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Abstract: This study focuses on using activated fly ash to preparate silica aerogel by the acid solution–
alkali leaching method and ambient pressure drying. Additionally, to improve the performance of
silica aerogel, C6H16O3Si (KH-570) and CH3Si(CH3O)3 (MTMS) modifiers were used. Finally, this
paper investigated the factors affecting the desilication rate of fly ash and analyzed the structure
and performance of silica aerogel. The experimental results show that: (1) The factors affecting the
desilication rate are ranked as follows: hydrochloric acid concentration > solid–liquid ratio > reaction
temperature > reaction time. (2) KH-570 showed the best performance, and when the volume ratio
of the silica solution to it was 10:1, the density of silica aerogel reached a minimum of 183 mg/cm3.
(3) The optimal process conditions are a hydrochloric acid concentration of 20 wt%, a solid–liquid ratio
of 1:4, a reaction time of two hours, and a reaction temperature of 100 ◦C. (4) The optimal performance
parameters of silica aerogel were the thermal conductivity, specific surface area, pore volume, average
pore size, and contact angle values, with 0.0421 W·(m·K)−1, 487.9 m2·g−1, 1.107 cm3·g−1, 9.075 nm,
and 123◦, respectively. This study not only achieves the high-value utilization of fly ash, but also
facilitates the effective recovery and utilization of industrial waste.

Keywords: fly ash; silica aerogel; acid dissolution–alkali leaching; ambient pressure drying; reinforcing
modification

1. Introduction

Fly ash is an industrial waste that is difficult to effectively utilize and is often stored in
piles. This not only takes up a large amount of land, but also poses harm to humans and
the environment when harmful substances migrate to the soil, atmosphere, and water [1,2].
But, the fly ash can still be utilized in various ways. Presently, its primary bulk application
lies in the manufacturing of construction materials [3–7]. Nevertheless, fly ash is also rich
in chemical elements such as Si, Al, Fe, and C, which constitutes a significant rationale
for exploring high-value utilization pathways for fly ash [8–12]. Extracting and utilizing
these chemical elements from fly ash can truly achieve the high-value utilization of fly
ash [8,13]. Therefore, the comprehensive utilization of fly ash has important ecological and
socio-economic benefits.

Aerogel is a porous solid material composed of nanoparticles with a three-dimensional
network structure [14]. It commonly includes materials such as silica aerogel and Al2O3
aerogel [15–18]. Silica aerogel, in particular, has gained attention due to its high porosity,
high specific surface area, low density, and low thermal conductivity, and these character-
istics make it suitable for applications in industrial insulation materials, electrical fields,
acoustic fields, and environmental fields [19–24].

Currently, the preparation methods for silica aerogel typically involve the sol–gel
method, aging method, solvent replacement method, and drying process [25–28]. However,
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the use of expensive organic alkoxides as silicon sources and the high cost, danger, and
complexity associated with the supercritical drying method limit its large-scale industrial
application [17,29–32]. Therefore, it is significant to explore low-cost, efficient, and environ-
mentally friendly silicon sources and safe, cost-effective drying methods for the preparation
of silica aerogel.

Considering the high-silica (SiO2) content in fly ash, it can be used as a raw material
for the preparation of silica aerogel. The utilization of fly ash through methods such as
acid dissolution, alkali leaching, sol–gel processing, surface modification, and atmospheric
drying can effectively reduce the production cost of preparing silica aerogels from fly ash,
while also offering new avenues for the utilization of fly ash [15,33–36]. Consequently, the
utilization of fly ash and the preparation of silica aerogel using fly ash as a raw material
have the potential to reduce costs, increase value-added utilization, and have significant
ecological and socio-economic benefits. However, further research is required to optimize
the preparation methods and achieve aerogel with desired properties.

In the first step of this study, the sodium silicate solution was prepared from acti-
vated fly ash by the acid dissolution and alkali leaching method. During this process, the
single-factor effects of different experimental conditions (the HCl mass fraction, reaction
temperature, reaction time, and solid–liquid ratio) on the desilication rate of fly ash were
investigated. Subsequently, the interaction effects of four experimental conditions on the
desilication rate of fly ash were studied through an orthogonal test, and the optimal experi-
mental conditions for preparing a sodium silicate solution from fly ash were determined. In
the second step, silica aerogels were prepared using the sodium silicate solution prepared
under the optimal experimental conditions through processes such as the sol–gel process
and ambient pressure drying. Additionally, to enhance the performance of silica aerogels, a
surface enhancement modification process was introduced during the preparation, and the
modification mechanisms of different modifiers (KH-570 and MTMS) were investigated.
Eventually, surface-enhanced modifiers with excellent performance were selected based on
the experimental results.

