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Abstract:



The interaction between an external action and the order parameter, via a dependence described by a so-called Lifshitz invariant, is very important to determine the final configuration of liquid crystal cells. The external action can be an electric field applied to the bulk or the confinement due to free surfaces or cell walls. The Lifshitz invariant includes the order parameter in the form of an elastic strain. This coupling between elastic strains and fields, inserted in a Landau-Ginzburg formalism, is well known and gives rise to striction effects causing undulations in the director configuration. We want to discuss here the role of Lifshitz coupling terms, following an approach similar to that introduced by Dzyaloshinskii for magnetic materials. Case studies on nematics in planar and cylindrical cells are also proposed.
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1. Introduction


The contributions to the free-energy density of terms in the derivatives of order parameter are of great importance and recognised to be fundamental in governing the appearance of spatially modulated structures in magnetic materials and of periodic patterns in liquid crystals. It is possible to identify the same structure in the free energy, when it is represented by a Landau-Lifshitz phenomenological theory of phase transitions; this structure has the form of an invariant term, so-called Lifshitz invariant, which is linear with respect to the gradient of order parameter. As shown by Landau and Lifshitz [1], a system near its phase transition point may be unstable with respect to distortions of the appropriate order parameter. This instability may develop, when the irreducible representation allows a quadratic antisymmetric combination, linear in the order parameter components and in their gradients.



Phases with large-scale space fluctuations of the order parameter were discovered experimentally in the 1960’s [2]. Using the approach proposed by Lifshitz, Dzyaloshinskii [3] showed that these configurations are associated with the development of instabilities and found the corresponding approximate solutions of the phase equations. Presently, the family of experimentally observed modulated states has grown both in magnetic and liquid crystal systems [4,5,6,7].



The aim of this paper is to discuss those properties and behaviours of liquid crystal materials originated by Lifshitz contributes to the free energy. Before the discussion of Lifshitz invariants in liquid crystals, we prefer to devote a section of the paper to a brief remark on the use of these invariants in magnetic systems. After this remark, we show how the flexoelectric effect, the chiral elastic term and the saddle-splay surface contribution can be described as Lifshitz contributions.



A liquid-crystal material, the free-energy of which contains a Lifshitz term coupling elastic strains and external fields, can exhibit undulations in the director configuration. Periodic structures in liquid crystal materials can be achieved either in cholesteric or ferroelectric liquid crystals, which possess a natural periodic helicoidal distribution of the molecular orientation. In a nematic liquid crystal cell, a periodic structure can appear spontaneously too, with period that can be controlled by external factors such as applied fields and asymmetric anchoring conditions. The electric field controls the instability produced by the flexoelectric effect. Flexoelectric domains were first observed by Vistin and theoretically studied by Bobylev and Pikin [8,9]. More recently, Lavrentovich and Pergamenshchick discovered another interesting instability in nematics, controlled by the saddle-splay surface contribution to the free energy [10,11].



In the final part of this paper, we propose a detailed discussion of some case studies involving flexoelectricity. In particular, we discuss the hybrid nematic cell in planar geometry and show its complete phase diagrams. The same we shall do for the cylindrical confinement of nematics. To the author’s knowledge, the problem of flexoelectricity in cylindrical confinement has not been discussed before: in the framework of its approximate solution, the corresponding phase diagram shows instabilities. The discussion on saddle-splay instabilities concludes the paper.




2. The Dzyaloshinskii-Moriya Coupling


Some magnetic structures are characterised by a modulation of the spin arrangements over periods, which are long compared to the size of the lattice cell and usually not commensurate with it. The existence of such magnetic structures can be due to competition between exchange interactions or to relativistic effects like spin-orbit coupling. Relativistic interactions were first considered by Dzyaloshinskii [3] and received a microscopic description by Moriya [12]. The Dzyaloshinskii-Moriya (DM) interaction can be written as a product of three vectors, [image: there is no content], where [image: there is no content] is the DM-vector and [image: there is no content] are spin vectors. The bond symmetry determines the direction of the DM-vector whereas the strength of the spin-orbit coupling gives its intensity [12,13].



