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Abstract: Concrete-filled double steel tubes (CFDSTs) are a load-bearing structure of composite
materials. By combining concrete and steel pipes in a nested structure, the performance of the
column will be greatly improved. The performance of CFDSTs is closely related to their design.
However, existing codes for CFDST design often focus on how to verify the reliability of a design,
but specific design parameters cannot be directly provided. As a machine learning technique that
can simultaneously learn multiple related tasks, multi-task learning (MTL) has great potential in the
structural design of CFDSTs. Based on 227 uniaxial compression cases of CFDSTs collected from
the literature, this paper utilized three multi-task models (multi-task Lasso, VSTG, and MLS-SVR)
separately to provide multiple parameters for CFDST design. To evaluate the accuracy of models, four
statistical indicators were adopted (R2, RMSE, RRMSE, and ρ). The experimental results indicated
that there was a non-linear relationship among the parameters of CFDSTs. Nevertheless, MLS-SVR
was still able to provide an accurate set of design parameters. The coefficient matrices of two linear
models, multi-task Lasso and VSTG, revealed the potential connection among CFDST parameters.
The latent-task matrix V in VSTG divided the prediction tasks of inner tube diameter, thickness,
strength, and concrete strength into three groups. In addition, the limitations of this study and future
work are also summarized. This paper provides new ideas for the design of CFDSTs and the study of
related codes.

Keywords: axial compression capacity; circular concrete-filled double-skin steel tube column (CFDST);
CFDST design; load-bearing capacity; multi-task learning; multi-task Lasso; variable selection and
task grouping (VSTG); multi-output LS-SVR (MLS-SVR)

1. Introduction

Incorporating metal components into concrete is a common approach to reinforce con-
crete columns [1], and concrete-filled double steel tubes (CFDSTs) have gained considerable
traction in recent years. CFDSTs are a load-bearing structure produced by filling con-
crete between two steel tubes placed concentrically. The unique structure enables CFDST
to achieve superior load-bearing capacity while being lighter in weight. Thus, CFDST
is widely used in large-scale structures such as super high-rise buildings and highway
bridges [2].

Load-bearing capacity [3,4], torsional behavior [2,5], bending resistance [6,7], blast
resistance [8–10], and fire resistance [11,12] were assessed in previous studies, wherein
CFDSTs with different designs (material combination or structural design) were subjected
to various property trials. The experimental results showed that the design of CFDSTs has
a significant impact on its properties.

As the most fundamental property of CFDSTs, the load-bearing capacity always
needs to be considered. In terms of CFDST design, emphasizing on load-bearing capacity,
although some international design codes already exist, such as Eurocode-4 (EC4) [13],
ACI [14], and AISC [15], their reliability still remains questionable [16]. Lama et al. [17]
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used a non-linear finite element technique to analyze the axial compression capacity of
CFDSTs made from a novel material combination. Comparing the above codes with
the numerical results, it was found that EC4 and AISC were not suitable for this type
of CFDSTs. Hassanein et al. [18] mentioned that the existing design codes of CFDSTs
do not take the confinement effect of tubes into account. This is the reason why most
models are too conservative in predicting the load-bearing capacity of CFDSTs. To avoid
various constraints that make theoretical approaches more complex, machine learning
techniques have been adopted, and they have achieved an accuracy far higher than EC4,
ACI, and AISC [16]. In other studies, e.g., those of Tran and Kim [19], Wang et al. [4], and
Chandramouli et al. [20], the prediction accuracy of the above models (EC4, ACI, and AISC)
was also found to be inferior to the recently proposed methods.

However, the core idea of current studies on CFDST design is still to find a mapping
from the design parameters to a certain property (e.g., load-bearing capacity) and then to
find whether the design is reliable and can be verified via the prediction of this property.
In a nutshell, the existing methods are more concerned about “how to verify whether a
design is reliable” rather than “how to provide a reliable design directly”. Certainly, this is
understandable, as the second issue is a more difficult problem involving multiple outputs.

Figure 1 shows the structure of a conventional CFDST. The main structural parameters
include the diameters (D) and thicknesses (t) of the steel tubes, as well as column length
(H). Among them, the length of the column is often constant in a specific project. Therefore,
the design is usually focused on dimensions and properties of steel tubes, as well as
the mechanical properties of concrete. Providing diverse guidance for CFDST design is
simultaneously a challenge for the aforementioned methods.
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As a branch of machine learning technique, multi-task learning (MTL) has been widely
used in fields such as stellar spectra parameterization [21], disease cognitive scores [22], and
short-term wind speed prediction [23]. By summarizing the potential correlations of multi-
ple tasks, MTL has shown good performance in solving various multi-output problems.
Therefore, using the MTL technique to guide the structural design of CFDSTs is a promising
topic. In addition, using the non-linear finite element technique to verify the reliability of
CFDST design is often complex. For slender structures and thin-walled structures, the accu-
racy requirements for modeling and solving vary at different scales [24,25]. The calculation
strategy often determines whether the model can quickly converge and accurately predict
with limited computational costs on an ordinary computer [26], especially for composite
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structures [27] like CFDSTs. With the guidance from MTL, the unnecessary trials and errors
can be avoided.

