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Abstract: Vacuum induction melting is a more energy-efficient process for the preparation of a titanium
alloy with good homogeneity and low cost. But the crucial problem for this technology is in developing a
crucible refractory with high stability. In the present work, a novel (Ca,Sr,Ba)ZrO3 crucible was prepared
by slip casting and its performance in melting NiTi alloy was studied. The results showed that a single
solid solution was formed with a homogeneous distribution of metal elements after sintering at 1500 ◦C.
It was found that the total content of oxygen and nitrogen remaining in the TiNi alloy after melting in the
(Ca,Sr,Ba)ZrO3 crucible was 0.0173 wt.%, which fulfills the ASTM standard on biomedical TiNi alloys.
The good resistance of the (Ca,Sr,Ba)ZrO3 crucible to molten NiTi has a relationship with the sluggish
diffusion effect of high-entropy ceramics. This study provides insights into the process of designing
highly suitable crucible material for melting a NiTi alloy.
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1. Introduction

As a shape memory alloy (SMA), a NiTi alloy with good functional properties and
high mechanical strength has been widely applied in aerospace, robotics and biomedical
fields [1,2]. The shape-memory effect of the alloys is obtained by the diffusionless solid
phase transition between austenitic and martensitic structures [3]. The martensite start
temperature of NiTi is correspondingly reduced with the increase in the atom ratio of
Ni/Ti [3,4]; for example, the phase transition temperature drops by 10 K for every 0.1 atomic
percent increases in Ni. Therefore, the content of the impurity elements must be strictly
controlled in the melting process. Compared to vacuum-consumable arc re-melting (VAR),
the molten NiTi alloy with higher superheat and fluidity can be obtained by vacuum
induction melting (VIM) without disturbance from the water-cooled copper crucible. VIM
is an energy-saving method for producing NiTi alloy with good composition uniformity.

Due to their high chemical activity, titanium alloys can easily react with crucible
materials at high temperatures. Nitrides [5], carbides [6], and oxide crucibles [7–10] have
been studied for crucible materials. Kartavykh et al. reported that the BN crucible could
react with the titanium melt to form Ti borides. The thickness of the reaction layer was
about 250 µm [5]. There was also an obvious reaction layer between the graphite crucible
and titanium alloy after melting [6]. Based on the thermodynamic calculation, Kostov et al.
found that Al2O3, ZrO2, CaO, and Y2O3 could be used as crucible materials for melting
titanium alloys [11]. However, an interaction zone between Al2O3 and titanium alloy was
observed [10]. ZrO2−x and α-Ti(O) were detected after melting with the ZrO2 crucible [12].
The thermal shock resistance of the Y2O3 crucible was poor [13]. The application of the
CaO crucible was affected by its hygroscopic nature [8].

Alkaline earth zirconates with high chemical stability belong to the perovskite struc-
ture. Song et al. reported that the thickness of the interface between the CaZrO3 crucible
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and Ti-Cu alloy was about 740 µm [14]. Meng et al. investigated the corrosion resistance of
the Y2O3-doped SrZrO3 crucible for melting NiTi alloy. The experiment results showed
that no obvious reaction layer between the crucible and the NiTi alloy was found [15]. The
thickness of the reaction layer between the BaZrO3 crucible and the Ni2Ti alloy was about
270 µm [16]. To utilize vacuum induction melting for titanium alloys, crucible materials
with high stability and no reaction with titanium alloys at high temperatures are required.

The view of “high-entropy ceramics” was developed from the concept of a high-
entropy alloy. In the last ten years, there has been growing attention on high-entropy
ceramics because of their controlled coefficient of thermal expansion, dielectric constant,
and other properties [17]. Compared to single-component materials, high-entropy ceramics
have superior stability and corrosion resistance due to the high-entropy, lattice distortion,
sluggish diffusion, and cocktail effects. According to the corrosion resistance of zirconates, a
novel entropy stable (Ca,Sr,Ba)ZrO3 ceramic was designed and obtained by our group [18].
However, it has not yet been formed into a crucible and studied under VIM.