Finally, to analyze the microstructure, functional groups, crystalline phases, thermal
conductivity, hydrophobicity, and specific surface area of the silica aerogels, the characteri-
zations of the composition and properties of the silica aerogels were conducted using X-ray
Diffraction (XRD), a Fourier Transform Infrared Spectrometer (FT-IR), Brunauer–Emmett–
Teller (BET), contact angle measurement, and a thermal conductivity meter. Meanwhile,
the changes in the composition and properties of the silica aerogels during the preparation
process were studied to explain the reaction mechanism of preparing silica aerogels by
ambient pressure drying. The experimental principle flow chart is shown in Figure 1.
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2. Experiment
2.1. Materials

The fly ash utilized in the experiment is derived from a coal-fired furnace. Table 1
displays the chemical composition of the fly ash employed in the study. As observed, the
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SiO2 and Al2O3 content in this particular fly ash surpasses 80%, with SiO2 constituting
over 50% of the composition.

Table 1. Chemical composition of fly ash.

Component
(wt%) SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O SO3 MnO TiO2 Loss

Fly ash 50.04 33.52 6.60 4.16 0.33 0.02 1.33 0.94 0.075 1.48 1.52

2.2. Characterization Methods

The main experimental equipment as shown Supplementary Table S2.

2.2.1. XRD

XRD analysis was carried out using an XD-3X (Beijing Puxi General Instrument Co.,
Ltd., Beijing, China). Prior to testing, SiO2 aerogel is ground into powder. The initial angle
is 5◦, the final angle is 90◦, the step width is 0.02, and the wavelength is 1.54, utilizing Cu
target Kα radiation, with an operating voltage of 36 kV, and an operating current of 20 mA.

2.2.2. BET

BET analysis was carried out using an ASAP2020 (Mike, Detroit, MI USA). Prior to mea-
surement, samples are degassed under vacuum conditions at 200 ◦C for 6 h. Subsequently,
high-purity nitrogen is used as the adsorbate, and adsorption–desorption measurements
are conducted at 77 K.

2.2.3. FTIR

FTIR analysis was carried out using a VERTEX70 (Bruker, Karlsruhe, Germany) after
grinding SiO2 aerogel. Samples are prepared by mixing with KBr and pressing into pellets
for testing and analysis. The measurement range is 400~4000 cm−1, with 28 scans, and a
resolution of 0.4 cm−1.

2.2.4. Contact Angle

Contact angle analysis was carried out using a CA100B (Shanghai Yingnuo Precision
Instrument Co., Ltd., Shanghai, China), using the sessile drop method at room temperature.

2.2.5. Thermal Conductivity

Thermal conductivity analysis was carried out using a TC-3000E (Xi’an Xiaxi Electronic
Technology Co., Ltd., Xi’an, China), pressing the SiO2 aerogel into blocks (Thickness ≥ 0.1 mm,
Length ≥ 25 mm) at room temperature.

2.3. Preparation of Silica Aerogel Modified Silica Aerogel
2.3.1. Extraction of SiO2 through Acid Dissolution and Alkali Leaching from Fly Ash

In this processing stage, Si-Al bonds in fly ash are initially disrupted using an acid
dissolution method, followed by alkali leaching to extract SiO2 and prepare a sodium
silicate solution. The experimental reagents as shown Supplementary Table S1.

1. Acid Dissolution: Pre-treated fly ash is mixed with hydrochloric acid solutions of
varying mass fractions (10 wt%, 15 wt%, 20 wt%, 25 wt%, and 30 wt%) in specific
ratios (1:3, 1:4, 1:5, 1:6, and 1:7). The mixture is stirred in a magnetic stirrer at a
designated temperature (80 ◦C, 90 ◦C, 100 ◦C, 110 ◦C, and 120 ◦C) for a specified
duration (1 h, 2 h, 3 h, 4 h, and 5 h). After completion, the reaction mixture is filtered
and repeatedly washed with distilled water until neutral. The residue is then dried at
105 ◦C for 3–5 h in a vacuum drying oven.

2. Alkali Leaching: The filtered residue is mixed with sodium hydroxide solutions of
various mass fractions (10 wt%, 15 wt%, and 20 wt%) in a 1:5 ratio. The mixture is
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stirred in a magnetic stirrer at a certain temperature (80 ◦C, 90 ◦C, and 100 ◦C) for a
specific duration (1 h, 1.5 h, and 2 h). After completion, the mixture is filtered and
distilled water is added for washing until neutral. The filtrate is collected and stored
in a beaker, representing the NaSiO3 solution.

2.3.2. Preparation of Strengthened and Modified Silica Aerogel

In this processing stage, modified silica aerogels are prepared through the processes of
wet gel formation, surface enhancement modification, aging, and ambient pressure drying.