The macroscopic manifestation of the antisymmetric DM couplings takes place in non-centrosymmetric magnetic crystals. Dzyaloshinskii showed that, in this case, the DM interaction stabilises long-periodic spatially modulated structures of the vectors [image: there is no content], structures with a fixed sense of rotation. In antiferromagnets, the DM-interaction favours arrangements of the magnetic moments, which result in a weak spontaneous magnetisation.



Within a continuum approximation for magnetic properties, the interactions responsible for these modulations are expressed by inhomogeneous invariants. In Ref. [14], these contributions to the free magnetic energy, involving first derivatives of magnetisation with respect to spatial coordinates, are defined as the inhomogeneous Dzyaloshinskii-Moriya interactions. These interactions are linear with respect to first spatial derivatives of magnetisation [image: there is no content] in an antisymmetric mathematical form, firstly studied in the theory of phase transitions by E. M. Lifshitz and known as Lifshitz invariants. Spiral structures arise in magnetic systems from the presence of the Lifshitz invariant in the free energy [15].



The structure of the Lifshitz invariant is, in the case of the inhomogeneous Dzyaloshinskii-Moriya interaction, a product of three vectors: a vector [image: there is no content] representing an internal or external field or a fixed direction in the space, a vector [image: there is no content] representing the local order parameter and the [image: there is no content] operator on the order parameter components. The product has the following form:




[image: there is no content]



(1)





In the case of the liquid crystals, we shall see that vector [image: there is no content] can be an external electric field or the direction perpendicular to the sample surface. It is better to remark that in Ref.4, we can find another choice for the DM interaction, as the pseudoscalar [image: there is no content]. We will discuss this form in the Sect.5, concerning the chiral nematics.



We used the DM interactions in 1996 to study the field-induced phase transition of BiFeO3 [16]. More recently, the coupling of spin waves with the optical phonons has been discussed in the framework of Lifshitz invariant, for the same material [17]. An antiferromagnetic vector [image: there is no content] characterises the BiFeO3 spin structure. The Landau-Ginzburg energy density [3] of the spin structure is the following sum of four terms:




[image: there is no content]



(2)





The first term [image: there is no content] in Equation 2 is the magneto-electric coupling as a Lifshitz invariant, where [image: there is no content] is the z-component of the spontaneous polarization vector, and [image: there is no content] is the inhomogeneous relativistic exchange constant (inhomogeneous magneto-electric constant). The Lifshitz invariant is the responsible for the spatially modulated spin structure in BiFeO3, as shown in Ref.16. The second term [image: there is no content] in (2) is the inhomogeneous exchange energy, where [image: there is no content] is a stiffness constant. In the third term, Ku is the uniaxial anisotropy. [image: there is no content] is the coupling of an external electric field [image: there is no content] with a spatial uniform inner field [image: there is no content], where [image: there is no content], and β the homogeneous magneto-electric constant. This term is originated from a magneto-electric-like DM interaction.



The first term of the free energy can be rewritten, using the following vector:


[image: there is no content]



(3)




in the form:


[image: there is no content]



(4)




as a scalar product of two fields. In our paper [16], we investigated the influence of an electric field on the spatially modulated spin structure (SDW state). The electric field has a tendency to prefer a homogeneous state and to induce a phase transition to this state. In that paper, we used the analogy with nematic liquid crystals to study magnetic materials. Here, we want to enhance the analogy of liquid crystal interactions with the two form of the Dzyaloshinskii-Moriya DM interaction.




3. The Flexoelectricity in Liquid Crystals


Let us consider a nematic liquid crystal and assume as order parameter the director field [image: there is no content], describing the local mean orientation of molecules. This is usually a unit vector. Vector [image: there is no content] can be used in nematics too, rewritten in the following form:




[image: there is no content]



(5)





Vector [image: there is no content] in Equation 5 is well known in the physics of liquid crystals. [image: there is no content] is encountered in the structure of flexoelectric contribution to bulk free energy as [image: there is no content]. Flexoelectricity is a property of liquid crystals similar to the piezoelectric effect. In certain anisotropic materials, which contain molecular asymmetry or quadrupolar ordering with permanent molecular dipoles, an applied electric field may induce an orientational distortion. Conversely any distortion will induce a macroscopic polarization within the material. The polarization vector [image: there is no content] in the flexoelectric term is then described with a distortion in the nematic director field:




[image: there is no content]



(6)





The two terms in the polarization vector are due to the splay and the bend contribution. The coupling of the polarization [image: there is no content] with an external electric field results in the appearance of a periodic distortion of an initial planar orientation of the nematic cell [18]. Meyer showed that the infinite liquid crystal must be disturbed, the perturbation is periodic along the director orientation and the period is inversely proportional to electric field strength [19]. This is not surprising because the polarization vector [image: there is no content] has the same structure of vector [image: there is no content] in Equation 5.



In flexoelectricity, the polarization is induced by a deformation of the director field. Let us remember that in the piezoelectric materials, an applied uniform strain can induce an electric polarization or vice versa. Crystallographic considerations restrict this property to non-centrosymmetric systems. A strain, which is not uniform, can potentially break the inversion symmetry and induce polarization in non-piezoelectric materials. While the conventional piezoelectric property is different from zero only for certain select materials, the non-local coupling of strain and polarization could be potentially found in all dielectrics [20]. As a result, we find that the coupling with an external field gives the Lifshitz invariant as a DM non homogenous coupling for the electric field with the Lifshitz vector.




4. Periodic Distortions in Nematics


Let us discuss more deeply the Meyer result [18,19] of a periodic distortion in the infinite medium. The free energy density is given by:


[image: there is no content]



(7)




in the uniform elastic approximation, with [image: there is no content]elastic constant, and with the dielectric anisotropy negligible. Moreover we assume [image: there is no content]. Let us consider the director [image: there is no content] in a uniform configuration, as a vector parallel to [image: there is no content] -axis and the electric field [image: there is no content] parallel to [image: there is no content] -axis as [image: there is no content], where [image: there is no content] is the unit vector of z-axis. Angles [image: there is no content] and [image: there is no content] are shown in the Figure 1.


Figure 1. The frame of reference and the angles used to describe the director, represented by the rod-like molecule.



[image: Materials 02 00674 g001]






The components of director [image: there is no content] are [image: there is no content], if [image: there is no content]. Let us consider a deformation of [image: there is no content] depending on [image: there is no content], to see what happens. In fact, we want to give just a very rough approach to the problem. In the case of an infinite nematic medium without deformations of the director, the free energy density is zero. If we had a tilt angle variation of the form [image: there is no content], we should have a periodic deformation of director [image: there is no content].





The free energy density, including the flexoelectric term, is:




[image: there is no content]



(8)





Then, a periodic distortion in a non-confined nematic is possible because it has a free energy density lower than that possessed by the uniform configuration. There is not a threshold for the electric field, since the existence of a threshold is a consequence of the medium confinement.



Let us imagine a nematic material confined in a cell composed by two plane walls, parallel to [x,y] plane, at a distance d. The anchoring conditions must be included in the energy balance. We can assume a surface energy density of the Rapini-Papoular form [image: there is no content], for a surface treatment favouring a molecular alignment parallel with the [image: there is no content]-axis. If the director field [image: there is no content] is uniform in the planar alignment, [image: there is no content]. Let us choose, as in Ref. [18], the behaviour of the tilt angle in the form [image: there is no content], with [image: there is no content], a coefficient with dimensions [image: there is no content]. The free energy density is given as in Equation 8.



Integrating the free energy density on the cell volume [image: there is no content], where d is the cell thickness, L a fixed length in y-direction and [image: there is no content] the director distortion wavelength along the x-direction, we obtain:




[image: there is no content]



(9)





The last term in (9) is the surface energy contribution. In the case of a uniform director field, we have a total energy as [image: there is no content]. The behaviour of the two free energies [image: there is no content] is given in Figure 2: we can see the existence of a threshold field [image: there is no content].


Figure 2. Comparison of the free energy behaviours in the case of the uniform configuration and for the distorted one.



[image: Materials 02 00674 g002]








If the electric field has a value [image: there is no content], the stable configuration of the director field is that with lower energy, in this case, when the director field is uniform. When [image: there is no content], the stable configuration is the distorted one.