Slip casting is a technique that uses the water absorption of gypsum molds to inject
the prepared slurry into the mold [19–21]. After the moisture has been absorbed, it forms a
green body with a certain strength. The advantages of this method are its low cost and easy
preparation of large-sized and complex-shaped products.

Therefore, CaCO3, SrCO3, BaCO3, and ZrO2 powders were used as raw materials to
prepare (Ca,Sr,Ba)ZrO3 powder through the solid state reaction. The effect of different solid
contents in the slurry for the (Ca,Sr,Ba)ZrO3 crucible was also investigated. Subsequently,
the interface between the NiTi alloy and the crucible was examined after vacuum induction
melting. The content of impurities in the NiTi alloy after melting was analyzed and the
feasibility of the (Ca,Sr,Ba)ZrO3 crucible for melting the NiTi alloy was discussed.

2. Materials and Methods
2.1. Preparation of the (Ca,Sr,Ba)ZrO3 Crucible

CaCO3, SrCO3, BaCO3 (99.9% purity, 1–2 µm, HWRK Chem. Co., Ltd., Beijing, China),
and ZrO2 (99.99% purity, 1–3 µm, HWRK Chem. Co., Ltd., Beijing, China) powders were
mixed in the molar ratio of 1:1:1:3. After milling for 8 h with ZrO2 balls, the slurry was dried
at 50 ◦C. Then, the mixed powders were heated at 1500 ◦C for 4 h to synthesize (Ca,Sr,Ba)ZrO3.
For the preparation of the slurry used in slip casting, the obtained (Ca,Sr,Ba)ZrO3 powder was
mixed with distilled water and gum Arabic. The content of the powder and gum Arabic was
76–80 wt.% and 1.2–1.0 wt.%, respectively. The slurry was defoamed in a vacuum defoamer
for 15 min. In slip casting, the remaining slurry was poured out when the wall thickness of
the crucible was about 3~5 mm. The dried green body was obtained at 25 ◦C for 48 h. Finally,
the (Ca,Sr,Ba)ZrO3 crucible was produced by sintering at 1600 ◦C for 6 h. The flowchart of the
preparation of crucibles is shown in Figure 1.
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2.2. Melting Experiment

The NiTi alloy was melted using the (Ca,Sr,Ba)ZrO3 crucible in a vacuum induction
furnace (VIF10-17, SGM, Luoyang, China). The vacuum induction furnace was purged
twice with high-purity argon gas when the vacuum degree dropped to below 10−2 Pa. The
melting experiment was carried out when the argon gas backfilled to 5000 Pa. The melting
temperature was increased from 30 ◦C to 1200 ◦C in 30 min, followed by an increase to
1500 ◦C in 20 min. Finally, the crucible was cooled to room temperature in the furnace after
being held at 1500 ◦C for 15 min.

2.3. Analysis Method

The phase composition of the (Ca,Sr,Ba)ZrO3 powders was characterized by X-ray
diffraction analysis (XRD, PANalytical EMPYRAN, Malvern Panalytical Ltd., Malvern,
UK). The microstructure and element distribution of the sintered samples was analyzed by
scanning electron microscopy (FESEM, JSEM-6700F, JEOL, Tokyo, Japen). The laser particle
size analyzer (Mastersizer 3000, Malvern, UK) was used for measuring the particle size of
the milled powder. The viscosity of the (Ca,Sr,Ba)ZrO3 slurry was tested using a digital vis-
cometer (Shanghai Pingxuan Scientific Instrument Co., Ltd., Shanghai, China). The density
of the (Ca,Sr,Ba)ZrO3 crucible was obtained using the Archimedes method. The polished
interface between the NiTi alloy and the (Ca,Sr,Ba)ZrO3 crucible were characterized by
SEM. The content of oxygen and nitrogen in the NiTi alloy was tested via a nitrogen-oxygen
analyzer (EMGA-830, HORIBA, Kyoto, Japan). The other chemical compositions were
detected using the Inductive Coupled Plasma Emission Spectrometer (Agilent 5110, Santa
Clara, CA, USA).