1. Preparation of wet gel and surface enhancement modification: The sodium silicate
solution obtained from fly ash is poured into an ion exchange column containing
strongly acidic cation exchange resin, resulting in a silicon acid solution with a pH
of 2–3. Modified liquid is prepared by mixing MTMS and KH-570 with anhydrous
ethanol in a 1:4 ratio. The silicon acid solution is mixed with the modified liquid in
a certain proportion and stirred for 1 h. After stirring, the pH of the mixed solution
is adjusted to 5–6 using 1 mol/L ammonia solution. The sealed gel is left to age,
observed by tilting the beaker at a 45◦ angle to check for gel formation.

2. Aging: deionized water is added to the beaker containing the wet gel, sealed, and
placed in a 50 ◦C water bath for aging for 48 h.

3. Solvent replacement: the aged wet gel is soaked in anhydrous ethanol and placed in a
50 ◦C water bath for solvent replacement for 24 h.

4. Post-treatment modification: the wet gel, after solvent replacement, is soaked in a
mixture of n-hexane, HMDSO, and ethanol (with HMDSO to wet gel volume ratio of
1:1) at 50 ◦C for surface modification for 24 h.

5. Solvent replacement: the modified gel is soaked in n-hexane and placed in a 50 ◦C
water bath for solvent replacement for 12 h.

6. Ambient pressure drying: the gel, after solvent replacement, is placed in a vacuum
drying oven and dried at 60 ◦C, 80 ◦C, 120 ◦C, and 180 ◦C for 2 h each, resulting in
strengthened and modified SiO2 aerogels.

2.4. The Influence of Acid Leaching Conditions on the Desilication Rate of Fly Ash

Mix the fly ash thoroughly with hydrochloric acid and allow it to react. Once the
reaction is complete, filter the mixture while it is still hot and then proceed to wash the
filter residue. Subsequently, add 20% sodium hydroxide solution to the dried acid leaching
residue at a ratio of 1:5. Place the mixture in a magnetic stirrer and allow it to react for
2 h at a temperature of 100 ◦C. After the reaction, filter the mixture using hot water and
wash it until it reaches a neutral state. The resulting filtrate is a sodium metasilicate
solution. Finally, select appropriate reaction conditions for the orthogonal test using an
L9 (34) orthogonal design table. The experimental conditions include the mass fraction
of hydrochloric acid (15%, 20%, and 25%), solid–liquid ratio (1:3, 1:4, and 1:5), reaction
temperature (90 ◦C, 100 ◦C, and 110 ◦C), and reaction time (2 h, 3 h, and 4 h). Through
these experiments, we investigated the impact of these four factors on the desilication rate.

3. Results and Discussion
3.1. Effect of Acid Leaching Conditions on the Desilication Rate of Fly Ash

After acid leaching, the fly ash undergoes a certain level of activation, leading to
the formation of a significant amount of amorphous SiO2 as a result of mullite structure
disruption. The reaction equation is as follows:

NaAlSiO4 + 4HCl → NaCl + AlCl3 + SiO2 + 2H2O (1)

3.1.1. Effect of Hydrochloric Acid Concentration on the Desilication Rate of Fly Ash

By maintaining a constant solid–liquid ratio (1:4), reaction temperature (100 ◦C), and
reaction time (2 h), we can investigate the impact of varying hydrochloric acid concentra-
tions on the desilication rate of fly ash. Figure 2 illustrates the obtained results.
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Figure 2. Effect of HCl concentration on the desilication rate of coal fly ash.

According to the findings presented in Figure 2, the desilication rate of fly ash exhibits
an initial increase followed by a decrease with the rise in the hydrochloric acid concentration.
At a concentration of 10 wt%, the desilication rate reaches its lowest point at 31.89%. This
can be attributed to the insufficient reaction between hydrochloric acid and SiO2 in fly
ash caused by the low acid concentration. Conversely, at a concentration of 20 wt%, the
desilication rate peaks at 41.23%. However, as the concentration of the hydrochloric acid
exceeds 20–30 wt%, the desilication rate gradually declines. This decline may be attributed
to side reactions occurring between the hydrochloric acid and other substances present in
fly ash due to the high acid concentration. These side reactions increase the overall amount
of reactants and consequently reduce the desilication rate.

