ τr ≤ τrmax, for t = t0, implies the next estimation

∂GM(t, g)
∂τr

∣∣∣∣
t=t0

<
Ge

1.1292τrmin

(
τrmax

τrmin

)β( t0

τrmin

)−β

∑∞
n=0

(
t0

τrmin

)(α−β)n
.

By the assumption t0 < τrmin, the above estimation can be rewritten in compact form as

∂GM(t, g)
∂τr

∣∣∣∣
t=t0

<
Ge

1.1292τrmin

(
τrmax

τrmin

)β

(
t0

τrmin

)−β

1 −
(

t0
τrmin

)α−β
. (A10)

Since, for an arbitrary β0 ≤ β < α ≤ 1, we have(
t0

τrmin

)−β

1 −
(

t0
τrmin

)α−β
=

1(
t0

τrmin

)β
−
(

t0
τrmin

)α
<

1(
t0

τrmin

)β
,

inequality (A10) for any g ∈ G1 implies

∂GM(t, g)
∂τr

∣∣∣∣
t=t0

<
Ge

1.1292τrmin

(
τrmax

t0

)β

,

which means that

∂GM(t, g)
∂τr

∣∣∣∣
t=t0

<
Gemax

1.1292τrmin

τrmax

t0
=

Gemax

1.1292τrmin
m0,

i.e., the derivative for t = t0 is bounded, uniformly on the set G1, where positive parameter
m0 is defined in Equation (16).

Since the continuous function ∂GM(t,g)
∂τr

of the time t is bounded for t = t0 and for

t → ∞ for any fixed g ∈ G1, derivative ∂GM(t,g)
∂τr

as a function of the time is bounded both
for the bounded and not-bounded set T . However, due to the non-compactness of the set
G1, from which α = β is excluded, the uniform on T × G1 boundness of ∂GM(t,g)

∂τr
is not

obvious. Therefore, it should be examined if the maximum of ∂GM(t,g)
∂τr

(with respect to the
time) is bounded, as α → β+ . To this end, an alternative to (A6) and (A7), the representation
of ∂GM(t,g)

∂τr
is derived based on the spectral representation given by Equation (21).

Differentiation of (21) on both sides with respect to τr yields

∂GM(t, g)
∂τr

= Geα
τα−1

r
π

∫ ∞

0
r(v, g)vα−1e−tvdv + Ge

τα
r

π

∫ ∞

0

(α − β)(τrv)α−β−1sin(πβ)

(τrv)2(α−β) + 2(τrv)α−βcos[π(α − β)] + 1
vαe−tvdv−

Ge
τα

r
π

∫ ∞

0

2(α − β)(τrv)2(α−β)−1 + 2(α − β)(τrv)α−β−1cos[π(α − β)]

(τrv)2(α−β) + 2(τrv)α−βcos[π(α − β)] + 1
r(v, g)vαe−tvdv,

(A11)

where the function

r(v, g) =
(τrv)α−βsin(πβ) + sin(πα)

(τrv)2(α−β) + 2(τrv)α−βcos[π(α − β)] + 1
, (A12)

by (21), is such that

GM(t, g) = Ge
τα

r
π

∫ ∞

0
r(v, g)vα−1e−tvdv. (A13)
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Whence, introducing the notations

r1(v, g) =
(τrv)α−βsin(πβ)

(τrv)2(α−β) + 2(τrv)α−βcos[π(α − β)] + 1
, (A14)

r2(v, g) =
(τrv)2(α−β) + (τrv)α−βcos[π(α − β)]

(τrv)2(α−β) + 2(τrv)α−βcos[π(α − β)] + 1
, (A15)

Equation (A11) can be rewritten as

∂GM(t, g)
∂τr

=
α

τr
GM(t, g) + (α − β)Ge

τα−1
r
π

∞∫
0

r1(v, g)vα−1e−tvdv−

2(α − β)Ge
τα−1

r
π

∫ ∞

0
r2(v, g)r(v, g)vα−1e−tvdv,

or in a more compact form as a linear combination:

∂GM(t, g)
∂τr

=
α

τr
GM(t, g) + (α − β)Ge

τα−1
r
π

I1(t, g)− 2(α − β)Ge
τα−1

r
π

I2(t, g), (A16)

where the integrals:

I1(t, g) =
∫ ∞

0
r1(v, g)vα−1e−tvdv, (A17)

I2(t, g) =
∫ ∞

0
r2(v, g)r(v, g)vα−1e−tvdv (A18)

The denominator

q(v, g) = (τrv)2(α−β) + 2(τrv)α−βcos[π(α − β)] + 1 (A19)

of the fractions r(v, g), r1(v, g) and r2(v, g) is positive for any v ≥ 0, whenever α − β ̸= 1,
i.e., for any admissible parameter g ∈ G1, which satisfies the following inequalities

0 < α − β ≤ 1 − β ≤ 1 − β0 < 1.

For α → β+ , the denominator q(v, g) → [(τrv)α−β + 1]2 ≥ 1 . By (A13), (17) and non-
negative definiteness of r(v, g) (A12) on the set R+ × G1, we have∫ ∞

0

∣∣∣r(v, g)vα−1e−tv
∣∣∣dv =

∫ ∞

0
r(v, g)vα−1e−tvdv =

π

Geτα
r

GM(t, g) ≤ π

Geτα
r

M1

for any (t, g) ∈ T × G1, i.e., the function r(v, g)vα−1e−tv as the function of the variable v
is absolutely integrable, uniformly on the set T × G1, with the constant m (compare (A2))
given by ∫ ∞

0

∣∣∣r(v, g)vα−1e−tv
∣∣∣dv ≤ m =

π

GeminΓ2
M1, (A20)

where the parameter
0 < γ2 = min

β0≤α≤1
τα

rmin < ∞. (A21)

