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Abstract: Developing advanced underwater welding technology for titanium, which is the key
structural material for underwater applications, is of great significance for the design, fabrication,
and maintenance of submarine equipment. In this study, in order to investigate the underwater
welding microstructure and mechanical properties of Ti-4Al-2V alloy, underwater wet laser welding
was conducted on Ti-4Al-2V alloy using varying laser power. The microstructure and properties of
the welding joints were characterized and analyzed. The microstructure of the heat-affected zone
and fusion zone in the welding joints are not significantly different from those of welding in air, but a
mixed oxide layer composed of Al2O3 and TiO2 is formed on the surface of the fusion zone. Due to
internal stress, a large number of cracks initiate on the oxide layer and propagate to the joints. In the
4 kW and 5 kW joints, a penetrating crack formed due to the excessive accumulation of internal stress
breaking up the α phase. The mechanical properties of the joints are significantly affected by the
laser power. The tensile strength of the 3 kW and 4 kW joints is comparable to that of the base metal,
which is about 600 MPa, while the 5 kW joint shows brittle fracture with no plastic deformation and
228 MPa strength. This research lays a solid foundation for understanding the underwater wet laser
welding behavior of titanium alloys.

Keywords: Ti-4Al-2V; underwater wet welding; laser welding; oxide layer; crack

1. Introduction

Titanium alloys have a series of advantages, including high specific strength, good
corrosion resistance, stable mechanical properties at high and low temperatures, as well as
excellent welding and machining performance [1–3]. In addition, the excellent resistant to
seawater and salt spray corrosion makes titanium alloy a new type of structural material in
marine environments. It is widely used in fields such as ships, deep-sea exploration, oil
and gas exploitation, aerospace, petrochemicals, and seawater desalination [4–7]. Countries
such as the United States, Russia, and China have been exploring the application of
titanium alloys as marine materials since the 1960s. Russia developed the world’s first
all-titanium alloy nuclear submarine in 1968. In recent years, with developments in science
and technology, the application of titanium alloys in China’s marine industry has gradually
increased, among which, the “Jiaolong” deep submarine uses titanium alloy as shells.

Ti-4Al-2V, a near α titanium alloy, has been applied in marine engineering in China and
Russia [8]. Previous studies on Ti-4Al-2V alloy mainly focused on its properties of oxidation
and irradiation resistance, and formation capability during additive manufacturing and
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welding in air [9–12]. However, the research on underwater welding of Ti-4Al-2V alloy
is still absent, which is not conducive to its long-term stable service as a key structural
material for submarine equipment, and there is no technology guidance for its maintenance.

The history of developing underwater welding technology is long, and the commonly
used underwater welding methods include dry welding, local dry welding, and wet
welding [13–15]. Compared with the first two methods, underwater wet welding has the
advantages of low cost and simple operation, and underwater flux-cored arc welding has
been widely used [16,17]. Underwater wet welding for titanium alloys, especially the laser
welding which is more efficient and easier to achieve with automation, is still in the initial
stages. For titanium alloys, most of the research on underwater laser welding is focused on
local dry underwater welding [18–20], which was conducted in a similar environment to air
welding and cannot reflect the particularity of underwater welding. Cai et al. conducted
research on underwater wet welding of TC4 alloy, investigating the microstructure and
mechanical properties of joints under different water depths [21]. In their study, water depth
has a significant impact on the penetration depth of laser welding and has a significant
impact on the formation of the joints. Meanwhile, oxidation was observed on the surface
of the weld joints, but no detailed analysis was conducted. However, the research on
underwater wet laser welding of titanium alloys is scarce, which cannot support the future
development and application of Ti-4Al-2V in underwater environments.

In this work, weld joints were prepared with 3 kW, 4 kW, and 5 kW laser power at a
water depth of 4 mm, to investigate the underwater welding microstructure, and mechani-
cal properties of Ti-4Al-2V alloy. The morphology, microstructure, texture and variants,
and oxidation of the welding joints was characterized and analyzed. The formation and
propagation mechanism of cracks during underwater wet laser welding were preliminarily
explained. Meanwhile, the tensile properties and micro-Vickers hardness of the joints at
room temperature were tested. Based on these, the relationships between laser power,
microstructure, and mechanical properties were analyzed. A systematic understanding of
the underwater wet welding behavior of Ti-4Al-2V alloy was obtained.