From the perspective of load-bearing capacity, this research attempted to utilize three
distinct MTL models for the design of CFDSTs. Based on 227 CFDST cases with circular
cross-sections collected from previous literature, the MTL models were trained to provide a
reliable set of design parameters. These parameters can serve as references to achieve the
desired load-bearing performance. Furthermore, several statistical indicators were used to
evaluate the reliability of the provided parameters.

The main content of this paper includes the following sections: Section 2 mainly
introduces the models used and explains the model development process; Section 3 presents
the hyper-parameter settings and experimental results; Section 4 discusses the findings
from the results and lists the limitations of the experiment, as well as discussing future
work; Section 5 summarizes the content and significance of this study.

2. Materials and Methods
2.1. Multi-Task Learning Models

In the supervised learning technique, a conventional model can only learn one task
during the training phase. For complex problems, they are usually decomposed into several
simple problems and then solved separately using single task learning (STL) models. Multi-
task learning (MTL) is another kind of supervised learning technique that can achieve
inductive transfer among multiple tasks. The information-sharing mechanism enables
MTL to update the parameters of all tasks in a single data traversal. More importantly, this
mechanism can enhance the generalization ability of each task [28].

The design guidance for CFDST requires a model to provide multiple parameters
simultaneously. These output parameters are highly correlated, and each of them can
correspond to a task in MTL. This characteristic leads to the compatibility between CFDST
design and the MTL technique. This section summarizes the three MTL methods used in
this study.

2.1.1. Multi-Task Lasso

Lasso regression is a classic linear regression model proposed by Tibshirani [29]. By
introducing the L1 norm into the loss function of least squares regression, Lasso regression
achieved a better generalization ability than conventional linear regression. The loss
function of basic Lasso is given as follows:

min
W

1
2n

∥Y − XW∥2
2 + λ∥W∥1 (1)

where Y is the n-dimensional output vector; X is the matrix of input features; W is the
coefficient vector of the linear model; ∥·∥1 is the L1 norm of the vector; ∥·∥2 is the L2 norm
of the vector; and λ is the adjustment coefficient.

As the L1 regularization term ∥W∥1 is introduced, sparsity constraint is imposed on
the coefficient vector; thereby, the coefficients of unimportant input features will be set to 0.
This characteristic also allows Lasso to be widely used in feature selection.

Multi-task Lasso is an extended version of Lasso. It was presented by Obozinski
et al. [30] in the problem of multi-task feature selection. Multi-task Lasso assumes that
multiple similar tasks have correlated feature selection. Introducing the L2,1 norm to replace
the L1 norm in Lasso, this operation leads to information sharing among different tasks
during model iteration. The loss function of multi-task Lasso is given as follows:

min
W

1
2n

∥Y − XW∥2
Fro + λ∥W∥2,1 (2)
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where vectors Y, X, and W become matrix form; ∥·∥Fro is the Frobenius norm of matrix; and
∥·∥2,1 is the L2,1 norm of matrix. The mechanism of the L2,1 norm in MTL is detailed in the
work of Liu et al. [31].

2.1.2. VSTG

Variable selection and task grouping (VSTG) is another MTL model developed based
on linear regression [32]. In VSTG, there are two fundamental theories that need to be
understood: low-rank hypothesis and structure approach. As prior knowledge, the low
rank hypothesis assumes that the information required for multiple similar tasks is always
redundant. For example, if two tasks are more related, their selection of input features may
be more similar. Therefore, when all tasks iterate simultaneously, the matrix composed of
hyper-parameters must be low rank. In MTL, low-rank constraints can encourage models
to develop towards low-rank structures. The structure approach means the association
between multiple tasks can be represented by a certain structure. Group structure is
the most commonly used type, and it is also adopted by VSTG. In VSTG, similar tasks
are considered to belong to the same group. Tasks within the same group share more
information during the model development phase.

VSTG decomposes the coefficient matrix, W, into two matrices, U and V. Moreover,
latent bases are introduced for learning and describing the overlapping structures among
different tasks. The matrix decomposition is shown in Figure 2, where the dark cells
represent non-zero values, and light cells represent zero values.
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The matrix U is called the variable-latent matrix, and it records the principal com-
ponents of input features after the dimensionality reduction operation. The matrix V is
called the latent-task matrix, and it records the group structure of tasks. For example, the
column vectors v1 and v2 are similar in Figure 2, indicating that Task 1 and Task 2 are highly
correlated. Thus, these two tasks should belong to the same group. In the training phase,
two matrices U and V are updated via ADMM (alternating direction method of multipliers).
The loss function of VSTG is given as follows:

min
U,V

∑T
i=1

1
2Ni

∥∥∥→yi − XiU
→
vi

∥∥∥2

2
s.t ∥U∥1 ≤ φ1, ∥U∥1, ∞ ≤ φ2,

∑T
i=1

(∥∥∥→vi

∥∥∥sp

k

)2
≤ θ

(3)

where
→
vi is the i-th column vector in matrix V; φ1, φ2, and θ are the parameters of low-rank

constraints; ∥·∥1,∞ is the L1,∞ norm; and ∥·∥sp
k represents the k-support norm.
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The constraints in Equation (3) can also exist in the form of regularization terms. Thus,
the problem can be transformed into a regularized objective function, as follows:

∑T
i=1

1
2Ni

∥∥∥→yi − XiU
→
vi

∥∥∥2

2
+ λ1∥U∥1 + λ2∥U∥1,∞ + µ∑T

i=1

(∥∥∥→vi

∥∥∥sp

k

)2
(4)

where λ1, λ2, and µ are regularization parameters.