In view of Property A2, bearing in mind inequality (17), or (15), to prove the abso-
lute uniform boundness of the derivative ∂GM(t,g)

∂τr
(A16) on the set T × G1, it is enough

to demonstrate that the integrals I1(t, g) (A17) and I2(t, g) (A18) are convergent and ab-
solutely bounded, uniformly on the set T × G1. For this purpose, we express the two
integrals as definite integrals of the product of some absolutely integrable function and a
bounded function.
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The continuous, nonnegative definite for any (v, g) ∈ R+ × G1, function r1(v, g) (A14)
is equal to zero for v = 0, tends to zero for v → ∞ and takes the maximal value for
v = 1/τr, independently on the values of α and β. Whence, for any (v, g) ∈ R+ × G1, the
inequalities hold

|r1(v, g)| ≤ sin(πβ)

2cos[π(α − β)] + 2
≤ 1

2cos[π(1 − β0)] + 2
=

1
2 − 2cos(πβ0)

= m1 < ∞, (A22)

i.e., r1(v, g) is absolutely bounded uniformly on R+ × G1. By the following notable inte-
gral [4] (Equation (A.21):∫ ∞

0
vα−1e−tvdv =

∫ ∞

0

∣∣∣vα−1e−tv
∣∣∣dv =

Γ(α)
tα

, (A23)

which holds for any α > 0 and t > 0, vα−1e−tv is the absolutely integrable function of
the variable v ≥ 0 for any t ∈ T . Recalling the definitions of the sets T and G1 (19), and
the monotonicity of the gamma function Γ(α) for 0 < α ≤ 1, we immediately obtain the
estimation ∫ ∞

0
vα−1e−tvdv ≤ Γ(β0)

γ1
, (A24)

valid for any t ∈ T and any g ∈ G1, where

0 < γ1 = min
β0≤α≤1

tα
0 < ∞. (A25)

Therefore, according to Property A2, the integral I1(t, g) (A17) is convergent for any t > 0
and any g ∈ G1 and absolutely bounded by the upper bound equal to m1Γ(β0)/γ1, uni-
formly on the set T × G1.

It is easy to check that continuous function r2(v, g) (A15) is equal to zero for v = 0
and tends to 1, as v → ∞ , independently on the values of α and β from the set G1, i.e., for
α > β. Function r2(v, g) can be expressed as

r2(v, g) = 1 − (τrv)α−βcos[π(α − β)]

q(v, g)
− 1

q(v, g)
,

with q(v, g) defined by (A19), where the absolute value of the second summand takes the
maximal value for v = 1/τr, while the third summand takes the maximal value whenever
(τrv)α−β = −cos[π(α − β)], if cos[π(α − β)] < 0, and for v = 0 in the opposite case.
Therefore, for any (v, g) ∈ R+ × G1, the next estimation holds

|r2(v, g)| ≤ 1 +
|cos[π(α − β)]|

2cos[π(α − β)] + 2
+ m(α, β), (A26)

where

m(α, β) =

{
1

1−cos2[π(α−β)]
if cos[π(α − β)] < 0

1 if cos[π(α − β)] ≥ 0
. (A27)

Since, for g ∈ G1, the inequality α > β holds, for α → β+ , we have cos[π(α − β)] → 1−

and m(α, β) → 1 . Simultaneously, if α → 1 and β → β0 , then m(α, β) → 1
1−cos2(πβ0)

> 1 ,

whenever β0 < 1
2 and m(α, β) → 1 for β0 ≥ 1

2 . Therefore, for any (v, g) ∈ R+ × G1, by
(A26) and (A27), we have

|r2(v, g)| ≤ 1 +
1

2 − 2cos(πβ0)
+

1
1 − cos2(πβ0)

= 1 + m1 + m2 < ∞, (A28)

where
m2 =

1
1 − cos2(πβ0)

< ∞, (A29)
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and according to Property A2, the integral I2(t, g) (A18) is convergent for any t ∈ T
and any g ∈ G1 and absolutely bounded uniformly on T × G1, with the upper bound
π(1+m1+m2)

Geminγ2
M1 resulting from (A20) and (A28).

Combining the absolute boundness of the three summands of the right-hand side of
(A16), uniform on the set T × G1, the respective uniform boundness of ∂GM(t,g)

∂τr
is proved.

Appendix A.1.3. Uniform on T ×GGG1 Boundness of the FMM Derivative with Respect to β

Differentiation of Equation (21) on both sides with respect to β yields

∂GM(t, g)
∂β

= Ge
τα

r
π

∞∫
0

−ln(τrv)(τrv)α−βsin(πβ) + π(τrv)α−βcos(πβ)

(τrv)2(α−β) + 2(τrv)α−βcos[π(α − β)] + 1
vα−1e−tvdv

+2Ge
τα

r
π

∞∫
0

r(v, g)
ln(τrv)(τrv)2(α−β) + ln(τrv)(τrv)α−βcos[π(α − β)]− π(τrv)α−βsin[π(α − β)]

(τrv)2(α−β) + 2(τrv)α−βcos[π(α − β)] + 1
vα−1e−tvdv

where r(v, g) is given by (A12), which using the notations r1(v, g) (A14) and r2(v, g) (A15)
and introducing functions

r3(v, g) =
(τrv)α−βcos(πβ)

(τrv)2(α−β) + 2(τrv)α−βcos[π(α − β)] + 1
, (A30)

r4(v, g) =
(τrv)α−βsin[π(α − β)]

(τrv)2(α−β) + 2(τrv)α−βcos[π(α − β)] + 1
, (A31)

can be rewritten in compact form as a linear combination:

∂GM(t, g)
∂β

= Geτα
r I3(t, g)− 2Geτα

r I4(t, g)− Ge
τα

r
π

I5(t, g) + 2Ge
τα

r
π

I6(t, g), (A32)

of four integrals:

I3(t, g) =
∫ ∞

0
r3(v, g)vα−1e−tvdv, (A33)

I4(t, g) =
∫ ∞

0
r4(v, g)r(v, g)vα−1e−tvdv, (A34)

I5(t, g) =
∫ ∞

0
r1(v, g)ln(τrv)vα−1e−tvdv, (A35)

I6(t, g) =
∫ ∞

0
r2(v, g)r(v, g)ln(τrv)vα−1e−tvdv. (A36)

To prove the absolute boundness of the derivative ∂GM(t,g)
∂β (A32), uniform on the

set T × G1, it is enough to demonstrate that the four above integrals are convergent and
absolutely bounded, uniformly on T × G1.