2. Materials and Methods

In this study, a base metal (BM) plate with the nominal composition of Ti-4Al-2V and
85 mm × 50 mm × 5 mm in size was machined to form a butt joint with a thickness of
2 mm. The welding groove form is I-shaped, and the specific dimensions are shown in
Figure 1(a1,a2).
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Figure 1. Schematic diagram for (a1,a2) welding specimens; (b) Ti-4Al-2V underwater wet laser
welding; schematic diagram of (c1) sampling location and (c2) sample size for tensile tests; and
locations for (c3) hardness tests and (c4) microstructure characterization.
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The RFL-C6600S (Wuhan Raycus Fiber Laser Technologies Co., Ltd., Wuhan, China)
continuous fiber laser was used in the underwater wet laser welding, with a fixed defocus
amount of +35 mm and a spot diameter of 5 mm. During the welding process, the joint was
formed in one attempt. Figure 1b shows the schematic diagram of the welding process; the
upper surface of the specimen was 4 mm away from the water surface. The welding speed
was 5 mm/s, the shielding gas flow rate was 50 L/min, and three different laser power
settings were used, namely, 3 kW, 4 kW, and 5 kW.

The room temperature tensile properties and micro-Vickers hardness were tested, and
the tensile samples’ cutting position was as shown in Figure 1(c1). The microhardness test
covered the BM, heat-affected zone (HAZ), and fusion zone (FZ) of the weld joints. The
tensile test specimen was of the size shown in Figure 1(c2), and was cut from the joint
center without cracking. The tensile tests for each weld joint were repeated two times
with a tensile rate of 0.00025 s−1, to obtain reliable results. The electronic universal tensile
testing machine TSE-OM-20208A (Wance testing machine Co., Ltd., Shenzhen, China) was
used to conduct room temperature tensile tests according to GB/T228 [22]. The Vickers
hardness on the surface of the welding joints was tested using the FALCOON511 (Inno-
vatest Shanghai Co, Ltd., Shanghai, China) hardness testing machine in accordance with
GB/T4340.1 [23], along the path from left to right as shown in Figure 1(c3), covering the BM,
HAZ, and FZ. The test used an indenter of 50 g with a holding time of 15 s and a step size
of 0.5 mm.

The microstructure of the BM, HAZ, and FZ in the welding joints was investigated
using an optical microscope (OM) and a scanning electron microscope (SEM) at the positions
shown in Figure 1(c4). The samples were mechanically ground and polished, and etched
in a mixed solution of HF:HNO3:H2O = 1:4:15 (in volume) at room temperature for 15 s.
A Phenom XL (Phenom-World, Eindhoven, The Netherlands) scanning electron microscope
was used to characterize the weld cracks and surface oxides. The phase composition of
the welding joints was characterized using X-ray diffraction (XRD), Cu target, Kα Ray, an
incident wavelength of 0.154 nm, a diffraction range of 20~90◦, and a diffraction speed of
2◦/min. The fracture morphology of the tensile specimen was observed using SEM after
ultrasonic cleaning in anhydrous ethanol for 5 min.

3. Results and Discussion
3.1. Macroscopic Morphology

Figure 2 shows the macroscopic morphology of the Ti-4Al-2V joints formed via under-
water wet welding using different laser powers of 3 kW, 4 kW and 5 kW. The surface of
all the three joints is slightly oxidized and in the color of pale blue. The width of welding
increases with the increase in laser power, namely, 0.94 ± 0.13 mm, 0.98 ± 0.15 mm, and
1.05 ± 0.18 mm for 3 kW, 4 kW and 5 kW, respectively, which is consistent with general
understanding. The surface of the 3 kW joint is smooth, and an obvious fish scale pattern
can be seen in Figure 2a, while the surface of the 4 kW and 5 kW joints is uneven, and
cracks can be seen at the latter part of the joints as shown by the red arrows in Figure 2b,c,
which are almost in line with the welding direction.