3.1.2. Effect of Solid–Liquid Ratio on the Desilication Rate of Fly Ash

By maintaining a constant hydrochloric acid concentration (20 wt%), reaction temper-
ature (100 ◦C), and reaction time (2 h), we can explore the impact of varying solid–liquid
ratios on the desilication rate of fly ash. The obtained results are illustrated in Figure 3.
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According to the data presented in Figure 3, the desilication rate of fly ash initially
increases and then stabilizes as the solid–liquid ratio decreases. At a solid–liquid ratio
of 1:3, the desilication rate reaches its lowest point at 33.93%. This can be attributed to
the insufficient addition of hydrochloric acid, resulting in an inadequate reaction between
the fly ash and hydrochloric acid. Conversely, at a solid–liquid ratio of 1:4, the highest
desilication rate is observed at 41.19%. At this ratio, the reaction between the fly ash and
hydrochloric acid is deemed complete. With further increases in the solid–liquid ratio,
specifically reaching 1:7, there is no significant change in the desilication rate of fly ash.
Consequently, a solid–liquid ratio of 1:4 was chosen as the subsequent reaction condition.

3.1.3. Effect of Reaction Temperature on the Desilication Rate of Fly Ash

By maintaining a constant hydrochloric acid concentration (20 wt%), solid–liquid ratio
(1:4), and reaction time (2 h), we can investigate the impact of varying reaction temperatures
on the desilication rate of fly ash. The obtained results are illustrated in Figure 4.
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According to the findings presented in Figure 4, the desilication rate of fly ash initially
increases and then decreases as the reaction temperature increases. A turning point is
observed at 100 ◦C, with the highest desilication rate reaching 41.03%. However, the
desilication rate is found to be the lowest at 120 ◦C, measuring 32.65%. The primary
reason for this is that the boiling point of 20 wt% hydrochloric acid is 110 ◦C. When the
temperature exceeds 110 ◦C, the solution reaches its boiling point and undergoes rapid
evaporation, thereby affecting the acid-leaching effect of fly ash. Consequently, a reaction
temperature of 100 ◦C was chosen as the subsequent reaction condition.

3.1.4. Effect of Reaction Time on the Desilication Rate of Fly Ash

By maintaining a constant hydrochloric acid concentration (20 wt%), solid–liquid ratio
(1:4), and reaction temperature (100 ◦C), we can explore the impact of varying reaction
times on the desilication rate of fly ash. The obtained results are illustrated in Figure 5.

According to the data presented in Figure 5, the desilication rate of fly ash initially
increases and then stabilizes as the reaction time increases. At a reaction time of 1 h, the
desilication rate reaches its lowest point at 33.06%. This can be attributed to the short
reaction time, which hinders the complete reaction between the fly ash and hydrochloric
acid. Conversely, at a reaction time of 2 h, the highest desilication rate is observed at 41.19%,
indicating that the acid leaching reaction is completed at this point. When the reaction time
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is extended to 5 h, there is no significant change in the desilication rate. Consequently, a
reaction time of 2 h was chosen as the subsequent reaction condition.
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3.1.5. Interactive Effects of Different Reaction Conditions on the Desilication Rate of
Fly Ash

To investigate the combined effect of reaction conditions on the desilication rate of
fly ash while keeping the alkali-leaching reaction conditions constant, four factors were
chosen for the test, as shown in Table 2. Each factor was tested at three different levels.
The details of the orthogonal test results and the corresponding analysis can be found in
Tables 3 and 4. The orthogonal test results analysis table as shown Supplementary Table S3.

Table 2. Orthogonal experimental design for the influence of different reaction conditions on the
desilication rate of fly ash.

Level Number of
Group HCl/(wt%) Solid–Liquid

Ratio Reaction Time/h Reaction
Temperature/◦C

1 15% 1:3 2 h 90 ◦C
2 20% 1:4 3 h 100 ◦C
3 25% 1:5 4 h 110 ◦C

Table 3. Analysis table of orthogonal test.

Test Group
Number

Factor Desilication
Rate/%A B C D

1 15% 1:3 2 h 90 ◦C 34.99
2 15% 1:4 3 h 100 ◦C 41.19
3 15% 1:5 4 h 110 ◦C 41.5
4 20% 1:3 3 h 110 ◦C 35.7
5 20% 1:4 4 h 90 ◦C 39.88
6 20% 1:5 2 h 100 ◦C 42.67
7 25% 1:3 4 h 100 ◦C 32.58
8 25% 1:4 2 h 110 ◦C 37.28
9 25% 1:5 3 h 90 ◦C 33.19

Note: A represents the factor of HCl concentration, B represents the factor of Solid–liquid ratio, C represents the
factor of reaction time, and D represents the factor of reaction temperature.



Materials 2024, 17, 1614 9 of 19

Table 4. Orthogonal test results analysis table.

Level A B C D

1 15% 1:3 2 h 90 ◦C
2 20% 1:4 3 h 100 ◦C
3 25% 1:5 4 h 110 ◦C

Extreme
deviation 5.07 5.03 1.62 2.79

Note: A represents the factor of HCl concentration, B represents the factor of Solid–liquid ratio, C represents the
factor of reaction time, and D represents the factor of reaction temperature.