For any (v, g) ∈ R+ ×G1, the continuous function r3(v, g) (A30) satisfies the following
inequalities (compare (A14) and (A22))

|r3(v, g)| ≤ |cos(πβ)|
2cos[π(α − β)] + 2

≤ 1
2cos[π(1 − β0)] + 2

=
1

2 − 2cos(πβ0)
= m1, (A37)

where m1 is defined in (A22), i.e., r3(v, g) is absolutely bounded, uniformly on R+ × G1,
which combined with the absolutely integrability of the function vα−1e−tv for any t ∈ T
and any g ∈ G1, according to Property A2, implies the convergence of the integral I3(t, g)
(A33) for any t ∈ T and any g ∈ G1 and its absolute boundness by the upper bound
m1Γ(β0)/γ1 resulting from and (A24), (A25) and (A37), valid uniformly on the set T × G1.
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The nonnegative function r4(v, g) (A31) is for any (v, g) ∈ R+ × G1 bounded by

r4(v, g) ≤ sin[π(α − β)]

2cos[π(α − β)] + 2
≤ 1

2cos[π(1 − β0)] + 2
=

1
2 − 2cos(πβ0)

= m1, (A38)

similarly to r1(v, g) (A14) and r3(v, g) (A30), which combined with the absolutely integrabil-
ity of r(v, g)vα−1e−tv for any g ∈ G1 and any t ∈ T , implies the convergence of the integral
I4(t, g) (A34) for any (t, g) ∈ T × G1 and the absolute boundness of I4(t, g) by the upper
bound π m1

Geminγ2
M1, derived from (A20) and (A38), uniformly on the set T × G1.

To demonstrate the convergence and uniform boundness of the integrals I5(t, g) (A35)
and I6(t, g) (A36), let us express them as follows

I5(t, g) =
∫ ∞

0
r12(v, g)r5(v, t, g)vα−1e−

1
2 tvdv, (A39)

I6(t, g) =
∫ ∞

0
r22(v, g)r5(v, t, g)r(v, g)vα−1e−

1
2 tvdv. (A40)

where, by (A14) and (A15)

r12(v, g) =
sin(πβ)

(τrv)2(α−β) + 2(τrv)α−βcos[π(α − β)] + 1
, (A41)

r22(v, g) =
(τrv)α−β + cos[π(α − β)]

(τrv)2(α−β) + 2(τrv)α−βcos[π(α − β)] + 1
, (A42)

and nonnegative continuous function

r5(v, t, g) = (τrv)α−βln(τrv)e−
1
2 tv =

ln(τrv)(τrv)α−β

e
1
2 tv

. (A43)

Since (compare (A13)),

GM

(
t
2

, g
)
= Ge

τα
r

π

∫ ∞

0
r(v, g)vα−1e−

1
2 tvdv,

the nonnegative function r(v, g)vα−1e−
1
2 tv is absolutely integrable for any (t, g) ∈ T ×G1 with

the upper bound π
Geminγ2

M1; compare (A20). In turn, by (A23), vα−1e−
1
2 tv is an absolutely

integrable function of the variable v ≥ 0, uniformly on the set T × G1, with the upper
bound 2Γ(β0)/γ1; compare (A24) and (A25).

Functions r12(v, g) (A41) and r22(v, g) (A42) are absolutely bounded uniformly on
R+ × G1, since the following estimations hold for any (v, g) ∈ R+ × G1:

r12(v, g) ≤ 1
1 − cos2(πβ0)

= m2, (A44)

|r22(v, g)| ≤ 1
2 − 2cos(πβ0)

+
1

1 − cos2(πβ0)
= m1 + m2 < ∞, (A45)

where constants m1 and m2 are defined in (A22) and (A29), respectively.
To examine the properties of r5(v, t, g) (A43), the asymptotic properties as v → 0+

and v → ∞ are studied. This function is expressed as

r5(v, t, g) =
ln(τrv)

(τrv)−(α−β)e
1
2 tv

,
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where the nominator tends to −∞ and the denominator tends to +∞, as the variable
v → 0+ . Therefore, by applying the L’Hospital’s rule, in view of α > β > 0, we obtain

lim
v→0+

r5(v, t, g) = lim
v→0+

1[
−τr(α − β) + 1

2 t τrv
]
(τrv)−(α−β)e

1
2 tv

= 0−.

Since (τrv)α−βln(τrv) tends to +∞, while e−
1
2 tv tends to zero, as the variable v tends

to infinity, using the L’Hospital’s rule double times to the right expression in (A43), we have

lim
v→∞

r5(v, t, g) = lim
v→∞

τr + (α − β)ln(τrv)τr
1
2 te

1
2 tv(τrv)1−(α−β)

,

and next

lim
v→∞

r5(v, t, g) = lim
v→∞

τr + (α − β)ln(τrv)τr
1
2 te

1
2 tv(τrv)1−(α−β)

= lim
v→∞

(α − β)

1
2 t
[

1
2 tv + 1 − α + β

]
(τrv)1−α+βe

1
2 tv

= 0+.