2.1.3. MLS-SVR

SVR (support vector regression) is a concise and high-performance regression
model [33,34]. With the maximum margin mechanism, SVR aims to find the best fitting
position for linear models in the feature space. The minority vectors that determine the
position of margins are called support vectors. Although SVR uses linear models for regres-
sion, it can also be applied to some complex nonlinear problems by adopting soft margin
and kernel methods [35–39].

MLS-SVR (multi-output least-squares SVR) is an MTL method developed based on
SVR [40]. Unlike the idea of matrix decomposition in VSTG, MLS-SVR believes that the
coefficient vectors of different tasks can evolve from an initial coefficient vector. Rewriting a
coefficient vector

→
wp into

→
wo +

→
up, the MTL version SVR is dedicated to learning the initial

vector
→
wo and evolved component

→
up from the dataset. Figure 3 shows the illustration of

MLS-SVR’s intuition.
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In MLS-SVR, the traditional SVR optimization problem has been rewritten into a
matrix version, as follows:

min→
wo∈Rp ,Λ∈Rp ,

→
b ∈Rm

1
2
→
w

T
o
→
wo +

1
2

λ
m trace(ΛTΛ) + β 1

2 trace(ΘTΘ)

s.t. Y = ΩTW + repmat(
→
b

T
, N, 1) + Θ

(5)

where
→
wo represents the initial coefficient vector; W is the coefficient matrix, wherein

elements are
→
wp; Λ is a matrix composed of

→
up; Θ denotes a matrix composed of slack

variables from each task; Ω is a matrix used to map input features to higher dimensional
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space;
→
b is the bias vector; p and m are the dimensions of inputs and outputs, respectively;

N is the number of samples in training set; and λ and β are regularization parameters.

2.2. Database

The database used in this study comprises 227 instances of circular cross-section
CFDSTs subjected to uniaxial compression [41–60]. These tests were conducted using
uniaxial compression testing machines, with sensors installed on the specimens. The data
generated from the experiments were automatically collected by the computer.

Table 1 summarizes the 9 parameters required for CFDST design in the database.
These parameters are related to the strength of materials (concrete and steel tubes), tube
dimensions, and CFDST load-bearing capacity. Additionally, statistical descriptions of the
database are given in Table 2. The column length ranging from 230 to 3502 mm included
CFDST cases from the laboratory scale to the site scale. In Figure 4, the scatter plot matrix of
the database is displayed, and the correlation coefficients between variables are calculated.
There, the three parameters, diameter of the outer steel tube, diameter of the inner steel
tube, and axial compression capacity of the column were highly correlated. It is worth
noting that both Do and Di were positively correlated with Nu. However, this makes sense,
because a larger column usually means a higher strength.

Table 1. Parameter definitions and descriptions.

Variables Descriptions Note

H (mm) Column length External dimensions
Do (mm) Diameter of the outer steel tube
Di (mm) Diameter of the inner steel tube Internal dimension
to (mm) Thickness of the outer steel tube Steel tube thickness
ti (mm) Thickness of the inner steel tube

fco (MPa) Peak strength of unconfined cylinder
(d × h = 150 mm × 300 mm) Concrete strength

fyo (MPa) Yield strength of the outer steel tube Steel tube strengths
fyi (MPa) Yield strength of the inner steel tube
Nu (kN) Axial compression capacity Load-bearing capacity

Table 2. Statistical description of parameters in the database.

Parameters Mean Median St. D * Min Max

H (mm) 877.830 572.000 149.429 230.000 3502.000
Do (mm) 220.778 165.100 32.152 74.700 603.400
Di (mm) 129.618 76.000 25.742 33.500 477.000
to (mm) 3.097 3.000 0.350 0.590 8.000
ti (mm) 2.735 2.850 0.335 0.550 8.000
fco (MPa) 40.813 37.500 4.094 18.700 74.700
fyo (MPa) 362.696 350.000 20.736 177.000 549.000
fyi (MPa) 335.807 324.000 15.434 205.000 512.000
Nu (kN) 2095.051 1574.000 413.341 283.000 8950.000

* Note: St. D—standard deviation.

2.3. Model Development

Because of various considerations such as materials and economy, the design of
CFDSTs is often customized. In practice, a certain type of steel tube or concrete may be
prioritized for use, or tubes with a specific dimension may have to be adopted due to special
needs (e.g., outer diameter or self-weight of the column). Therefore, the experiments in
this study only demonstrated the scenario of providing guidance on inner steel tube and
concrete based on the selected outer steel tube.

The inputs and outputs are shown in Table 3. This section demonstrates the develop-
ment process of the MTL models based on the example scenario. The similar development
pattern can be transferred to other situations that have not been demonstrated.
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Table 3. The inputs and outputs in the example scenario.

Inputs Outputs

H, Do, to, fyo, Nu Di, ti, fyi, fco

Different magnitudes of variables may lead to inaccuracy for machine learning models.
Especially for MTL, multiple tasks cannot be effectively trained if there is a significant
difference in the units. Thus, all variables were normalized into [−10, 10]. As the values
in the generally used normalization [−1, 1] are too small, [−10, 10] can enable the data-
sensitive linear model to learn suitable coefficients successfully.