According to the data provided in Table 4, the hydrochloric acid concentration exhibits
the largest range of 5.07, indicating that it has the most significant impact on the desilication
rate of fly ash. In contrast, the reaction time shows the smallest range of 1.62, suggesting
that its effect on the desilication rate is relatively minor. The solid–liquid ratio demonstrates
a range of 5.03, indicating that both the hydrochloric acid concentration and solid–liquid
ratio have a substantial influence on the desilication rate. Thus, the order of importance for
the four influencing factors is as follows: the hydrochloric acid concentration > solid–liquid
ratio > reaction temperature > reaction time. Based on the k-value analysis, the optimal
conditions for the desilication of fly ash are as follows: a hydrochloric acid concentration of
20 wt%, a solid–liquid ratio of 1:4, a reaction temperature of 100 ◦C, and a reaction time of
2 h.

3.1.6. Optimization of Acid Leaching Conditions

The desilication rate of fly ash is limited to approximately 42% under the optimal
acid solution alkali leaching condition. Consequently, to enhance the activity of fly ash,
a method involving the activation of fly ash through baking with sodium carbonate is
employed to generate a sodium metasilicate solution, which ultimately leads to a higher
desilication rate. The reaction equation is as follows:

3Al2O3·2SiO2 + 4SiO2 + 3Na2CO3 → 6NaAlSiO4 + 3CO2 (2)

NaAlSiO4 + 4HCl → NaCl + AlCl3 + SiO2 + 2H2O (3)

SiO2 + 2NaOH = Na2SiO3 + H2O (4)

During the acid leaching experiment, the reaction unexpectedly ceased as a result of
fly ash agglomeration. Further investigation, as indicated by a previous study, revealed
that the incomplete reaction was due to an excessively low solid–liquid ratio of fly ash to
hydrochloric acid [33]. To address this issue, the experimental conditions were maintained
at a constant (Ceteris paribus), and the influence of different solid–liquid ratios on the
desilication rate of fly ash was investigated. The results of this study can be observed in
Figure 6.

As depicted in Figure 6, the desilication rate of fly ash exhibits an initial increase
followed by stabilization as the solid–liquid ratio decreases. Notably, when the solid–
liquid ratio is 1:5, the desilication rate reaches its lowest point at 65.66%. This is primarily
attributed to the inadequacy of hydrochloric acid, which hinders the complete reaction
between fly ash and hydrochloric acid. Conversely, when the solid–liquid ratio is 1:7, the
highest desilication rate of 81.72% is achieved. At this point, the reaction between fly ash
and hydrochloric acid is completed. The further reduction of the solid–liquid ratio to 1:9
does not yield any significant change in the desilication rate. Consequently, after careful
consideration, a solid–liquid ratio of 1:7 was selected as the subsequent reaction condition.
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Figure 6. Effect of solid–liquid ratio on the desilication rate of activated fly ash.

3.2. Surface Strengthening Modification of Silica Aerogel
Effect of Modifier on the Density of Silica Aerogel

This section focuses on analyzing the process of producing modified silica aerogel
from calcined, activated fly ash. The objective is to investigate the impact of different
modifiers on the density of the aerogel. The ratio of the modified solution can be found in
Table 5, while the corresponding experimental results are illustrated in Figures 7 and 8.

Table 5. Surface-enhanced modified silica aerogel solution proportioning.

Serial
Number

Silicon Source Modified Liquid 1 Modified Liquid 2

Silicic Acid
Solution/mL KH-570/mL EtOH/mL MTMS/mL EtOH/mL

1 10 5 20 10 40
2 10 4 16 20 80
3 10 3 12 30 120
4 10 2 8 40 160
5 10 1 4 50 200
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As depicted in Figure 7, the density of silica aerogel shows an increasing trend with
the addition of KH-570. Specifically, at a volume ratio of 10:1 for the silicic acid solution to
KH-570, the minimum density is recorded at 183 mg/cm3. Conversely, at a volume ratio of
10:5, the maximum density reaches 259 mg/cm3. This can be attributed to the connection
of the silane coupling agent KH-570, which contains a C=C double bond, to the surface
of SiO2 particles. Subsequently, during radical polymerization, a protective film forms on
the particle surface, resulting in a higher solid content of silica aerogel and, consequently,
an increased density. For subsequent experiments, a volume ratio of 10:1 for silicic acid
solution to KH-570 was chosen for performance analysis.