Figure 3 shows the cross-section metallographic morphology of the three welding
joints. As shown in Figure 3a–c, a penetration depth of more than 2 mm can be achieved
with a laser power of 3 kW. The boundary between the HAZ and the BM is obvious, and it
shows a tendency to shrink from both sides to the center from top to bottom. However, the
boundary between the FZ and HAZ is not so clear, but it can still be distinguished from the
micromorphology; the grain size of the FZ is significantly larger than that of the HAZ. In
addition, the columnar grains are the typical morphology in the FZ, as shown in Figure 3,
and the grain growth direction at the edge of the FZ is perpendicular to the interface. The
grain morphology in the HAZ is between the FZ and the BM, and the grains in the HAZ
exhibit a gradient distribution from the FZ to the BM.
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A layer of white contrast can be seen at the upper and lower surface of the FZ, which was
suspected to be oxide, and its thickness increases significantly with the increase in laser power.
The oxide morphology and composition will be further analyzed in Section 3.2. In Figure 3b,c,
there is a penetrating crack in the FZ, and some irregular small notches at the edge of the joint.
The 4 kW joint also has a non-penetrating crack at the top that extends inward from the upper
surface. Crack formation and propagation are further analyzed in Section 3.4.

3.2. Microstructure and Oxide Layer

The microstructure of the BM, HAZ, and FZ was locally magnified, as shown in
Figure 4(a–c3). As shown in Figure 4a, the grains in the BM are fine, homogeneous and
equiaxed α grains formed by forging and annealing. In Figure 4(b1–b3), the grains in the
HAZ are coarser with a slat-like phase inside, which is a martensite phase formed by the
α → β → α transformation during heat treatment [24,25]. The grain size in the FZ are
the largest with a columnar phase inside, which is related to the temperature gradient
of the molten pool, and its priority growth direction is the heat flow direction [4]. The
microstructure of the FZ grains is complex, and a needle-like phase can be detected, which
is also the martensite phase formed by the α → L → β → α (α′) transformation during
melting and rapid cooling [26].
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In order to further investigate the white contrast phase (suspected as oxide) on the FZ
surface, the FZ of the 5 kW joint was characterized using the secondary electron (SE2), back
scatter diffraction (BSD), and energy dispersive spectrometer (EDS) mode of the electron
scanning microscope. As shown in Figure 5, EDS images proved that the FZ surface is
indeed coated by oxide in a thickness of approximately 10 µm. The oxidation degree
increases with the laser power reflected by the pale blue color on the surface of the joints
shown in Figure 2. The oxide layer is divided into inner and outer layers as shown in
Figure 5(b1–b5). The thin inner layer is about 1 µm, enriched with an Al element, which
should be Al2O3, and the outside thicker oxide layer is mainly enriched with a Ti element,
which should be TiO2.
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of the oxide layer.

Oxidation of titanium during underwater welding is inevitable; however, reports on
the oxidation of underwater wet welding joints are scarce. Cai et al.’s study also found
oxide on the surface of a TC4 alloy after underwater wet laser welding, but a detailed
analysis was not conducted [21]. The laser passing through water reaches the surface of the
titanium alloy, melts the alloy and releases a large amount of heat at the same time. The
water decomposes into H2 and O2, and O2 dissolves into liquid titanium, producing an
oxide layer on the surface of the molten pool [27]. As the laser power increases, more heat
is generated at the interface of Ti-4Al-2V and water and the oxide film thickness increases,
as shown in Figure 5.



Materials 2024, 17, 1778 7 of 14

3.3. Phase Composition and Variant Selection

Figure 6a shows the XRD patterns of the FZ of the Ti-4Al-2V joints. The FZ in all three
joints, simultaneously contains α-Ti and β-Ti phases, but the content of the β-Ti phase
is extremely low. As the laser power increases, the width of the half-maximum of the α

phase increases, and the corresponding crystal plane of the 5 kW weld joint has a lower
diffraction angle. According to the Bragg equation, it can be inferred that its lattice constant
is larger, indicating that the lattice distortion of the α phase is severe under higher laser
power. As commonly understood, this is due to the insufficient diffusion of elements in
titanium alloys during high-speed cooling, resulting in excessive solid solution elements in
the α phase and the lattice distortion. In addition, the diffraction intensity of the β phase
decreases with increasing laser power, indicating a greater heat input leading to more
sufficient β → α transformation. Figure 6b shows the phase composition of the 3 kW FZ
joint using EBSD. The α-Ti and β-Ti content account for about 99.5% and 0.5%, respectively,
which is consistent with the XRD results.
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Figure 7 shows the Inverse pole figure (IPF) of the FZ and HAZ in the 3 kW joint, as
well as the grain boundary distribution in corresponding areas. As shown in Figure 7(a1),
the α phases show lath-like morphology with a small aspect ratio in the HAZ. In the
represented field of view, the overall distribution of the α phase with different orientations
is relatively uniform, but there are cluster features in specific areas. As shown by the red
line in Figure 7(a2), 40% of the α-phase interface is 60◦/<11–20>, far exceeding the random
theoretical value—18.2%—indicating that there is a clear variant selection during the α