All samples were allocated to two datasets, namely, the training set (80%) and the
testing set (20%) [61]. The training set was used for model development, while the model
validation was conducted via a testing set. In supervised learning techniques, there is an
assumption that samples and populations follow the same distribution. Therefore, the
model development phase requires that the distributions of the training and testing sets
are as similar as possible. This partitioning strategy that aims to obtain similar training and
testing sets ensures the reliability of model evaluation provided in the testing phase. The
distributions of two datasets are shown in Figure 5.
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Figure 6 shows the entire model development process. Based on the training set, three
kinds of MTL models were iterated separately. Subsequently, the testing set was input into
these models, and several statistical indicators were adopted to analyze the accuracy of
the results.

To evaluate the reliability of the provided parameters, 4 statistical indicators were
introduced. Table 4 provides the definitions and expressions of these indicators. The
R2 is generally used to measure the degree of correlation between measurements and
predictions [62,63]; RMSE and RRMSE are two indicators used to characterize the error
between measurements and predictions [64–69]; and ρ is an indicator that comprehensively
considers correlation and error [70,71]. The larger the ρ value, the less accurate the model.

Table 4. Statistical indicators for evaluating the reliability of the provided parameters.

Statistical Indicators Expressions

Coefficient of determination (R2)
[∑N

i=1 (Mi−Mi)(Pi−Pi)]
2

∑N
i=1 (Mi−Mi)

2
∑N

i=1(Pi−Pi)
2

Root mean square error (RMSE)
√

∑N
i=1 (Mi−Pi)

2

N

Relative root mean squared error (RRMSE) RMSE
Pi

Performance index (ρ) RRMSE
1+

√
R2

Note: M—measurement value; P—reference value provided by the model.
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3. Results

By adjusting and testing, hyper-parameters of three MTL models were obtained sepa-
rately. With the hyper-parameter settings given in Table 5, three MTL models completed
iterations. For each MTL model, the same development process was repeated five times
to mitigate errors caused by randomness. All the experimental results are provided in
Appendix A.

Table 5. The hyper-parameter settings used for the experiments.

MTL Models Hyper-Parameters Values

Multi-task Lasso Regularization parameter λ 0.091
VSTG Regularization parameter λ1 0.15

Regularization parameter λ2 0.14
Regularization parameter µ 1.25
k (k-support norm) 2
Number of latent bases M 3

MLS-SVR Regularization parameter λ 2.013
Regularization parameter β 33.571
Kernel function ERBF
Kernel function parameter σ 4.493

However, the performance of the two linear models on the tasks fyi and fco was not
satisfactory enough. Table 6 shows a set of results that was relatively good in experiments
of multi-task Lasso (experiment 1), while Table 7 shows an acceptable set of results in VSTG
experiments (experiment 1). Compared to strength tasks (fyi and fco), multi-task Lasso
and VSTG seemed better at the predictions of dimension tasks (Di and ti). As shown in
Tables 6 and 7, the R2 values of strength tasks were at a low level whether on the training
set or the testing set. For task fyi, the R2 was always less than 0.4, and that means the
provided fyi was weakly correlated with the actual value. For task fco, two linear models
seemed ineffective even on the training set.
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Table 6. Statistical evaluation of multi-task Lasso.

Outputs Dataset R2 RMSE RRMSE ρ

Di
Trn 0.926 30.542 0.240 0.122
Tst 0.904 34.905 0.275 0.141

ti
Trn 0.648 0.866 0.312 0.173
Tst 0.896 0.497 0.179 0.092

fyi
Trn 0.258 56.611 0.166 0.11
Tst 0.457 49.811 0.146 0.087

fco
Trn 0.382 13.915 0.306 0.189
Tst 0.389 13.627 0.299 0.184

Note: Trn—training set; Tst—testing set.

Table 7. Statistical evaluation of VSTG.

Outputs Dataset R2 RMSE RRMSE ρ

Di
Trn 0.922 31.210 0.245 0.125
Tst 0.900 35.709 0.280 0.144

ti
Trn 0.646 0.870 0.308 0.171
Tst 0.898 0.513 0.182 0.093

fyi
Trn 0.136 61.320 0.176 0.128
Tst 0.296 56.909 0.163 0.106

fco
Trn 0.355 14.190 0.317 0.199
Tst 0.390 13.473 0.301 0.186

Note: Trn—training set; Tst—testing set.

Unlike the previous two models, MLS-SVR showed quite good performance in all tasks,
and the average result of five experiments is displayed in Table 8. From the perspective of
task Di, the RMSE and RRMSE values on the testing set were reduced by 40% compared
to multi-task Lasso and VSTG. The RMSE and RRMSE of task ti also decreased by 20%.
Moreover, all the ρ values were below 0.1.

Table 8. Statistical evaluation of MLS-SVR.

Outputs Dataset R2 RMSE RRMSE ρ

Di
Trn 0.998 5.265 0.044 0.022
Tst 0.966 20.287 0.169 0.085

ti
Trn 0.973 0.239 0.093 0.047
Tst 0.906 0.392 0.152 0.078

fyi
Trn 0.987 7.518 0.022 0.011
Tst 0.965 12.633 0.037 0.019

fco
Trn 0.975 2.754 0.064 0.032
Tst 0.866 6.499 0.150 0.078

Note: Trn—training set; Tst—testing set.