As illustrated in Figure 8, the density of silica aerogel exhibits an initial decrease
followed by an increase as the dosage of MTMS is increased. At a volume ratio of 1:2
for the silicic acid solution to MTMS, the minimum density is recorded as 184 mg/cm3.
Conversely, at a volume ratio of 1:5, the maximum density reaches 282 mg/cm3. This can
be attributed to the hydrolysis of MTMS, which leads to the formation of -OH and -CH3
groups. During the polycondensation reaction, hydrophobic methyl groups infiltrate the
gel matrix, enhancing the structure of silica aerogel and resulting in a decrease in density.
However, when the MTMS content becomes excessive, some sol ions fail to effectively
cross-link with -OH, causing an increase in the density of silica aerogel. For subsequent
experiments, a volume ratio of 1:2 between silica solution and MTMS was selected for
performance analysis.

3.3. Analysis of Surface Enhancement and Modification Mechanism
3.3.1. KH-570 Modification Mechanism

The molecule of 3-methacryloxypropyl Trimethoxy silane (KH-570) contains the
-OCH3 group which, after hydrolysis, can undergo a single displacement reaction with
the -OH group on the gel surface. This reaction contributes to an increase in the structural
strength of silica aerogel. Additionally, apart from the -OCH3 group, the C=C in the KH-570
molecule can undergo radical polymerization when a radical initiator is introduced. The in-
troduction of species reintroduction polymers further enhances the performance of aerogel
through KH-570 modification. During the modification process, KH-570 is typically mixed
with anhydrous ethanol first and then combined with a silicic acid solution. This gradual
mixing helps slow down the reaction rate and ensures a more uniform cross-linking of sol
particles, thereby reducing the capillary force of silica aerogel [37,38].

KH-570 is utilized to reinforce and modify silica aerogel, and the polycondensation
process involves two scenarios: with water and anhydrous conditions. In the presence of



Materials 2024, 17, 1614 12 of 19

water, KH-570 undergoes hydrolysis initially, followed by a condensation reaction with
the hydroxyl group (Si-OH) on the surface of the wet gel. Simultaneously, the hydrolyzed
KH-570 also undergoes a condensation reaction itself. The chemical reaction equations
involved in this process are denoted as 5~7 [39].
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In the absence of water, KH-570 undergoes a condensation reaction directly with Si-
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water from the wet gel matrix. Consequently, KH-570 primarily reacts with the silicon 

hydroxyl groups on the surface of the wet gel through a condensation reaction in the ab-

sence of water. 

(5)
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In the absence of water, KH-570 undergoes a condensation reaction directly with
Si-OH. During the experiment, anhydrous ethanol is employed to facilitate the removal
of water from the wet gel matrix. Consequently, KH-570 primarily reacts with the silicon
hydroxyl groups on the surface of the wet gel through a condensation reaction in the
absence of water.
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(8)

3.3.2. MTMS Modification Mechanism

Three -OCH3 groups in the molecules of alkyl tri alkoxysilane (MTMS) undergo a
reaction with -OH groups after hydrolysis. After the hydrolysis of water glass, each silicon
atom carries four hydroxyl groups, while after MTMS hydrolysis, it carries an inert -CH3
group, which can condense under the influence of an alkaline catalyst. Due to the presence
of the methyl group in MTMS after hydrolysis, the polycondensation reaction is slowed
down, leading to the preferential formation of primary particles of a specific size through
the polycondensation of Si(OH)4. As the reaction progresses, the hydrolysis product
CH3-Si(OH)3 of MTMS also participates in the polycondensation reaction, resulting in a
significant amount of unreacted Si-OH on the surface of the primary particles. Through
the reaction with the primary particles, the -OH group is replaced, and the -CH3 group
is successfully grafted onto the gel skeleton. As the condensation reaction continues, the
primary particles grow into secondary particles, and the -OH groups on the surface are
continuously replaced by -CH3 groups [40] (show in Figure 9).
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3.4. Effects of Surface Enhancement Modification on the Structure and Properties of Silica Aerogel
3.4.1. Phase Analysis

In order to investigate the impact of various strengthening modifiers on the crystal
structure of silica aerogel, X-ray diffraction (XRD) analysis was performed on the KH-570,
MTMS-modified, and unmodified silica aerogel. The results of this analysis are depicted in
Figure 10.
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Figure 10. XRD patterns of polymer-reinforced modified silica aerogel.

In Figure 10, it can be observed that the XRD patterns of the aerogel samples under
the three different modification conditions exhibit prominent peak broadening in the range
of 20~30◦, indicating a predominantly amorphous structure of silicon in the samples. The
unmodified samples display diffraction peaks corresponding to LiH and Fe2O3, which can
be attributed to the presence of high levels of impurities in the water glass. Despite the
use of a strong acidic cation exchange resin during pre-treatment, the complete removal
of metal ions could not be achieved. On the other hand, no such peaks are observed after
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KH-570 and MTMS enhancement, suggesting that the modifiers might have undergone a
coordination reaction with the metal ions in the water glass, forming compounds like metal
silicates. These compounds typically have low solubility and tend to precipitate, resulting
in a significant reduction in the metal ion content after modification.