Applying two known inequalities e−x < k!
k!+xk and [65]

ln(x) ≤ n
(

x
1
n − 1

)
, (A46)

being valid for any integer n, k > 0 and real x > 0, by putting n = 1 and k = 2 function
r5(v, t, g) (A43) for any (v, t, g) ∈ R+ × T × G1 can be estimated by

|r5(v, t, g)| ≤ 2(τrv)α−β|τrv − 1|

2 + 1
4

(
t
τr

)2
(τrv)2

≤ (τrv)α−β(τrv + 1)

1 + 1
8

(
t0
τr

)2
(τrv)2

≤ (τrmaxv)α−β(τrmaxv + 1)

1 + 1
8

(
t0
τr

)2
(τrv)2

. (A47)

For τrmaxv < 1, the right inequality in (A47) implies

|r5(v, t, g)| < 2

1 + 1
8

(
t0
τr

)2
(τrv)2

≤ 2, (A48)

while for τrmaxv ≥ 1, the middle inequality in (A47) yields

|r5(v, t, g)| ≤ (τrv)α−β−1 + (τrv)α−β−2

1
8

(
t0
τr

)2 ≤ 2

1
8

(
t0
τr

)2 ≤ 16(
t0

τrmax

)2 = 16m2
0. (A49)

where positive m0 is defined in Equation (16). Combining (A48) and (A49), we obtain
the inequality

|r5(v, t, g)| < max
{

16m2
0, 2
}
= m4, (A50)

valid for any (v, t, g) ∈ R+ × T × G1, which together with (A44) and (A45) means an
absolute boundness of continuous functions r12(v, g)r5(v, t, g) and r22(v, g)r5(v, t, g), re-
spectively, and in view of the absolute integrability of vα−1e−

1
2 tv and r(v, g)vα−1e−

1
2 tv,

imply the convergence of the integrals I5(t, g) (A39) and I6(t, g) (A40) for any t ∈ T and
any g ∈ G1. The absolute boundness of I5(t, g) and I6(t, g), uniform on the set T × G1,
with upper bounds estimations 2Γ(β0)m2m4

Γ1
and πM1(m1+m2)m4

Gemin Γ2
, respectively, follows from

Property A2. Therefore, the absolute boundness of ∂GM(t,g)
∂β (A32), uniform on T × G1,

is proved.
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Appendix A.1.4. Uniform on T ×GGG1 Boundness of the FMM Derivative with Respect to α

The same integral properties and the spectral representation (21) will be applied to
prove the boundness of the partial derivative with respect to parameter α. Differentiation
(21) on both sides with respect to α yields

dGM(t,g)
dα = ln(τr)GM(t, g) + Ge

τα
r

π

∫ ∞
0

ln(τrv)(τrv)α−βsin(πβ)+πcos(πα)

(τrv)2(α−β)+2(τrv)α−βcos[π(α−β)]+1
vα−1e−tvdv−

2Ge
τα

r
π

∫ ∞
0 r(v, g) ln(τrv)(τrv)2(α−β)+ln(τrv)(τrv)α−βcos[π(α−β)]−π(τrv)α−βsin[π(α−β)]

(τrv)2(α−β)+2(τrv)α−βcos[π(α−β)]+1
vα−1e−tvdv+

Ge
τα

r
π

∫ ∞
0 r(v, g)vα−1ln(v)e−tvdv,

(A51)

where r(v, g) is described by (A12). Having in mind (A13), recalling the notations r1(v, g)
(A14), q(v, g) (A19), r2(v, g) (A15), r4(v, g) (A31), r5(v, t, g) (A43) and introducing the integrals

I7(t, g) =
∫ ∞

0

cos(πα)

q(v, g)
vα−1e−tvdv, (A52)

I8(t, g) =
∫ ∞

0
r(v, g)r5(v, t, g)vβ−1e−

1
2 tvdv,

we can express dGM(t,g)
dα (A51) in a compact form as

dGM(t, g)
dα

= Ge
τα

r
π

I5(t, g) + Geτα
r I7(t, g)− 2Ge

τα
r

π
I6(t, g) + 2Geτα

r I4(t, g) + Ge
τα

r
π

I8(t, g),

where the integrals I5(t, g) (A35), I6(t, g) (A36) and I4(t, g) (A34) are absolutely bounded
uniformly on T × G1. Therefore, only the convergence and boundness of the two new
integrals I7(t, g) and I8(t, g) must be proved.

The boundness of cos(πα)
q(v,g) , uniform on R+ × G1, with the upper bound∣∣∣∣ cos(πα)

q(v, g)

∣∣∣∣ ≤ 1
1 − cos2(πβ0)

= m2,

combined with the absolute integrability of vα−1e−tv for any (t, g) ∈ T × G1, yields the
convergence of the integral I7(t, g) (A52) and its absolute boundness, uniform on T × G1.

From (A12), the upper bound of the nonnegative function r(v, g) follows

r(v, g) ≤ 1
2 − 2cos(πβ0)

+
1

1 − cos2(πβ0)
= m1 + m2,

where constants m1 and m2 are defined in (A22) and (A29), respectively; therefore, the
absolute boundness of r5(v, t, g), uniform on R+ × T × G1 (c.f., (A50)), and integrability of
vβ−1e−

1
2 tv imply both the convergence and the absolute boundness of I8(t, g), uniformly

on the set T × G1.
The partial derivatives of the FMM with respect to the four model parameters are

proved to be absolutely bounded uniformly on the set T × G1; therefore, the uniform
boundness (22) of the gradient ∇gGM(t, g) follows. The theorem is proved.