phase precipitation, and Type-I clusters are mainly present [10].
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Figure 7. IPF and boundary distribution of FZ and HAZ in 3 kW joint: (a1) IPF figure of HAZ;
(a2) 60◦/<11–20> boundary distribution of HAZ; (b1) IPF diagram of FZ; (b2) 60◦/<11–20> boundary
distribution of FZ.

Compared with the HAZ, the FZ, as shown in Figure 7(b1), is composed of an α lath
with a larger ratio of length to width, and the size of the α variant cluster is significantly
larger, which is consistent with its high cooling rate. As shown by the red line in Figure 7(b2),
a 60◦/<11–20> type interface accounts for more than 47%, indicating that Type-I clusters
are also the main converge mode of FZ variants. The formation of Type-I clusters can
minimize the interface energy during variant precipitation, which has been observed in
our previous studies on SLM-formed and laser welding Ti-4Al-2V alloys. Similar clusters
have also been characterized in commercial pure titanium, Ti-6Al-4V, and other titanium
alloys [28–31].
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3.4. Formation and Propagation of Cracks

As shown in Figures 2 and 3, both 4 kW and 5 kW laser power resulted in penetrating
cracks in the FZ. Further characterization of the crack morphology is shown in Figure 8.
The SE2 image in Figure 8a shows that the crack penetrates the FZ in the 4 kW joint. It is
indicated that multiple cracks show transgranular features, passing through the original β
grain and breaking up the α laths, indicating that the cracks were generated and propagated
after the formation of the α phase. By characterizing the positions near and far away from
the penetrating crack, small cracks can be observed, as shown in Figure 8b,c. In Figure 8b,
there are multiple parallel small cracks near the penetrating crack, and their propagation
direction is from the oxide layer towards the interior of the matrix. In the middle of the
FZ, in addition to a small crack, a slender crack perpendicular to the penetrating crack and
parallel to the surface of the FZ can also be seen in Figure 8c.
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Figure 8. Morphology of cracks in the 4 kW joint: (a) the middle of the penetrating crack, (b) the
surface of the penetrating crack, (c) the surface away from the penetrating crack.

The formation and propagation of weld cracks can be drawn as follows: (1) once the
high-power laser is applied to the titanium alloy, a molten pool is formed, meanwhile,
welding heat acts on water producing O2, and O2 reacts with the molten pool to form
oxides; and (2) during the solidification process, the cooling rate is extremely high in
the underwater environment, which leads to large internal stress inside the FZ, and this
internal stress gradually accumulates during the L → β → α phase transformation. As
the internal stress gradually increases, cracks firstly appear in the loose oxide layer, which
extends towards the matrix. (3) After one of the cracks preferentially expands, the internal
stress is released, and other cracks stop expanding. Therefore, the depth of other primary
and secondary cracks, as shown in Figure 8, is much smaller than that of the penetrating
cracks. (4) In the center of the FZ, due to the contraction of the molten pool, internal stress
is directed towards the center of the molten pool, and cracks here preferentially propagate
parallel to the surface of the FZ.
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After the formation of cracks, the quality of the weld formation significantly decreases.
The mechanical properties of the weld will rapidly deteriorate, such as in the tensile prop-
erty of the 5 kW joint in Section 3.5, due to the formation of welding cracks. Furthermore,
when cracks propagate towards the matrix, not only does the weld formation deteriorate
further, but it will also lead to the complete disappearance of the weld’s tensile performance.