3.4.2. Physical Property Analysis

In order to validate the modification mechanism of various strengthening modifiers,
the thermal conductivity of KH-570- and MTMS-modified, as well as unmodified silica
aerogel was measured, and its thermal insulation performance was analyzed. The results
of this analysis are presented in Figure 11.
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As depicted in Figure 11, both the density and thermal conductivity of the unmod-
ified silica aerogel are low, measuring 110 mg·cm−3 and 0.0316 W·(m·K)−1, respectively.
However, when enhanced with KH-570, the density and thermal conductivity of the silica
aerogel increase significantly to 183 mg·cm−3 and 0.0421 W·(m·K)−1, respectively. While
the density of the MTMS-enhanced silica aerogel is not considerably different from the KH-
570-enhanced version, there is an improvement in the thermal conductivity. The density
of the silica aerogel modified with MTMS is measured at 184 mg·cm−3, while its thermal
conductivity is 0.0534 W·(m·K)−1.

Figure 12 presents the visual representation of the reinforced and modified silica
aerogel after 30 min of grinding. Based on the density and thermal conductivity of the silica
aerogel, it can be observed that the order is as follows: MTMS > KH-570 > unmodified.
However, in terms of appearance, all samples appear as powder, with the unmodified
samples lacking any discernible particle sensation, having smaller particle sizes and ex-
hibiting poorer mechanical properties during extrusion. Conversely, the samples modified
with KH-570 and MTMS display a pronounced particle sensation, larger particle sizes,
and higher hardness during extrusion. Although there is a slight increase in density and
thermal conductivity for the reinforced and modified silica aerogel, it still falls within the
low density and low thermal conductivity range. However, a significant improvement in
mechanical properties is achieved. Therefore, strengthening and modification effectively
enhance the mechanical properties of silica aerogel.
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3.4.3. Chemical Property Analysis

In order to validate the modification mechanism of various strengthening modifiers,
the infrared spectra of KH-570- and MTMS-modified, as well as unmodified silica aerogel
were measured. The functional groups present in the samples were then analyzed. The
results of this analysis are depicted in Figure 13.
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As illustrated in Figure 13, all samples exhibit distinct bands at approximately 465 cm−1,
795 cm−1, and 1090 cm−1. These bands correspond to the bending vibration, symmetric
stretching vibration, and antisymmetric stretching vibration, respectively, of the Si-O-Si
bond. These bonds form the skeleton structure of aerogel. Additionally, all samples display
an absorption peak at 2356 cm−1, which is attributed to the stretching vibration of the C=O
bond in CO2 present in the air. This peak may be influenced by the testing environment.

The spectra also reveal bands at 2969 cm−1, 1267 cm−1, and 847 cm−1, representing
the antisymmetric stretching vibration peak, antisymmetric bending vibration peak, and
symmetric bending vibration peak, respectively, of the -CH3 group.

The bands near 3443 cm−1 and 1630 cm−1 indicate the presence of -OH and H-O-H
infrared bands. However, the peak intensity is weak due to the replacement of Si-OH on
the surface of the modified aerogel with Si-CH3, thus enhancing the hydrophobicity of
the aerogel.

In the spectrum of the aerogel modified with KH-570, bands are observed at 1630 cm−1

and 1730 cm−1. The bands at 1630 cm−1 may be attributed to the presence of adsorbed
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water or the bending vibration of the C=C bond. The absorption peak at 1730 cm−1

corresponds to the stretching vibration absorption peak of the C=O bond, indicating the
successful bonding of KH-570 to the surface of silica aerogel [38,41].

3.4.4. Analysis of Pore Structure and Specific Surface Area

In order to investigate the impact of different reinforcement phases on the specific
surface area and pore structure of silica aerogel, the unmodified and KH-570- and MTMS-
modified silica aerogels were analyzed using a specific surface area analyzer (BET). The
porosity results are presented in Table 6, while the N2 adsorption–desorption contour
line, temperature, and related parameters, as well as the pore size distribution curve, are
depicted in Figure 14.

Table 6. Effect of different enhancement modifications on the pore properties of silica aerogel.

Sample Specific Surface
Area/(m2/g) Pore Volume/(cm3/g)

Average Pore
Diameter/(nm)

Unmodified 538.7 0.991 7.358
KH-570 487.9 1.107 9.075
MTMS 146.8 0.425 11.58
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Figure 14. N2 adsorption–desorption isotherms and pore size distribution curves of different en-
hanced modified silica aerogels.