Comparing the two values of the total energy, that is:


[image: there is no content]



(10)




we can approximately find the threshold electric field as:


[image: there is no content]



(11)




where [image: there is no content], to have a real electric field:




[image: there is no content]



(12)





The threshold field has a value:


[image: there is no content]



(13)




where [image: there is no content]. Estimating [image: there is no content] and assuming the parameter values [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] we find a threshold voltage of [image: there is no content].




5. The Chiral Nematic and the Smectic Phase


Much research has taken place in the field of liquid crystals to find ferroelectric materials, from the earlier studies on the smectic phases till the more recent banana-like materials [20,21,22,23]. The smectic phases are organised in layers. There are three main smectic phases: A, C and C*. In the smectic C (SmC) phase the director [image: there is no content] is tilted by a fixed angle, with respect to the layer normal [image: there is no content]. The chiral smectic (SmC*) phase shows in addition an intrinsic twist of the director from layer to layer. The symmetry breaking [image: there is no content] allows molecular electric dipoles to form a spontaneous electric polarization [image: there is no content], which lies in the smectic planes. The macroscopic polarization vanishes in the SmC* phase, but an electric field parallel to the layers can distort the helicoidal structure, disfavouring SmC* and leading to a phase with a macroscopic polarization. In the Landau theory of smectic liquid crystals, the free energy is expanded in two order parameters: the projection [image: there is no content] of the director onto the smectic layer plane and the layer polarization [image: there is no content] [24]. The chiral term, responsible of the SmC* phase has in [20] the structure:




[image: there is no content]



(14)





This term has in fact a Lifshitz-like structure, if we consider the layer normal [image: there is no content], parallel to the z-axis:




[image: there is no content]



(15)





We can identify this expression as a pseudoscalar inhomogeneous Dzyaloshinskii-Moriya interaction, which does not involve an external field but a fixed direction in the space, that is the vector [image: there is no content] normal to the smectic layer.



Chiral molecules can also form nematic phases called chiral nematic phases or cholesteric phases. The phase shows a nematic order, with the director rotating throughout the sample. The axis of this screw is normal to the director. The distance over which the director rotates by [image: there is no content] is the chiral pitch, generally of the order of the wavelength of visible light.



If the nematic phase is composed of chiral molecules, all of the same chirality, the material does not have symmetry planes and then the free energy has, according to Landau and Lifshitz, a pseudoscalar term:




[image: there is no content]



(16)





This is the pseudoscalar of the DM interaction as in Ref.4, and introduced in Sect.2. If we consider the vector [image: there is no content] as the direction of pitch, then the director [image: there is no content] lies in a plane perpendicular to it and then Equation 16 can be rewritten as:


[image: there is no content]



(17)




with the same structure that we encountered in the smectic term originating the helix.




6. The Saddle-Splay Elasticity at Surfaces


In nematics, a more general form of the distortion free-energy density, in the framework of the usual first-order continuum theory, is given as:


[image: there is no content]



(18)




where [image: there is no content] is the bulk elastic constant in the case of elastic isotropy. The last term is the contribution of the saddle-splay elasticity. This contribution is not usually inserted in the bulk free energy, because it becomes a surface contribution when integration is performed on the cell thickness [25,26]. The saddle-splay contribution is then a Lifshitz invariant of the surface energy:


[image: there is no content]



(19)




if [image: there is no content] is the unit vector of direction perpendicular to the surface containing the nematic material. This term has the same form of Lifshitz scalar product in Equation 4.



In addition to the anchoring energy, which is the anisotropic part of surface tension, there is an elastic contribution, which has been originally indicated as a part of the bulk elastic energy in the form of a divergence [27,28,29]. This contribution can be viewed as the elastic part of surface energy depending on the tangential gradient of director. The [image: there is no content] term may induce spontaneous twist deformations in hybrid nematic films with azimuthally degenerate anchoring conditions. Such deformations are manifested in the formation of periodic stripe domains observed in sufficiently thin hybrid NLC cells [25,30]. If the anchoring energy is sufficiently small, the Lifshitz term can produce a modulated-tilt state has recently shown by Lelidis and Barbero [31].