3. Results and Discussion

The XRD patterns of the (Ca,Sr,Ba)ZrO3 powders synthesized at different temperatures
are shown in Figure 2. It can be seen that the main phase of the samples synthesized at
1350 ◦C and 1400 ◦C was (Ca,Sr,Ba)ZrO3. However, there were also some small peaks of
CaZrO3 in the samples. With the increase in the sintering temperature, only the peaks
of (Ca,Sr,Ba)ZrO3 could be observed at 1450 ◦C, indicating that a single solid solution
(Ca,Sr,Ba)ZrO3 with tetragonal perovskite structure had formed. The preparation tempera-
ture of (Ca,Sr,Ba)ZrO3 was at least 1450 ◦C.
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Figure 2. XRD patterns of (Ca,Sr,Ba)ZrO3 prepared at different sintering temperatures.

Figure 3 displays SEM images and corresponding EDS mappings of the samples
synthesized at different temperatures. As shown in these images, the distribution of Ca, Sr
and Ba cations became gradually homogeneous at the micrometer level with the increase
in sintering temperature. For the (Ca,Sr,Ba)ZrO3 powder obtained at 1500 ◦C (Figure 3b),
Ca, Sr, and Ba was distributed homogeneously and randomly without segregation at the
micrometer level, which was an indication that a single-phase and homogenous solid
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solution (Ca,Sr,Ba)ZrO3 had been formed at micrometer level. Therefore, 1500 ◦C was
selected as the preparation temperature of the (Ca,Sr,Ba)ZrO3.
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Figure 3. SEM micrographs of the powder and the corresponding EDS mappings of (Ca,Sr,Ba)ZrO3

sintered at (a) 1450 ◦C and (b) 1500 ◦C.

To attain a high density and favorable mechanical properties of the crucible, it is
crucial to maintain a low viscosity of the slurry during slip casting [22]. The property of
the slurry is influenced by several factors, such as the type of dispersant, powder size,
and solid content. The polymer chains of gum Arabic play an electrostatic stabilizing role
by adsorbing on to the surface of the powder, which reduces the viscosity of slurry and
prevents particle agglomeration. It is also important to note that the size of the powder has
a significant effect on slip casting. The SEM micrographs of the milled powder are shown
in Figure 4a–c. It can be seen that the milled powders had an irregular shape.
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Table 1 shows the average particle size of the (Ca,Sr,Ba)ZrO3 powders after being
milled for different amounts of time. With the increase in the milling time, the average
particle sizes of the powders first decreased and then increased. The average particle
sizes of the powders milled for 6 h, 8 h, and 10 h were 1.535 µm, 1.521 µm, and 1.652 µm,
respectively. The D10 and D50 of the powder milled for 8 h were 0.650 µm and 2.054 µm,
respectively. The bigger average particle size of the powder milled for 10 h may be related
to the larger surface energy of the smaller particles, which lead to the agglomeration. The
settling velocity V of particles in suspension was calculated by Stokes’ formula equation:

V =
2
9

r2
(

ρp − ρw

η

)
g (1)

where r is the average particle radius, ρp is particle density, ρw is the density of the suspen-
sion, g is gravitational acceleration, and η is the viscosity of slurry. According to Equation
(1) [23], a smaller average particle size could reduce the settling velocity of (Ca,Sr,Ba)ZrO3
particles and promote the stable dispersion of (Ca,Sr,Ba)ZrO3 particles. Smaller particles
also possessed a larger surface area, resulting in a greater sintering drive force during the
subsequent sintering process [24]. Therefore, the powder milled for 8 h was used to prepare
the (Ca,Sr,Ba)ZrO3 slurry for slip casting.
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Table 1. The powder diameter was measured at various milling times.