3.5. Tensile Property and Vickers Hardness

The room temperature tensile curves of different joints, as well as the BM, are shown in
Figure 9, and the corresponding rupture stress and fracture elongation are listed in Table 1.
It is important to point out that all of the samples avoided weld cracks. The deformation
capability of the three joints is deteriorated, and the strength of the 3 kW and 4 kW joints
equivalent compared with the BM. The 4 kW joint shows the best comprehensive perfor-
mance with a tensile strength of 604 MPa and fracture elongation of 7.14%, respectively.
The performance of the 3 kW joint is accepted, but the 5 kW joint shows obvious brittleness
without plasticity. The yielding stress is difficult to detect in the tensile curves, because
there is no obvious yield plateau and the curves are not smooth enough. However, different
joints exhibit similar tensile deformation behavior before fracture, according to the curves
shown in Figure 9.
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Table 1. The room temperature tensile properties of the 3 kW, 4 kW, and 5 kW joints, and the BM.

BM 3 kW Joint 4 kW Joint 5 kW Joint

Tensile strength, MPa 593 ± 3 583 ± 2 602 ± 2 220 ± 8

Fracture elongation, % 16.4 ± 2.2 7.7 ± 1.1 7.6 ± 0.6 0

Figure 10 shows the tensile fracture morphology of the BM and the three joints. In
the morphology of the BM, 3 kW and 4 kW joints, a typical ductile fracture occurs with
obvious ductile dimples. The fracture dimples of the 3 kW and 4 kW joints is smaller
and shallower compared with the BM, which is in line with the lower fracture elongation.
There are obvious tearing edges in the fracture surface of the 5 kW joint, which is a typical
brittle fracture.
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Figure 10. Tensile fracture morphology of BM and three joints: (a) BM, (b) 3 kW joint, (c) 4 kW joint,
(d) 5 kW joint.

When the welding quality is excellent, the strength of a titanium alloy weld joint is
usually slightly higher than that of the BM, but the elongation is lower [12,18]. In this study,
due to the influence of internal cracks, oxidation, and other defects in the weld, the strength
of the weld did not exceed that of the base material, and some welds experienced brittle
fractures, which is consistent with the microstructure and crack characterization results in
Sections 3.1–3.4

The micro-Vickers hardness curves of the 3 kW, 4 kW, and 5 kW joints are shown in
Figure 11. The hardness of the FZ and HAZ of the three joints is higher than 280 HV0.05
of the BM. The hardness of the 5 kW joint is the highest, mostly above 460 HV0.05, and
can reach up to 568 HV0.05. The hardness of the 3 kW joint is the lowest, mostly around
300 HV0.05, with the highest being 374 HV0.05. The micro-Vickers hardness is related
to the phase composition and compositional segregation in alloys. In the titanium weld
joints, the needle-like α phase formed in the fusion zone material during rapid cooling is
generally higher in hardness due to the presence of more solid solution elements inside.
This is consistent with our previous research on argon arc welding and laser welding of the
same alloy [12].
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4. Conclusions

In this study, underwater wet laser welding of Ti-4Al-2V alloy was conducted using
3 kW, 4 kW, and 5 kW laser power at a depth of 4 mm, and the microstructure and properties
were characterized. The main conclusions are as follows:

(1) In all the three joints, typical FZ and HAZ can be distinguished. The 3 kW joint has
small cracks, but penetrating cracks can be seen in both the 4 kW and 5 kW joints. The
cracks are located in the FZ, and their propagation direction is basically perpendicular
to the surface of the FZ. The FZ is dominated by elongated α martensite, and the HAZ
is full of lath α phase.

(2) The oxide layer can be detected on the surface of the FZ in all three joints, and its
thickness gradually decreases from the middle of the FZ to its edge. The oxide consists
of two layers, namely, an outer layer of TiO2 with a 10 µm thickness, and an inner
layer of Al2O3 with a 1 µm thickness. Compared with the FZ, the surface of the HAZ
and the BM have almost no oxide layer.

(3) Because of the internal stress accumulated from solidification and the solid state
phase transformation during welding, a crack begins to generate and propagate
perpendicular to the direction of the internal stress. A penetrating crack formed
combining with small cracks.

(4) The tensile strength of the 3 kW and 4 kW joints is comparable to that of the BM,
which is about 600 MPa, while the strength of the 5 kW joint significantly decreases to
228 MPa. The fracture elongation of the three joints is all significantly lower than that
of the BM. Brittle fracture occurred in the 5 kW joint, which is related to the excessive
proportion of internal cracks in the joint. The micro-Vickers hardness of the FZ in all
three joints is higher than that of the BM, and significantly increases with the increase
in laser power.
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