Figure 7 displays the scatter plots of predictions provided by MLS-SVR (from exper-
iment 4). Even if there were some outliers in the task ti (within [2, 4] and [5, 6]) and fco
(within [40, 50]) tasks, the distribution of scattering points still showed the accuracy of
MLS-SVR in providing parameters for CFDST design. In Figures 8 and 9, the performances
of all MTL models in task fyi and fco are compared. It can be noticed that the predictions of
the two linear models were conservative in these two unsatisfactory tasks. In other words,
the predicted values of two linear models showed the same trend as the actual values
increased or decreased, but the degree was not significant.
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4. Discussion

This section mainly clarifies the problems presented in Section 3, and their causes are
also elucidated. Moreover, the feature matrices learned by two linear models are analyzed.
Additionally, the limitations and future work are listed at the end of this section.

4.1. Nonlinearity

In the tasks of fyi and fco, linear models were unable to effectively learn the task.
Overfitting occurred in both multi-task Lasso and VSTG. Based on this fact, there were two
possible causes:

• Cause A: The provided input features did not contain the key information related to
the strength tasks. For task fyi and fco, all input features were useless.

• Cause B: There was a certain non-linear relationship between input features and
strength tasks. Thereby, linear models were unable to simulate this nonlinearity well.

Cause A can be ruled out, or rather, it cannot be the main issue. This is because
the MLS-SVR (with kernel methods for nonlinearity) was able to achieve very accurate
predictions in these two tasks, using the same input features.

To further verify cause B, the scatter plots of strength tasks from multi-task Lasso
and VSTG are shown in Figures 10 and 11, respectively. In both task fyi and fco, the
direction of scatter distribution (blue lines) tended to be horizontal, and that was evidence
of nonlinearity between inputs and tasks. For example, if a linear model was used to fit
a concave nonlinear function (as shown in Figure 12a), the distribution of scatter would
appear in the pattern shown in Figure 12b. With a constant as the boundary, the predicted
values within smaller-scale regions were often overestimated, while the predictions within
larger-scale regions were often underestimated. Additionally, the more horizontal scatter
distribution also indicated the reason why the predictions of two linear models were more
conservative in Figures 8 and 9.

4.2. Model Interpretability

Although the two linear models did not excel in all tasks, they had better inter-
pretability. The coefficient matrices (W) obtained from two linear models, as well as
variable-latent matrix (U) and latent-task matrix (V) provided by VSTG, all as interpretable
components contained the information that revealed the potential correlations among
CFDST parameters.
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Two coefficient matrices from multi-task Lasso and VSTG are shown in Figure 13.
Firstly, the load-bearing capacity (axial compression capacity, Nu) was highly correlated
with each output feature, with the strength of concrete contributing the most. Secondly, the
contributions of H and fyo to task Di and task ti were close to 0. That means the influence of
CFDST length and outer tube strength on the inner tube dimension was minimal.
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of VSTG.

For tasks fyi and fco, there was almost no obvious sparsity in the coefficient vectors
(except for the coefficient of H in task fyi in multi-task Lasso). This phenomenon indicated
that all inputs were indispensable for both tasks. However, these two models were still
unable to fit tasks fyi and fco well. Therefore, it is reasonable to infer that there must
have been a lack of certain features, or that potential information had not been fully
explored. These inferences were mentioned and answered in Section 4.1. Nevertheless, it is
noteworthy that the coefficient vector of task fyi indeed had a relatively stronger sparsity
(smaller coefficients) than task fco’s. Perhaps this was the reason why the scatter distribution
of task fyi in Figures 10 and 11 was more concentrated, as the dimension of input feature
space of task fyi was compressed more effectively.

The variable-latent matrix U and latent-task matrix V from VSTG are shown in
Figure 14. The matrix U recorded the mapping from the original input space to the lower
dimensional feature space. Figure 14a shows that the input features Do and fyo were able to
be expressed using only two bases in the new feature space, and the projection of feature H
on the third base M3 was also almost 0 (Figure 14a). Excess information from the original
five-dimensional input space was still able to be fully expressed after being compressed into
three-dimensional space. The matrix V is a coefficient matrix used to map the new feature
space to the output space. This matrix also stores the group structure among multiple tasks.
Seemingly, these tasks can be divided into three groups:

• Group 1 (task Di): The coefficient of the second base M2 is significantly higher than
the other two;

• Group 2 (task ti): The coefficient of the second base M2 is significantly lower than the
other two;

• Group 3 (task fyi and fco): The first base is obviously important, while the values of the
other two are almost 0.

This indicates that the diameter and thickness of the inner steel tube are two completely
different tasks (their feature selections are opposite), while the strength of the inner steel
tube and concrete are very similar tasks.



Materials 2024, 17, 1994 15 of 21

Materials 2024, 17, x FOR PEER REVIEW 16 of 23 
 

 

• Group 2 (task ti): The coefficient of the second base M2 is significantly lower than 
the other two; 

• Group 3 (task fyi and fco): The first base is obviously important, while the values of 
the other two are almost 0. 
This indicates that the diameter and thickness of the inner steel tube are two com-

pletely different tasks (their feature selections are opposite), while the strength of the 
inner steel tube and concrete are very similar tasks. 