Appendix A.2. Proof of Theorem 2

Since, for any t ∈ T function, GM(t, g) (10) is differentiable with respect to g and in
this case β = α, the four-element vector of model parameters g (8) is as follows

g =
[
α α Ge τr

]T ,
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the gradient is given by

∇gGM(t, g) =
[

∂GM(t,g)
∂α

∂GM(t,g)
∂α

1
2Γ(1−α)

(
t
τr

)−α Geα
2Γ(1−α)t

(
t
τr

)1−α
]T

, (A53)

with the partial derivative

∂GM(t, g)
∂α

=
Ge

2Γ(1 − α)

[
ψ(1 − α) + ln

(τr

t

)](τr

t

)α
, (A54)

where

ψ(x) =
Γ′(x)
Γ(x)

(A55)

is the digamma (or psi) function [66] defined as the logarithmic derivative of the gamma
function [66]:

ψ(x) =
d

dx
ln[Γ(x)].

For 0 < β0 ≤ α < 1, the nonnegative digamma function ψ(1 − α) strictly decreases
from finite ψ(1 − β0) < 0 to −∞, while the positive gamma function Γ(1 − α) strictly
increases from Γ(1 − β0) > 0 to +∞. To evaluate the first summand of ∂GM(t,g)

∂α (A54),
the following result proved by Mező and Hoffman [67] is helpful in providing an infinite
product representation of the entire function ψ(z)

Γ(z) .

Property A3 ([67] (Theorem 2.1)). For all z ∈ C

ψ(z)
Γ(z)

= −e2Γz∏∞
k=0

(
1 − z

αk

)
ez/αk , (A56)

where C is the set of complex numbers, Γ is the Euler’s constant and αk are the zeros of the digamma
function ψ(z).

It is known [67] that the zeros αk are real, and all but one are negative; here, α0 is the
positive zero, and α1, α2, . . . are the negative ones in decreasing order. The course of ψ(z)

Γ(z)

for the real 0 ≤ z ≤ 1 is illustrated by Figure A1. For α = 1, by (A56), the quotient ψ(1−α)
Γ(1−α)

is as follows ψ(0)
Γ(0) = −1, while for α = β → 0 , the quotient ψ(1−α)

Γ(1−α)
tends to ψ(1)

Γ(1) = −γ.
Therefore, for any (t, g) ∈ T × G2∣∣∣∣Eψ(1 − α)

2Γ(1 − α)

(τr

t

)α
∣∣∣∣ ≤ Gemax

2
τrmax

t0
,

i.e., the first summand of ∂GM(t,g)
∂α (A54) is bounded.

Using the inequality (A46), the second summand of ∂GM(t,g)
∂α (A54) can be estimated

as follows
Ge

2Γ(1 − α)
ln
(τr

t

)(τr

t

)α
≤ mGe

2Γ(1 − α)

[(τr

t

) 1
m − 1

](τr

t

)α
,

where an integer m > 0. From the above, for (t, g) ∈ T × G2, the next inequality follows

Ge

2Γ(1 − α)
ln
(τr

t

)(τr

t

)α
≤ m Gemax

2

∣∣∣∣∣
(

τrmax

t0

) 1
m
− 1

∣∣∣∣∣τrmax

t0
,

i.e., the second summand of ∂GM(t,g)
∂α (A54) is bounded, too.
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Since, for 0 < β0 ≤ α ≤ 1 gamma function Γ(1 − α) ≥ Γ(1 − β0) > 1, the last two
elements of the gradient (A53) are nonnegative definite (c.f., Property 1) and bounded by
1
2

τrmax
t0

and Gemax
2t0

τrmax
t0

, respectively, for any (t, g) ∈ T × G2. The theorem is proved.
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Table A1. The elements 𝛼∗ , 𝛽∗ , 𝐺∗  and 𝜏∗  of the FMM parameter vector 𝒈∗  solving identifi-
cation task (25) for real relaxation modulus (36) of the material described by the unimodal 
Gauss-like distribution, the mean-square identification indices 𝑄 (𝒈∗ ), Equation (24), the mean 
relative square model approximation index 𝑄 (𝒈∗ ) , Equation (38), the sampling 
points-independent integral indices 𝑄(𝒈∗ ) defined by the optimization task (26), and the relative 
errors 𝐸𝑅𝑅 (37) of the FMM parameter 𝒈∗ approximation for 𝑁 relaxation modulus measure-
ments independently disturbed by additive, zero mean, normally distributed noises with standard 
deviation 𝜎 = 2 [kPa]. 𝑵 𝑸𝑵(𝒈𝑵∗ ) [𝐤𝐏𝐚𝟐] 𝑸𝑵𝒓𝒆𝒍(𝒈𝑵∗ ) [−] 𝑸(𝒈𝑵∗ ) [𝐤𝐏𝐚𝟐] 𝑬𝑹𝑹 [%] 𝜶𝑵∗  [−] 𝜷𝑵∗  [−] 𝑮𝒆𝑵∗  [𝐤𝐏𝐚] 𝝉𝒓𝑵∗  [𝐬] 

50 9.295186 × 10−5 2.102093 × 10−3 2.863765 × 10−3 0.527 0.963788 8.644275 × 
10−2 

2.862573 15.170858 

100 5.614324 × 10−4 5.907274 × 10−5 1.350707 × 10−3 1.224 0.965614 7.207174 × 
10−2 2.745219 16.225154 

200 2.185904 × 10−4 1.109724 × 10−4 4.959376 × 10−3 4.537 × 10−3 0.954725 8.815551 × 3.065976 14.289093 

Figure A1. The quotient ψ(z)
Γ(z) of the psi function ψ(z) (A55) by the gamma function Γ(z) for real

argument 0 ≤ z ≤ 1.