Grinding Time (h) Average Particle Size (µm) D10 (µm) D50 (µm)

6 1.535 0.658 2.089
8 1.521 0.650 2.054
10 1.621 0.696 2.399

The bond strength of the green body after slip casting is primarily influenced by the
solid content of the slurry. If the solid content is too low, the green body may crack because
the binding force is insufficient to resist shrinkage stress. Conversely, if the solid content
is too high, the low permeability of the slurry may lead to a large humidity gradient in
the thickness direction of the green body. This hinders the ion exchange of the slurry and
gypsum mold, which produce different shrinkage stresses to result in the crack of the green
body. The solid and gum Arabic contents in the different formulations are shown in Table 2.
From the table, there were three different formulations with solid contents of the slurry
of 76 wt.%, 78 wt.%, and 80 wt.%. The corresponding samples were named S1, S2, and
S3, respectively. Figure 5a illustrates the relationship between the solid content and the
viscosity of the slurry. The viscosity of the slurry decreased with the shear rate increase,
demonstrating a non-Newtonian shear-thinning property, as shown in Figure 5a [20]. It
can be seen that the viscosity of S3 is higher than S1 and S2. The viscosity of the slurry
increased slowly as the solid content increased. A possible explanation for this was that
the number of gum Arabic molecules per powder particle decreased as the solid content
increased when the amount of dispersant was certain in the slurry.

Table 2. The solid and gum Arabic content in the different formulations.

Sample Solid Content of Slurry (wt.%) Gum Arabic Content (wt.%)

S1 76 1.2
S2 78 1.1
S3 80 1.0
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The double electron shell structure among the particles weakened, resulting in a
weakened spatial steric effect and a gradual increase in the viscosity of the slurry. In
addition, the increase in the viscosity of the slurry may be related to the distance between
the particles in the slurry shortening and the organic molecules adsorbed on their surface
overlapping [25]. The fluidity of the slurry with the higher solid content was too low to
cast. The slurry with the low solid content had good flowability, but the adsorption rate of
the gypsum mold was faster during slip casting. This resulted in an uneven surface of the
green body of the (Ca,Sr,Ba)ZrO3 crucible. Generally, slip casting can be carried out when
the viscosity of the slurry is below 1000 mpa·s. When the glass rod is lifted out of the slurry,
continuous filaments will be formed when the slurry flows down, which is conducive to
the formation of the green body on the inner wall of the gypsum.
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Figure 5b shows the relative density and apparent porosity curves of the crucibles
with different formulations. The relative density of the (Ca,Sr,Ba)ZrO3 crucibles increased
with the increase in the solid content. The maximum relative density was 92.5% for S3
with the solid content of the slurry of 80 wt.%. Meanwhile, the corresponding apparent
porosity of the crucibles decreased. A higher density of the crucible can effectively reduce
the erosion of the titanium alloy’s liquid on the surface of the crucible [26]. Therefore,
the (Ca,Sr,Ba)ZrO3 slurry was prepared with 1.0 wt.% gum Arabic solution and 80 wt.%
(Ca,Sr,Ba)ZrO3 powder in this study.

As shown in Figure 6a,b, the height and external diameter of the sintered crucible
were about 31.47 mm and 33.59 mm, respectively. According to these images, the outer
surface of the crucible was smooth. The inner surface of the crucible was free of obvious
defects, such as pores and pinholes. The macroscopic surface of the crucible after melting
is displayed in Figure 6c,d. It can bee seen that there were no obvious cracks in the crucible
after melting in a vacuum induction furnace, indicating that the crucible had good thermal
shock resistance. After cooling to room temperature, the surface of the titanium alloy was
flat and pure, indicating that the (Ca,Sr,Ba)ZrO3 crucible had good corrosion resistance for
the melting of the titanium alloy [27].
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Figure 6. External surface of the crucible after sintering (a,b), macrograph of the NiTi alloy melted in
the (Ca,Sr,Ba)ZrO3 crucible (c,d).