The saddle-splay contribution is necessary, when we have to evaluate the elastic contribution of thin films or membranes. In 1973, Helfrich studied the energetic cost of a generic sheet in a three-dimensional space: we can determine, in each point of the sheet, the radii of curvature [image: there is no content] and [image: there is no content], and local curvatures [image: there is no content] and [image: there is no content]. Curvatures can be positive or negative. Saddle-shaped surfaces have curvature that is positive along one principal axis and negative along the other. The energetic cost per unit area associated with bending a membrane, as noted by Helfrich [32], is given by the sum of two terms, one dependent on total curvature, [image: there is no content], and the other on product [image: there is no content]:


[image: there is no content]



(20)







In this expression, [image: there is no content] is the bending (or curvature) modulus and [image: there is no content] is the saddle-splay (or Gaussian curvature) modulus. These two modules are set by interactions among membrane molecules. The spontaneous curvature is denoted by [image: there is no content]. As reported in [33], biological membranes are sheets that can be modelled with a continuum elastic approach. These membranes are two-dimensional fluids within which proteins diffuse and interact. Membranes can bend and curve, with deformations controlled by proteins and lipids; the converse is also true, it is the structure created by membrane curvature can guide the spatial organisation of membrane molecules. Then the membrane can display spatial patterning at length-scales far greater than the scale of individual molecules [33].




7. The Hybrid Cell and the Flexoelectricity


Let us start the discussion of some case studies. The first is on the role of flexoelectricity in hybrid nematic cells. A hybrid cell is a nematic cell where a sample is confined between two parallel walls with different anchoring conditions. One surface is treated to favour a planar alignment; the opposite one is favouring a homeotropic alignment. The cell is then named HAN, that is Hybrid Aligned Nematic cell. The hybrid cell we discuss has the y-axis perpendicular to cell walls (see the upper part of Figure 3).


Figure 3. Frame of reference for the hybrid cell in the upper part of the figure. In the lower part, the free energies as a function of the electric field, in the case of planar and homeotropic configurations. Note the presence of a threshold.



[image: Materials 02 00674 g003]






An electric field can be applied parallel to y-axis: we have then [image: there is no content] where [image: there is no content] is the unit vector of y-axis. [image: there is no content] is the homeotropic direction too. The unit vector [image: there is no content], parallel to the cell walls, gives the easy planar direction. The bulk free energy density is given, in the elastic isotropic approximation, by:


[image: there is no content]



(21)




where the last term is due to the dielectric anisotropy [image: there is no content] of the nematic.





The surface energy in the Rapini-Papoular form can be used:


[image: there is no content]



(22)




at the two surfaces, for [image: there is no content] and for [image: there is no content]. [image: there is no content] are energy densities of the surface anchoring. If we have a planar cell with surface S, thickness d, and a uniform director configuration [image: there is no content], the total free energy is [image: there is no content]. If the director configuration is uniform but homeotropic, then [image: there is no content] and the total free energy is the sum of the energy due to the presence of electric field and surfaces: [image: there is no content].



When [image: there is no content], we have a homeotropic cell; if [image: there is no content] the cell is planar. Graphically comparing (lower part of Figure 3) the energies of the homeotropic and planar cells, we see the possibility of an electric threshold field [image: there is no content]: under this value of the electric field, it is favoured the planar configuration, over the threshold value, it is the homeotropic configuration that has a lower energy.



In a hybrid cell, the director changes from a planar configuration at one of the cell wall, to a homeotropic configuration at the other cell wall. The tilt angle is then depending on y, as a function [image: there is no content]. The director field is given by: [image: there is no content].



If the anchoring is strong, the tilt angle is [image: there is no content] at [image: there is no content] - homeotropic wall, and [image: there is no content] at [image: there is no content] - planar wall. In the one elastic constant approximation, we have the bulk free energy density in the form:


[image: there is no content]



(23)




and the surface energy density [image: there is no content]. To represent a hybrid configuration in a very rough approach, let us simply choose a linear function of the tilt angle with y. Then:


[image: there is no content]



(24)




with [image: there is no content] and [image: there is no content]. Then [image: there is no content] and the total bulk energy is:




[image: there is no content]



(25)





Including the surface energy, the total energy is:




[image: there is no content]



(26)





Let us compare this expression with the energy of the cell in homeotropic and planar configurations, choosing an anchoring energy favouring planar and hybrid configurations under threshold fields:




[image: there is no content]



(27)






[image: there is no content]



(28)





What is shown in Figure 4(a) is surely possible, because we can adjust the anchoring parameters. We observe then two threshold fields: when the field is lower than [image: there is no content], the nematic is planar, if the field is comprised between [image: there is no content] and [image: there is no content], the cell is hybrid. Over [image: there is no content], the cell is homeotropic.