Appendix B

Appendix B.1. The Results of the Numerical Studies for Material I

Table A1. The elements α∗N , β∗N , G∗
eN and τ∗

rN of the FMM parameter vector g∗N solving identification
task (25) for real relaxation modulus (36) of the material described by the unimodal Gauss-like
distribution, the mean-square identification indices QN

(
g∗N
)
, Equation (24), the mean relative square

model approximation index QNrel
(
g∗N
)
, Equation (38), the sampling points-independent integral

indices Q
(
g∗N
)

defined by the optimization task (26), and the relative errors ERR (37) of the FMM
parameter g∗ approximation for N relaxation modulus measurements independently disturbed by
additive, zero mean, normally distributed noises with standard deviation σ = 2 [kPa].

N QN(g∗N)
[
kPa2

]
QNrel(g∗N)[−] Q(g∗N)

[
kPa2

]
ERR [%] α∗

N [−] β∗
N [−] G∗

eN [kPa] τ∗
rN [s]

50 9.295186 × 10−5 2.102093 × 10−3 2.863765 × 10−3 0.527 0.963788 8.644275 × 10−2 2.862573 15.170858
100 5.614324 × 10−4 5.907274 × 10−5 1.350707 × 10−3 1.224 0.965614 7.207174 × 10−2 2.745219 16.225154
200 2.185904 × 10−4 1.109724 × 10−4 4.959376 × 10−3 4.537 × 10−3 0.954725 8.815551 × 10−2 3.065976 14.289093
500 5.559271 × 10−4 5.053629 × 10−5 5.262647 × 10−4 7.740 × 10−3 0.915232 1.261495 × 10−2 3.113879 12.68090

1000 4.594139 × 10−4 1.476206 × 10−4 5.268387 × 10−4 3.104 × 10−4 0.920937 1.341017 × 10−2 3.081285 12.926718
2000 4.668059 × 10−4 3.243456 × 10−6 5.396114 × 10−4 5.315 × 10−2 0.929099 2.375304 × 10−2 3.015563 13.557098
5000 5.289533 × 10−4 3.282759 × 10−7 5.213213 × 10−4 2.876 × 10−4 0.920502 1.445854 × 10−2 3.081489 12.984136
7000 5.224292 × 10−4 3.978418 × 10−6 5.215398 × 10−4 1.654 × 10−4 0.920364 1.419721 × 10−2 3.082754 12.979817

10,000 5.082251 × 10−4 3.739909 × 10−6 5.219846 × 10−4 9.301 × 10−5 0.920327 1.391317 × 10−2 3.083746 12.942422
12,000 5.150186 × 10−4 1.363350 × 10−5 5.208965 × 10−4 1.689 × 10−5 0.920187 1.504288 × 10−2 3.085455 12.942422
15,000 5.247854 × 10−4 3.687418 × 10−6 5.205439 × 10−4 1.938 × 10−8 0.920014 1.472034 × 10−2 3.086680 12.949456

Table A2. The elements α∗N , β∗N , G∗
eN and τ∗

rN of the FMM parameter vector g∗N solving identification
task (25) for real relaxation modulus (36) of the material described by the unimodal Gauss-like
distribution, the mean-square identification indices QN

(
g∗N
)
, Equation (24), the mean relative square

model approximation index QNrel
(
g∗N
)
, Equation (38), the sampling points-independent integral

indices Q
(
g∗N
)

defined by the optimization task (26), and the relative errors ERR (37) of the FMM
parameter g∗ approximation for N measurements independently disturbed by additive, zero mean,
normally distributed noises with standard deviation σ = 5 [kPa].

N QN(g∗N)
[
kPa2

]
QNrel(g∗N)[−] Q(g∗N)

[
kPa2

]
ERR [%] α∗

N [−] β∗
N [−] G∗

eN [kPa] τ∗
rN [s]

50 1.246174 × 10−4 3.1182072 × 10−3 2.953417 × 10−3 0.501 0.962059 8.720788 × 10−2 2.868287 15.170858
100 6.042548 × 10−4 9.788569 × 10−3 9.505292 × 10−4 0.542 0.950711 5.528005 × 10−2 2.859441 15.193338
200 2.469407 × 10−4 2.622478 × 10−4 4.888504 × 10−3 3.999 × 10−3 0.954563 8.747687 × 10−2 3.067250 14.289093
500 5.754599 × 10−4 1.136117 × 10−7 5.288353 × 10−4 1.1543 × 10−4 0.917799 1.594113 × 10−2 3.090037 12.837417

1000 4.8724914 × 10−4 6.769619 × 10−4 5.261736 × 10−4 2.129 × 10−4 0.921142 1.374989 × 10−2 3.082219 12.926718
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Table A2. Cont.

N QN(g∗N)
[
kPa2

]
QNrel(g∗N)[−] Q(g∗N)

[
kPa2

]
ERR [%] α∗

N [−] β∗
N [−] G∗

eN [kPa] τ∗
rN [s]

2000 4.8687842 × 10−4 3.040833 × 10−7 5.400918 × 10−4 5.345 × 10−2 0.929234 2.394509 × 10−2 3.015365 13.557098
5000 5.4973567 × 10−4 3.940686 × 10−6 5.211862 × 10−4 3.026 × 10−4 0.920472 1.459525 × 10−2 3.081354 12.984135
7000 5.401956 × 10−4 1.559930 × 10−6 5.214093 × 10−4 1.573 × 10−4 0.920350 1.428889 × 10−2 3.082852 12.979817