 
Figure 14. Two matrices provided by VSTG: (a) variable-latent matrix (U); (b) latent-task matrix (V). 

4.3. Limitations and Future Work 
Although the correlation of models with experimental results demonstrated the 

potential applications of MTL techniques in guiding CFDST design, there are still many 
limitations: 
• The samples collected in the database were all CFDSTs with circular cross-sections, 

as this shape is the most conventional. CFDSTs of other shapes may have more pa-
rameters, so their design must be more complex. 

• MTL is a data-driven approach, and the performance of this technique depends on 
the quantity and quality of data. Currently, the uniaxial compression cases of 
CFDSTs are sufficient, while cases of other property trials are still lacking. 

• The interpretability of linear models can reveal the potential connection among 
CFDST parameters. However, this connection is purely mathematical, and the 
mechanism behind it still remains a mystery. 
This study was conducted in a specific condition, and further validations of 

“whether MTL techniques would be applicable in other situations of CFDST design” 
will be necessary. As an auxiliary tool, the linear MTL models own good interpretability, 
and that allows MTL to play a role in the future development of CFDST design codes. In 
addition, the mechanistic research on CFDSTs (load bearing, failure, etc.) will continue to 
be crucial. Experiments and cases on the properties of CFDSTs are still lacking. 

5. Conclusions 
Due to the fact that previous methods can only verify the reliability of a CFDST de-

sign and cannot provide direct parameter guidance, this paper proposed using the MTL 
technique to guide CFDST design. The main works and findings are as follows: 
• With 227 uniaxial compression cases of CFDSTs collected from previous literature, 

three kinds of MTL models were trained to provide multiple parameters for CFDST 

Figure 14. Two matrices provided by VSTG: (a) variable-latent matrix (U); (b) latent-task matrix (V).

4.3. Limitations and Future Work

Although the correlation of models with experimental results demonstrated the poten-
tial applications of MTL techniques in guiding CFDST design, there are still many limitations:

• The samples collected in the database were all CFDSTs with circular cross-sections,
as this shape is the most conventional. CFDSTs of other shapes may have more
parameters, so their design must be more complex.

• MTL is a data-driven approach, and the performance of this technique depends on the
quantity and quality of data. Currently, the uniaxial compression cases of CFDSTs are
sufficient, while cases of other property trials are still lacking.

• The interpretability of linear models can reveal the potential connection among CFDST
parameters. However, this connection is purely mathematical, and the mechanism
behind it still remains a mystery.

This study was conducted in a specific condition, and further validations of “whether
MTL techniques would be applicable in other situations of CFDST design” will be necessary.
As an auxiliary tool, the linear MTL models own good interpretability, and that allows
MTL to play a role in the future development of CFDST design codes. In addition, the
mechanistic research on CFDSTs (load bearing, failure, etc.) will continue to be crucial.
Experiments and cases on the properties of CFDSTs are still lacking.

5. Conclusions

Due to the fact that previous methods can only verify the reliability of a CFDST
design and cannot provide direct parameter guidance, this paper proposed using the MTL
technique to guide CFDST design. The main works and findings are as follows:

• With 227 uniaxial compression cases of CFDSTs collected from previous literature,
three kinds of MTL models were trained to provide multiple parameters for CFDST
design. Based on a specific application scenario, the development process of the MTL
models was demonstrated.

• During the testing phase, MLS-SVR was able to accurately provide reliable CFDST pa-
rameters, while the other two linear models, multi-task Lasso and VSTG, were unable
to provide valuable parameters of inner steel tube strength and concrete strength.

• The distribution of scattered points reflected the potential nonlinearity in the task fyi
and fco, and the connotation in scatter distribution was discussed in detail. Further-
more, the coefficient matrices of two linear models and the potential group structure
among the CFDST parameters were clarified.

• At the end of Section 4, the limitations of the study and future work are also summarized.
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In conclusion, the MTL technique has great potential in guiding CFDST design. With
a set of directly provided parameters, the workload of engineers in CFDST design will
be greatly reduced. Due to the interpretability, linear MTL models can also serve as an
analytical tool and assist in the study of the property mechanisms and design standards
of CFDSTs.
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Appendix A

Table A1. All experimental results from multi-task Lasso.

Outputs Dataset R2 RMSE RRMSE ρ

Di

Trn_experiment_1 0.925798241 30.54154609 0.240264793 0.12244763
Trn_experiment_2 0.925798326 30.54154601 0.240265398 0.122447936
Trn_experiment_3 0.925798412 30.54154593 0.240266004 0.122448242
Trn_experiment_4 0.925798497 30.54154587 0.24026661 0.122448548
Trn_experiment_5 0.921823761 31.23514035 0.24540618 0.125199791

Trn_mean 0.925003447 30.68026485 0.241293797 0.122998429
Tst_experiment_1 0.903852591 34.90496 0.274591 0.140764
Tst_experiment_2 0.903852949 34.90481 0.27459 0.140764
Tst_experiment_3 0.903853308 34.90466 0.27459 0.140764
Tst_experiment_4 0.903853667 34.90451 0.27459 0.140764
Tst_experiment_5 0.898420822 35.83429 0.28154 0.144539