Figure 4. (a) Behaviour of the free energies of planar, hybrid (HAN) and homeotropic configurations, as functions of the electric field. Note the existence of two thresholds for the transition between the planar and the HAN configuration and between the HAN and the homeotropic configuration. (b) The two curves in grey show how the energy of the HAN configuration changes for the presence of flexoelectricity. According the sign of the flexoelectric parameter, the threshold field is raised or lowered.
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As previously discussed, the electric field can be coupled with a polarization arising from an elastic deformation in the flexoelectric effect. In planar and homeotropic configurations, because there are not deformations of director, the flexoelectric effect is absent, but in the hybrid cell the deformation gives a flexoelectric polarization [image: there is no content], different from zero. Previous investigations on the role of this polarization can be found in Ref. 34.



Let us add the term [image: there is no content] to the free energy density, which is:




[image: there is no content]



(29)





If [image: there is no content] is given by Equation (24), after integrating on the cell volume, we have the contribution of flexoelectricity to the total free energy as:




[image: there is no content]



(30)





In principle, the coefficient [image: there is no content] could be positive or negative, depending on the value of splay and bend parameters. The threshold values [image: there is no content] are changed from the contribution of the flexoelectricity. They could be lowered or raised by the induced polarization (see Figure 4(b)). The thresholds change according to the shape of the molecules. Comparing the thresholds we can estimate the values of the coefficients. The two electric field contributions in the HAN cell are:




[image: there is no content]



(31)





If they were of the same order of magnitude, we could obtain:




[image: there is no content]



(32)





In the case of a cell with a thickness of [image: there is no content], a field of [image: there is no content], and an electric anisotropy as [image: there is no content] we obtain:


[image: there is no content]



(33)




in agreement with Ref.35 and with other experimental values [36,37,38,39,40]. Recently a giant flexoelectricity has been found with bent-core nematics: a peak of [image: there is no content] was measured in these materials then more than 3 orders of magnitude larger than in calamitics [41]. In the next section we will study the alignment transitions in the nematic cells; such a problem was studied also in Ref.42.




8. The Phase Diagrams of the Hybrid Cell


Let us consider the hybrid cell as in the previous section. We use the same notation here but we solve the Euler-Lagrange equation with the proper boundary conditions, by means of an iterative procedure previously used in Ref.43, to investigate the ion densities in corona plasma. The Euler-Lagrange equation is:


[image: there is no content]



(34)




and:


[image: there is no content]



(35)




that is:


[image: there is no content]



(36)




and the surface energy density:


[image: there is no content]



(37)




where [image: there is no content] and [image: there is no content]. The boundary conditions are given by the following equations:




[image: there is no content]



(38)





Equation 36 can be rigorously solved with elliptic functions: in Ref.44, the existence of a critical thickness for a hybrid aligned nematic cell was predicted in the framework of a rigours solution. Nevertheless, numerical solutions and an approximate analytic theory have been already used, when studying the existence of flexoelectric instabilities in the case of asymmetric boundary conditions [45]. Here, we use an approximate solution to the non-linear problem of the form:


[image: there is no content]



(39)




and then Equation 36 can be written as two equations:




[image: there is no content]



(40)





The second equation in (40) is solved in the following iteration:


[image: there is no content]



(41)




where [image: there is no content] and [image: there is no content]. Three steps of the iteration are enough to have the solution within 0.1 %. Then [image: there is no content], where:


[image: there is no content]



(42)







The boundary conditions are:


[image: there is no content]



(43)




in which we used the dimensionless parameters [image: there is no content]. From the first equation in the boundary conditions (43):




[image: there is no content]



(44)