10,000 5.261243 × 10−4 2.744246 × 10−6 5.221499 × 10−4 5.516 × 10−4 0.920905 1.446157 × 10−2 3.079473 12.979817
12,000 5.356062 × 10−4 5.782985 × 10−5 5.208668 × 10−4 2.386 × 10−5 0.920122 1.495904 × 10−2 3.085216 12.942422
15,000 5.457918 × 10−4 4.535517 × 10−6 5.205517 × 10−4 2.513 × 10−7 0.919980 1.477095 × 10−2 3.086569 12.949456

Table A3. The elements α∗N , β∗N , G∗
eN and τ∗

rN of the FMM parameter vector g∗N solving identification
task (25) for real relaxation modulus (36) of the material described by the unimodal Gauss-like
distribution, the mean relative square model approximation index QNrel

(
g∗N
)
, Equation (38), the

sampling points-independent integral indices Q
(
g∗N
)

defined by the optimization task (26), and
the relative errors ERR (37) of the parameter g∗ approximation for N measurements independently
disturbed by additive, zero mean, normally distributed noises with standard deviation σ = 8 [kPa].

N QN(g∗N)
[
kPa2

]
QNrel(g∗N)[−] Q(g∗N)

[
kPa2

]
ERR [%] α∗

N [−] β∗
N [−] G∗

eN [kPa] τ∗
rN [s]

50 1.823164 × 10−4 4.314509 × 10−3 2.993805 × 10−3 0.504 0.961565 8.769949 × 10−2 2.867641 15.1708579
100 6.647523 × 10−4 0.353591 9.411604 × 10−4 0.517 0.949857 5.428199 × 10−2 2.864822 15.193338
200 2.961081 × 10−4 4.334879 × 10−4 4.686224 × 10−3 4.277 × 10−3 0.954203 8.597868 × 10−2 3.066582 14.289093
500 6.078210 × 10−4 2.946700 × 10−5 5.271033 × 10−4 3.193 × 10−4 0.918084 1.579814 × 10−2 3.092238 12.837417

1000 5.328032 × 10−4 2.789884 × 10−3 5.267889 × 10−4 1.300 × 10−4 0.921325 1.356372 × 10−2 3.083203 12.926718
2000 5.248407 × 10−4 3.026647 × 10−7 5.403471 × 10−4 5.202 × 10−2 0.929297 2.403479 × 10−2 3.016320 13.557098
5000 5.883023 × 10−4 1.431097 × 10−5 5.210845 × 10−4 3.179 × 10−4 0.920442 1.473303 × 10−2 3.081219 12.984135
7000 5.759879 × 10−4 1.780341 × 10−7 5.220610 × 10−4 2.087 × 10−3 0.921658 1.538542 × 10−2 3.072622 13.066791

10,000 5.616302 × 10−4 2.127802 × 10−6 5.220589 × 10−4 5.578 × 10−4 0.920855 1.448935 × 10−2 3.079433 12.979817
12,000 5.739756 × 10−4 2.163690 × 10−4 5.211071 × 10−4 8.574 × 10−4 0.921109 1.594595 × 10−2 3.077685 13.006321
15,000 5.843841 × 10−4 5.116492 × 10−6 5.207537 × 10−4 4.857 × 10−4 0.920823 1.552819 × 10−2 3.079921 13.006321

Appendix B.2. The Results of the Numerical Studies for Material II

Table A4. For the optimal FMM approximating the relaxation modulus (43) of the material described
by the BSW spectrum (42): the elements α∗N β∗N , G∗

eN and τ∗
rN of the vector g∗N solving identification

task (25), the mean-square identification indices QN
(
g∗N
)
, Equation (24), the mean relative square

model approximation index QNrel
(
g∗N
)
, Equation (38), the sampling points-independent integral

indices Q
(
g∗N
)

defined by the optimization task (26), and the relative errors ERR (37) of the parameter
g∗ approximation for N relaxation modulus measurements independently disturbed by additive
normally distributed noises with standard deviation σ = 3 [kPa].

N QN(g∗N)
[
MPa2] QNrel(g∗N)[−] Q(g∗N)

[
MPa2] ERR [%] α∗

N [−] β∗
N [−] G∗

eN [MPa] τ∗
rN [s]

50 1.315712 × 10−5 3.597318 × 10−7 5.638335 × 10−5 2.342 0.677682 6.870627 × 10−2 1.370585 5.418555 × 103

100 1.161929 × 10−5 5.298049 × 10−7 4.939762 × 10−5 4.151 0.656134 6.493121 × 10−2 1.409899 5.094185 × 103

200 1.03161 × 10−5 1.124491 × 10−8 5.287861 × 10−5 4.759 0.65004 6.373051 × 10−2 1.421409 5.002011 × 103

500 9.772230 × 10−6 2.140316 × 10−8 2.966257 × 10−5 0.897 0.686475 7.329572 × 10−2 1.336261 5.791700 × 103

1000 1.216504 × 10−5 1.472521 × 10−8 2.964808 × 10−5 0.847 0.691723 7.332173 × 10−2 1.331643 5.808836 × 103

2000 9.462435 × 10−6 2.397636 × 10−9 3.703687 × 10−5 1.928 0.674709 6.955942 × 10−2 1.364964 5.509183 × 103

5000 3.372717 × 10−5 1.236704 × 10−8 2.439945 × 10−5 0.061 0.750336 8.307524 × 10−2 1.245023 6.555588 × 103

7000 3.499392 × 10−5 3.0361484 × 10−9 2.578132 × 10−5 0.179 0.761153 8.483605 × 10−2 1.231209 6.669047 × 103

10,000 3.974638 × 10−5 1.327619 × 10−9 2.524376 × 10−5 0.136 0.757999 8.429268 × 10−2 1.235341 6.633616 × 103

12,000 3.289041 × 10−5 2.540537 × 10−10 2.384835 × 10−5 1.384 × 10−3 0.735839 8.062010 × 10−2 1.265447 6.373837 × 103

15,000 3.259757 × 10−5 2.789747 × 10−10 2.383509 × 10−5 6.536 × 10−5 0.737489 8.098389 × 10−2 1.262561 6.402808 × 103
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Table A5. For the optimal FMM approximating the relaxation modulus (43) of the material described
by the BSW spectrum (42): the elements α∗N , β∗N , G∗

eN and τ∗
rN of the parameter vector g∗N , the mean-

square identification indices QN
(
g∗N
)
, Equation (24), the mean relative square model approximation

index QNrel
(
g∗N
)
, Equation (38), the sampling points-independent integral indices Q

(
g∗N
)

defined by
the optimization task (26), and the relative errors ERR (37) of the parameter g∗ for N measurements
corrupted by the noises with standard deviation σ = 6 [kPa].