Figure 7 shows the SEM micrographs and relevant mapping results of the interface
between the NiTi alloy and the (Ca,Sr,Ba)ZrO3 crucible after melting in VIM. It can be seen
that the interface between the NiTi and (Ca,Sr,Ba)ZrO3 was very clear. If there were some
small pores on the surface of the crucible, then the infiltration of the melted titanium alloy
may have happened due to the capillary force caused by the pores [26]. In addition, the
presence of microcracks in the crucible also promoted the penetration of the alloy melt into
the ceramic. From the distribution of elements, Ca, Sr, and Zr elements were concentrated
on the side of the crucible. There was no sign of diffusion into the NiTi alloy side. It is
worth noting that Ba was detected on the side of the NiTi alloy, which was ascribed to the
precision limit of EDS line scanning. EDS mapping failed to distinguish between Ba and Ti.
As the matter of fact, the content of Ba in the NiTi alloy was almost zero, according to the
EDS results of points A and B in Table 3. Table 3 shows the corresponding EDS composition
of points A–D in Figure 8a. The atomic ratio of Ni and Ti at points A and B in the alloy
side was close to 1:1, which benefitted the shape memory property of the NiTi alloy [3,28].
Meanwhile, the result of points C and D in the (Ca,Sr,Ba)ZrO3 side also basically matched
the chemical composition of the crucible.
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Table 3. EDS results of points A–D in Figure 8a.

Point Ca (at.%) Sr
(at.%)

Ba
(at.%)

Zr
(at.%)

O
(at.%)

Ti
(at.%)

Ni
(at.%) Possible Phase

A - - - - - 52.43 47.57 NiTi
B - - - - - 50.91 49.09 NiTi
C 6.80 6.65 7.23 23.54 55.77 - - (Ca,Sr,Ba)ZrO3
D 6.64 6.91 7.83 23.67 54.95 - - (Ca,Sr,Ba)ZrO3
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Figure 8a shows the SEM micrographs and corresponding (A~D) point scanning
locations. Based on the line scanning and point scanning results of the interface in Figure 8a,
the alloy side was on the left side and the crucible was on the right side. The consequence of
the EDS line scanning from the NiTi alloy to the crucible is shown in Figure 8b. There was
no noticeable change in the content of Ca, Sr, Zr, and O in the NiTi alloy. Some variations in
the curves of each element in the (Ca,Sr,Ba)ZrO3 side were attributed to the penetration
of the melted NiTi alloy. From the alloy side to the crucible side, the elements underwent
a sharp change at the interface between the NiTi alloy and (Ca,Sr,Ba)ZrO3 crucible. The
elements in the alloy side decreased rapidly, while the corresponding elements on the
crucible side increased slowly. According to the range of the change in the elements, the
thickness of the interface between the NiTi alloy and the (Ca,Sr,Ba)ZrO3 crucible was about
50 µm.

Table 4 displays the content of impurities in NiTi alloys after VIM with the (Ca,Sr,Ba)ZrO3
crucible and other crucibles from the literature [26,29]. After VIM with the (Ca,Sr,Ba)ZrO3
crucible, the total content of oxygen and nitrogen was 0.0173 wt.%, which was lower than
the corresponding content of the BaZrO3 crucible. The values also met with the ASTM
F2063-05 standard [29] below 0.05 wt.%. Furthermore, because of the low content of Ca,
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Sr, and Ba in the alloy, it can be deduced that there was no obvious reaction between the
NiTi alloy and the (Ca,Sr,Ba)ZrO3 crucible during VIM. It should be noted that the alloy
contained a relatively high amount of Zr compared to other elements, which may be due to
the substitution of Zr into the Ti lattice in the solid solution of the titanium-rich binary alloy.

Table 4. The content of the impurities in the NiTi alloy after vacuum induction melting.