As depicted in Figure 14, the adsorption–desorption isotherm curves of the unmod-
ified, MTMS-modified, and KH-570-modified silica aerogel samples all exhibit Type IV
behavior, indicating that the prepared silica aerogel is a mesoporous material. The unmodi-
fied and KH-570-modified silica aerogels show an H3-type hysteresis loop in the middle-
and high-pressure range, suggesting the presence of a slit-like mesoporous structure. On
the other hand, the MTMS-modified silica aerogel displays an H2 (b)-type hysteresis loop
in the middle- and high-pressure range, indicating a relatively wider pore size distribution
and potential channel blockage [37].

Under the three modification conditions, the N2 adsorption capacity of the aerogel
is 715 cm3·g−1 after KH-570 modification, 607 cm3·g−1 for the unmodified sample, and
187 cm3·g−1 after MTMS modification. From the pore size distribution curve, the pore
size ranges for the unmodified, KH-570-modified, and MTMS-modified aerogel samples
are 2.7~20 nm, 2.5~15 nm, and 1.5~20 nm, respectively. The most probable diameters are
3.865 nm, 3.82 nm, and 1.661 nm.

Table 6 reveals that the maximum specific surface area of the unmodified silica aerogel
is 538.7 m2·g−1. The specific surface area and pore volume of the KH-570-modified and
MTMS-modified aerogel are lower than the unmodified sample, measuring 487.9 m2·g−1

and 146.8 m2·g−1, respectively. The maximum pore volume for the KH-570-modified
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aerogel is 1.107 cm3·g−1, while the minimum pore volume for the MTMS-modified silica
aerogel is 0.425 cm3·g−1.

In summary, the performance of the KH-570-modified silica aerogel is superior to that
of the MTMS-modified silica aerogel, and the modified aerogel exhibits a slightly lower
performance compared to the unmodified aerogel. However, considering previous research,
reinforcement modification enhances the skeleton structure and improves the mechanical
properties. Therefore, selecting KH-570 as the reinforcement modifier can lead to a better
specific surface area, pore volume, and stronger mechanical properties.

3.4.5. Hydrophobicity Analysis

In order to examine the impact of different reinforcement phases on the hydrophobicity
of silica aerogel, contact angle analysis was conducted on the unmodified, KH-570-modified,
and MTMS-modified samples using a contact angle measurement. The experimental results
are presented in Figure 15.
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As depicted in Figure 15, the contact angles measured for the three samples indicate
hydrophobic silica aerogel properties, with values of 116◦, 123◦, and 130◦, respectively. The
presence of residual Si-OH hydrophilic groups in the unmodified silica aerogel may explain
the slight hydrophilicity observed, suggesting that the complete conversion of Si-OH to
Si-CH3 was not achieved with HMDSO. However, the enhancement and modification with
KH-570 and MTMS further replaced the unmodified Si-OH groups with Si-CH3, leading to
improved hydrophobic properties. The hydrophobicity of the three samples can be ranked
in descending order as follows: MTMS > KH-570 > Unmodified.

4. Conclusions

1. The impact of different acid leaching conditions on the desilication rate of fly ash can
be ranked as follows: hydrochloric acid concentration > solid–liquid ratio > reaction
temperature > reaction time. The hydrochloric acid concentration and solid–liquid
ratio were found to have the most significant effects on the desilication rate.

2. The optimal conditions for acid leaching were determined as follows: a hydrochloric
acid concentration of 20 wt%, a solid–liquid ratio of 1:4, a reaction time of 2 h, and a
reaction temperature of 100 ◦C.

3. After the calcination and activation of fly ash using sodium carbonate, the highest
desilication rate of 81.72% was achieved with an acid-leaching solid-to-liquid ratio
of 1:7.

4. Silica aerogel was prepared by ambient pressure drying using a sodium silicate
solution obtained from fly ash as a silicon source. KH-570 and MTMS were used
as strengthening modifiers. The lowest density of silica aerogel, 183 mg·cm−3, was
obtained with a volume ratio of silica solution to KH-570 of 10:1. Likewise, the lowest
density of silica aerogel, 184 mg·cm−3, was achieved with a volume ratio of silicic
acid solution to MTMS of 1:2. And after characterizing by XRD, FTIR, and BET, the
KH-570-enhanced aerogel exhibited the best overall performance.

5. The optimal performance parameters of silica aerogel were characterized by XRD,
FTIR, and BET, resulting in thermal conductivity, a specific surface area, pore vol-
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ume, average pore size, and contact angle values of 0.0421 W·(m·K)−1, 487.9 m2·g−1,
1.107 cm3·g−1, 9.075 nm, and 123◦ respectively.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17071614/s1, Table S1: Experimental reagents. Table S2: Main
experimental equipment. Table S3: Orthogonal test results analysis table.
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