Once we chose the value of [image: there is no content], from Equation (44), we have the value of [image: there is no content], and then, after iteration, the solution [image: there is no content]. To determine the value of [image: there is no content] we could use the other boundary condition, the second in (43); but, in this case, we are facing a strongly oscillating function. It is better to determine the value of parameter [image: there is no content], minimizing the total free energy. Adding the flexoelectricity, the term to include in the free energy density is:


[image: there is no content]



(45)




and, after integration on the cell thickness, we have a further contribution to the surface energy density of the form:




[image: there is no content]



(46)





This term can be easily inserted in the numerical calculation, to minimize the total free energy. Let us introduce the following dimensionless variables and parameter:


[image: there is no content]



(47)




to illustrate the results of calculations.



In Figure 5 we can see the phase diagrams of the HAN cell, for a fixed choice of the surface parameter [image: there is no content]. We can change the value of parameter [image: there is no content] and find the value of the threshold field (the electric field is dimensionless represented by [image: there is no content]).


Figure 5. Phase diagrams of the HAN cell, for a fixed choice of the surface parameter [image: there is no content]. We change the value of parameter [image: there is no content] and find the value of the thresholds of the electric dimensionless field [image: there is no content]. There are three regions in the diagrams where planar, homeotropic and hybrid alignments are allowed. The phase diagram is depending on the values of flexoelectric parameter [image: there is no content]. Diagram (d) shows the behaviour of a cell when the flexoelectric parameter [image: there is no content] changes. Note that the hybrid configuration disappears when flexoelectric parameter is higher than 1.3.
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There are three regions in the diagrams where planar, homeotropic and hybrid alignments are allowed according to the values of the electric field. The phase diagram is depending on the values of flexoelectric parameter [image: there is no content] (see diagrams (a),(b) and (c) in Figure 5). The last diagram (d) shows the behaviour of a cell when we change the flexoelectric parameter [image: there is no content]. Note that the hybrid configuration disappears when flexoelectric parameter is higher than value 1.3.



In Figure 6, we see the behaviour of [image: there is no content] as a function of the dimensionless variable [image: there is no content] in the case of positive and negative flexoelectric coefficients, for different values of the electric field. Note that, as the field increases, the role of surface is suppressed and the angle at the planar surface increases. As the electric field is higher than the threshold value, the cell becomes homeotropic and [image: there is no content].


Figure 6. Behaviour of [image: there is no content] as a function of the reduced cell thickness [image: there is no content] in the case of positive and negative flexoelectric coefficients, for different values of the dimensionless electric field (some values are reported on the curves). Note that, as the field increases, the role of surface is suppressed and the angle at the planar surface increases. As the electric field is higher that the threshold value, the cell becomes homeotropic and then [image: there is no content].
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To conclude this section on HAN cells, let us remember that we have another Lifshitz invariant, that gives the saddle-splay contribution to the surface free energy density, in the form: [image: there is no content]. In the hybrid cell alignment, where only the tilt angle is displayed by the elastic distortion, this contribution is zero. We will see in the last section of the paper, how this term produces a periodic distortion and how the PHAN - the Periodic HAN - texture appears. The fact that the saddle-splay contribution is zero in the HAN configuration, is in agreement with the conclusion that in the same configuration the flexoelectric contribution [image: there is no content] is zero too, when [image: there is no content]. As we saw in Sect.4, it is the periodic distortion to origin a contribution different from zero, if [image: there is no content].




9. Nematics in Cylindrical Geometry


Let us consider a cylinder with radius [image: there is no content]. In this cylindrical cell we imagine to insert a nematic. We use the frame as in Figure 7 and solve the Euler-Lagrange equation in cylindrical coordinates.


Figure 7. Cylindrical cell and frame of references on the left and on the right the angles of director chosen for calculations.