Tst_mean 0.902766668 35.09065 0.27598 0.141519

ti

Trn_experiment_1 0.647650602 0.865708461 0.312352516 0.173070786
Trn_experiment_2 0.647650541 0.86570846 0.312353227 0.173071183
Trn_experiment_3 0.647650481 0.865708459 0.312353938 0.173071581
Trn_experiment_4 0.64765042 0.865708458 0.312354649 0.173071978
Trn_experiment_5 0.642129795 0.87523493 0.30854615 0.171287964

Trn_mean 0.646546368 0.867613754 0.311592096 0.172714698
Tst_experiment_1 0.895809286 0.497392 0.179462 0.092198
Tst_experiment_2 0.895808763 0.497392 0.179462 0.092199
Tst_experiment_3 0.89580824 0.497392 0.179463 0.092199
Tst_experiment_4 0.895807718 0.497392 0.179463 0.092199
Tst_experiment_5 0.896319131 0.522132 0.184067 0.094551

Tst_mean 0.895910627 0.50234 0.180383 0.092669
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Table A1. Cont.

Outputs Dataset R2 RMSE RRMSE ρ

fyi

Trn_experiment_1 0.257824781 56.61053299 0.166176103 0.110213567
Trn_experiment_2 0.257826623 56.61053286 0.166176058 0.110213404
Trn_experiment_3 0.257828465 56.61053274 0.166176012 0.110213242
Trn_experiment_4 0.257830307 56.61053264 0.166175967 0.110213079
Trn_experiment_5 0.143605727 61.05929462 0.175032617 0.12693149

Trn_mean 0.234983181 57.50028517 0.167947351 0.113556956
Tst_experiment_1 0.457067241 49.81142 0.146218 0.087239
Tst_experiment_2 0.457071203 49.81112 0.146217 0.087238
Tst_experiment_3 0.457075164 49.81082 0.146216 0.087237
Tst_experiment_4 0.457079126 49.81052 0.146215 0.087237
Tst_experiment_5 0.309128976 56.65101 0.162396 0.104368

Tst_mean 0.427484342 51.17898 0.149452 0.090664

fco

Trn_experiment_1 0.382329222 13.91468957 0.305536581 0.188797713
Trn_experiment_2 0.382332284 13.91468953 0.305535146 0.188796538
Trn_experiment_3 0.382335346 13.91468949 0.305533712 0.188795363
Trn_experiment_4 0.382338409 13.91468947 0.305532277 0.188794187
Trn_experiment_5 0.349522654 14.25304033 0.319577939 0.20084028

Trn_mean 0.375771583 13.98235968 0.308343131 0.191204816
Tst_experiment_1 0.388893448 13.62725 0.299225 0.184296
Tst_experiment_2 0.388897421 13.62727 0.299224 0.184295
Tst_experiment_3 0.388901394 13.62728 0.299223 0.184294
Tst_experiment_4 0.388905367 13.62729 0.299222 0.184293
Tst_experiment_5 0.383469564 13.54646 0.303735 0.187578

Tst_mean 0.387813439 13.61111 0.300126 0.184951

Table A2. All experimental results from VSTG.

Outputs Dataset R2 RMSE RRMSE ρ

Di

Trn_experiment_1 0.922420 31.20567 0.244677 0.124808
Trn_experiment_2 0.921584 31.29855 0.245879 0.125449
Trn_experiment_3 0.921693 31.27291 0.245672 0.12534
Trn_experiment_4 0.921771 31.25197 0.245519 0.125259
Trn_experiment_5 0.921824 31.23514 0.245406 0.125200

Trn_mean 0.921858 31.25285 0.245431 0.125211
Tst_experiment_1 0.899683 35.70926 0.279989 0.143693
Tst_experiment_2 0.898060 35.89606 0.281997 0.144788
Tst_experiment_3 0.898216 35.87198 0.281801 0.144681
Tst_experiment_4 0.898334 35.85119 0.281651 0.144599
Tst_experiment_5 0.898421 35.83429 0.28154 0.144539

Tst_mean 0.898543 35.83256 0.281396 0.14446

ti

Trn_experiment_1 0.64555 0.870096 0.308432 0.171022
Trn_experiment_2 0.642602 0.874941 0.308653 0.171319
Trn_experiment_3 0.642569 0.874921 0.308611 0.171298
Trn_experiment_4 0.642411 0.875007 0.308572 0.171286
Trn_experiment_5 0.642130 0.875235 0.308546 0.171288

Trn_mean 0.643052 0.874040 0.308563 0.171243
Tst_experiment_1 0.897740 0.513348 0.181972 0.093439
Tst_experiment_2 0.897543 0.518708 0.182985 0.093964
Tst_experiment_3 0.897429 0.51924 0.183152 0.094053
Tst_experiment_4 0.896939 0.520482 0.183548 0.094269
Tst_experiment_5 0.896319 0.522132 0.184067 0.094551

Tst_mean 0.897194 0.518782 0.183145 0.094055
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Table A2. Cont.