Crucible
The Content of Elements [wt.%]

O N Ca Sr Ba Zr

(Ca,Sr,Ba)ZrO3 0.0170 0.0003 0.0018 0.00006 0.0001 0.0785
BaZrO3 [29] 0.0370 0.00014 - - 0.00007 0.033

ZrO2 [26] 1.046 - - - - 0.007
Al2O3 [26] 1.600 - - - - -

As displayed in Figure 9a, there was no new phase on the surface of the (Ca,Sr,Ba)ZrO3
crucible after melting the NiTi alloy. It was revealed that (Ca,Sr,Ba)ZrO3 is a promising
crucible material for the melting of titanium alloys. Figure 9b illustrates the dependence of
Gibbs free energy on the temperature of TiO2, TiO, CaZrO3, SrZrO3, and BaZrO3 obtained
using HSC software (version 6.0). From Figure 9b, the Gibbs free energy of CaZrO3, SrZrO3,
and BaZrO3 is lower than that of titanium oxides (TiO2 and TiO). From the perspective
of mixed entropy, high-entropy (Ca,Sr,Ba)ZrO3 ceramics should have a lower Gibbs free
energy than their individual components, and this suggests that the (Ca,Sr,Ba)ZrO3 crucible
exhibits good high-temperature chemical stability and does not react with the alloy melt.
Physical erosion may have appeared due to the challenges of interface reaction [12]. It
occurs when the crucible is melted by the molten metal, causing the melt to enter the inside
of the crucible through capillary forces. This results in the particles in the outer layer of the
(Ca,Sr,Ba)ZrO3 crucible dissolving and coming out, which promotes the further penetration
of the melt into the crucible.
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The interactional schematic diagram between the NiTi alloy melt and the (Ca,Sr,Ba)ZrO3
crucible is shown in Figure 10. The touch position of the (Ca,Sr,Ba)ZrO3 crucible softened
when it came into contact with the molten NiTi alloy at 1500 ◦C, resulting in the gradual
dissolution of the crucible grains into the molten NiTi. The ions released, such as Zr4+

and O2−, diffused in the NiTi alloy melt. The sluggish diffusion effect [30] in the high-
entropy (Ca,Sr,Ba)ZrO3 crucible effectively prevents the further diffusion of the elements
on both sides of the interface layer. This is because the elements of Ca, Sr, and Ba in the
(Ca,Sr,Ba)ZrO3 structure occupied the same lattice position uniformly. And the atoms at
adjacent points in each lattice position were different. As a result, the local energy of each
atom occupying the lattice point position was also different. In the (Ca,Sr,Ba)ZrO3, when a
metal atom diffused to a low energy position, it was likely to become trapped and unable
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to escape. Conversely, if a metal atom diffused to a high-energy position, it had a higher
chance of returning to its original position. These factors contribute to a slower diffusion
of the metal element into the alloy melt. When atoms in the alloy melt attempt to diffuse
into the (Ca,Sr,Ba)ZrO3 structure, the same situation occurs. The combination of the above
analysis suggests that the (Ca,Sr,Ba)ZrO3 crucible had significantly better resistance to NiTi
alloy melt erosion.
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4. Conclusions

In the present work, a (Ca,Sr,Ba)ZrO3 crucible was designed and prepared by slip
casting. The feasibility of the (Ca,Sr,Ba)ZrO3 crucible for melting the NiTi alloy was
discussed. The following conclusions have been summarized:

(1) X-ray diffraction and scanning electron microscopy analyses collectively indicated
that a single solid solution was formed with a homogeneous distribution of metal
elements after sintering at 1500 ◦C.

(2) There was no new phase on the surface of the (Ca,Sr,Ba)ZrO3 crucible after melting
the NiTi alloy, and the interface between NiTi and (Ca,Sr,Ba)ZrO3 was very clear.
Most importantly, the total content of oxygen and nitrogen elements was 0.0173 wt.%
after vacuum induction melting, which was beneficial for the performance of the
titanium alloy.

(3) The good resistance of the (Ca,Sr,Ba)ZrO3 crucible to molten NiTi has a relationship
with the sluggish diffusion effect of high-entropy ceramics. The combination of
the properties indicates that (Ca,Sr,Ba)ZrO3 is a potential crucible material for high-
reactivity titanium alloys through vacuum induction melting.
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