N QN(g∗N)
[
MPa2] QNrel(g∗N)[−] Q(g∗N)

[
MPa2] ERR [%] α∗

N [−] β∗
N [−] G∗

eN [MPa] τ∗
rN [s]

50 5.334837 × 10−5 1.607199 × 10−6 5.383509 × 10−5 1.783 0.691583 7.062629 × 10−2 1.352647 5.543339 × 103

100 4.625811 × 10−5 1.912785 × 10−6 5.226179 × 10−5 4.853 0.652363 6.407151 × 10−2 1.421237 4.988252 × 103

200 4.104462 × 10−5 6.4067158 × 10−8 6.964808 × 10−5 7.841 0.632293 5.905374 × 10−2 1.467987 4.606199 × 103

500 3.664178 × 10−5 7.819189 × 10−8 3.074233 × 10−5 1.039 0.681071 7.285674 × 10−2 1.342891 5.745449 × 103

1000 3.879589 × 10−5 6.729167 × 10−8 2.961505 × 10−5 0.869 0.689812 7.328929 × 10−2 1.333233 5.801105 × 103

2000 3.618881 × 10−5 1.385717 × 10−9 3.604767 × 10−5 1.786 0.675299 6.992477 × 10−2 1.362099 5.542684 × 103

5000 5.999448 × 10−5 3.264396 × 10−8 2.456599 × 10−5 8.109 × 10−2 0.752093 8.335898 × 10−2 1.242558 6.579817 × 103

7000 6.106792 5.065819 × 10−9 2.598612 × 10−5 0.195 0.763258 8.506666 × 10−2 1.229229 6.680137 × 103

10,000 6.592012 × 10−5 1.717204 × 10−9 2.536338 × 10−5 0.144 0.759401 8.444666 × 10−2 1.234044 6.640191 × 103

12,000 5.916358 × 10−5 2.831521 × 10−9 2.384641 × 10−5 5.855 × 10−4 0.737150 8.077941 × 10−2 1.264056 6.382156 × 103

15,000 5.893401 × 10−5 1.984301 × 10−10 2.384002 × 10−5 2.644 × 10−4 0.738283 8.108685 × 10−2 1.261701 6.408038 × 103

Table A6. For the optimal FMM approximating the relaxation modulus (43) of the material described
by the BSW spectrum (42): the elements α∗N , β∗N , G∗

eN and τ∗
rN of the parameter vector g∗N , the mean-

square identification indices QN
(
g∗N
)
, Equation (24), the mean relative square model approximation

index QNrel
(
g∗N
)
, Equation (38), the sampling points-independent integral indices Q

(
g∗N
)

defined by
the optimization task (26), and the relative errors ERR (37) of the parameter g∗ for N measurements
corrupted by the noises with standard deviation σ = 8 [kPa].

N QN(g∗N)
[
MPa2] QNrel(g∗N)[−] Q(g∗N)

[
MPa2] ERR [%] α∗

N [−] β∗
N [−] G∗

eN [MPa] τ∗
rN [s]

50 9.520744 × 10−5 2.941612 × 10−6 6.384002 × 10−5 1.448 0.701586 7.198997 × 10−2 1.340251 5.627729 × 103

100 8.218302 × 10−5 3.329357 × 10−6 5.485285 × 10−5 5.348 0.649888 6.349515 × 10−2 1.428867 4.918087 × 103

200 7.290485 × 10−5 1.233057 × 10−7 8.330015 × 10−5 10.352 0.620745 5.578770 × 10−2 1.501144 4.339259 × 103

500 6.446603 × 10−5 1.355064 × 10−7 3.166061 × 10−5 1.145 0.677484 7.255754 × 10−2 1.347428 5.713136 × 103

1000 6.646278 × 10−5 1.240244 × 10−7 2.966288 × 10−5 0.885 0.688528 7.326539 × 10−2 1.334319 5.795691 × 103

2000 6.395292 × 10−5 2.673029 × 10−9 3.542823 × 10−5 1.693 0.675699 7.016833 × 10−2 1.360185 5.565162 × 103

5000 8.738813 × 10−5 5.134265 × 10−8 2.469399 × 10−5 9.607 × 10−2 0.753278 8.354811 × 10−2 1.240915 6.595934 × 103

7000 8.835062 × 10−5 6.705427 × 10−9 2.613160 × 10−5 0.205 0.764677 8.522041 × 10−2 1.227913 6.687353 × 103

10,000 9.319389 × 10−5 2.003354 × 10−9 2.544649 × 10−5 0.149 0.760331 8.454841 × 10−2 1.233188 6.644512 × 103

12,000 8.640779 × 10−5 6.119895 × 10−9 2.384921 × 10−5 2.494 × 10−4 0.738014 8.088431 × 10−2 1.263145 6.387532 × 103

15,000 8.625405 × 10−5 1.518245 × 10−10 2.384484 × 10−5 4.544 × 10−4 0.738792 8.115159 × 10−2 1.261157 6.411273 × 103
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