Outputs Dataset R2 RMSE RRMSE ρ

fyi

Trn_experiment_1 0.136017 61.32048 0.175747 0.128395
Trn_experiment_2 0.142423 61.08823 0.175156 0.127165
Trn_experiment_3 0.142487 61.08705 0.175144 0.127149
Trn_experiment_4 0.142957 61.07670 0.175097 0.127057
Trn_experiment_5 0.143606 61.05929 0.175033 0.126931

Trn_mean 0.141498 61.12635 0.175235 0.127339
Tst_experiment_1 0.295738 56.90902 0.163104 0.10565
Tst_experiment_2 0.305408 56.78643 0.162821 0.104868
Tst_experiment_3 0.306126 56.75469 0.162723 0.104760
Tst_experiment_4 0.307393 56.71041 0.162579 0.104591
Tst_experiment_5 0.309129 56.65101 0.162396 0.104368

Tst_mean 0.304759 56.76231 0.162725 0.104847

fco

Trn_experiment_1 0.355196 14.18623 0.317429 0.198892
Trn_experiment_2 0.349209 14.26040 0.319686 0.200941
Trn_experiment_3 0.349363 14.25735 0.319629 0.200889
Trn_experiment_4 0.349489 14.25495 0.319587 0.200850
Trn_experiment_5 0.349523 14.25304 0.319578 0.200840

Trn_mean 0.350556 14.24239 0.319182 0.200483
Tst_experiment_1 0.389745 13.47301 0.301470 0.185600
Tst_experiment_2 0.383357 13.55413 0.303853 0.187661
Tst_experiment_3 0.383610 13.54961 0.303762 0.187581
Tst_experiment_4 0.383550 13.54818 0.303742 0.187574
Tst_experiment_5 0.383470 13.54646 0.303735 0.187578

Tst_mean 0.384746 13.53428 0.303312 0.187199

Table A3. All experimental results from MLS-SVR.

Outputs Dataset R2 RMSE RRMSE ρ

Di

Trn_experiment_1 0.997956 4.950633 0.04127 0.020645
Trn_experiment_2 0.998098 4.774466 0.039817 0.019918
Trn_experiment_3 0.99828 4.541585 0.037884 0.01895
Trn_experiment_4 0.99679 6.21027 0.051617 0.025829
Trn_experiment_5 0.997152 5.847266 0.04864 0.024337

Trn_mean 0.997655 5.264844 0.043846 0.021936
Tst_experiment_1 0.966752 20.16726 0.168119 0.08477
Tst_experiment_2 0.967065 20.06718 0.167353 0.084377
Tst_experiment_3 0.96684 20.11983 0.16783 0.084623
Tst_experiment_4 0.965648 20.61851 0.171372 0.086435
Tst_experiment_5 0.966064 20.46098 0.170203 0.085836

Tst_mean 0.966474 20.28675 0.168976 0.085208

ti

Trn_experiment_1 0.977555 0.221349 0.086169 0.043329
Trn_experiment_2 0.977566 0.221087 0.086098 0.043293
Trn_experiment_3 0.980432 0.206541 0.080415 0.040406
Trn_experiment_4 0.963974 0.280518 0.109174 0.055088
Trn_experiment_5 0.967474 0.266504 0.103741 0.0523

Trn_mean 0.9734 0.2392 0.093119 0.046883
Tst_experiment_1 0.901291 0.402229 0.156584 0.080326
Tst_experiment_2 0.901474 0.401589 0.156391 0.080223
Tst_experiment_3 0.898315 0.408791 0.159159 0.081712
Tst_experiment_4 0.916494 0.368955 0.143593 0.073361
Tst_experiment_5 0.912926 0.376779 0.146668 0.075004

Tst_mean 0.9061 0.391669 0.152479 0.078125
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Table A3. Cont.

Outputs Dataset R2 RMSE RRMSE ρ

fyi

Trn_experiment_1 0.989376 6.803098 0.019868 0.009961
Trn_experiment_2 0.989653 6.711025 0.019602 0.009826
Trn_experiment_3 0.99114 6.20726 0.018126 0.009083
Trn_experiment_4 0.980407 9.245705 0.027043 0.013588
Trn_experiment_5 0.982968 8.620965 0.025204 0.012656

Trn_mean 0.986709 7.517611 0.021969 0.011023
Tst_experiment_1 0.965078 12.61071 0.036829 0.018578
Tst_experiment_2 0.965056 12.62965 0.036889 0.018608
Tst_experiment_3 0.965206 12.59698 0.036785 0.018555
Tst_experiment_4 0.964875 12.67916 0.037085 0.018708
Tst_experiment_5 0.964985 12.64765 0.036977 0.018653

Tst_mean 0.96504 12.63283 0.036913 0.018621

fco

Trn_experiment_1 0.977615 2.637616 0.060853 0.030599
Trn_experiment_2 0.978519 2.583422 0.059613 0.029968
Trn_experiment_3 0.980582 2.456158 0.056692 0.028485
Trn_experiment_4 0.969402 3.094903 0.071324 0.035939
Trn_experiment_5 0.97116 3.000334 0.069161 0.034833

Trn_mean 0.975456 2.754487 0.063529 0.031965
Tst_experiment_1 0.865928 6.502839 0.15003 0.077713
Tst_experiment_2 0.865614 6.515199 0.15034 0.077881
Tst_experiment_3 0.86555 6.522601 0.150551 0.077992
Tst_experiment_4 0.865382 6.473133 0.149178 0.077284
Tst_experiment_5 0.865663 6.478995 0.149347 0.077365

Tst_mean 0.865628 6.498553 0.149889 0.077647
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