[image: Materials 02 00674 g007]








Let us consider [image: there is no content], only depending on the radial distance, and moreover, [image: there is no content]. The Euler-Lagrange is:




[image: there is no content]



(48)





The bulk density energy is given by:


[image: there is no content]



(49)




and then the Euler-Lagrange equation turns out to be:




[image: there is no content]



(50)





The surface energy density is:


[image: there is no content]



(51)




where [image: there is no content]. For an anchoring, which favours an homeotropic alignment of the nematic perpendicular at the wall of the cylinder, we use:




[image: there is no content]



(52)





If we want to avoid the presence of a defect at the axis of cylinder ([image: there is no content]axis), the director must escape in the [image: there is no content]direction. The solution, if the applied electric field is zero, is given by an inverse tangent:


[image: there is no content]



(53)




where [image: there is no content], for a strong anchoring at the cylinder wall. This is a well-know solution due to Belavin and Polyakov [46]. To solve the equation in the case of electric field different from zero, we choose a solution as:




[image: there is no content]



(54)





The use of an approximate solution could be questionable. Nevertheless, linearization and approximation of Belavin-Polyakov equation are reported in the literature [45,47]. Using (54), we have two equations to solve:




[image: there is no content]



(55)





The second equation can be solved with iterations. At the fourth step of iteration the solution is within 0.1%. In the following way, we have:




[image: there is no content]



(56)





Actually, we arrive at the following solutions:


[image: there is no content]



(57)




and then at final solution [image: there is no content]. To determine the value of parameter [image: there is no content] we choose the solution minimizing a reduced total free energy:


[image: there is no content]



(58)




where [image: there is no content] is an arbitrary length of the cylindrical cell.



Let us then consider the contribution of flexoelectricity to Euler-Lagrange equations:




[image: there is no content]



(59)





We use again [image: there is no content] and [image: there is no content] as parameters. The equation to solve is:


[image: there is no content]



(60)




instead of Equation (56). Figure 8 and Figure 9 show the results of calculations for different values of anchoring and flexoelectric coefficients. In the Figure 8 we can see the angle [image: there is no content] as a function of the reduced radial distance [image: there is no content], for two values of the flexoelectric coefficient, [image: there is no content] and 1. The figure shows the behaviour in the case of different values of anchoring parameter b and of dimensionless electric field parameter [image: there is no content]. As the electric field is higher that a threshold value, angle [image: there is no content] goes to zero and the director field is parallel to cylinder axis in all the cell. The following Figure 9 shows [image: there is no content] as a function of reduced radial distance [image: there is no content], for different values of [image: there is no content] and [image: there is no content]. In this case, the value of the anchoring strength is fixed. Note that a negative value of the flexoelectric parameter is strongly favouring the alignment of the director parallel to cylinder axis, and then we find a low value of the threshold electric field. If flexoelectric parameter [image: there is no content] is positive and large, the distorted configuration is favoured, and the threshold field required for suppressing this configuration is increased. Moreover, if the flexoelectric parameter is large, as in the lower image in Figure 9, angle [image: there is no content] starts to oscillate as the field increases. We must have a huge electric field to suppress the oscillating distortion and have [image: there is no content], with all the nematic aligned parallel to the field, in a uniform configuration.


Figure 8. Behaviour of [image: there is no content] as a function of the reduced radial coordinate [image: there is no content] in the case of flexoelectric coefficient [image: there is no content] equal to 0 and 1, for different values of the anchoring parameter b and dimensionless electric field (some values are reported on the curves). As the electric field is higher that a threshold value, angle [image: there is no content] goes to zero, that is the director field is parallel to the cylinder axis.



[image: Materials 02 00674 g008]





Figure 9. Behaviour of [image: there is no content] as a function of the reduced radial coordinate [image: there is no content], for different values of the flexoelectric coefficient [image: there is no content] and of the dimensionless electric field (some values of [image: there is no content] are reported on the curves). The value of the anchoring strength is fixed in all the figures. Note that a negative value of the flexoelectric parameter is strongly favouring the alignment of director parallel to cylinder axis, and then the threshold electric field is very low. If the flexoelectric parameter is positive and large, the distorted configuration is favoured, and the threshold field, needed for suppressing this configuration, is increased. As shown in the lower part of the figure, when [image: there is no content] is very large, [image: there is no content] is oscillating as the electric field increases. A very large field is required to suppress the distortion and have [image: there is no content].
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In Figure 10, the phase diagrams are shown, when anchoring parameter b is fixed and equal to 6. We see three regions, denoted by: U for uniform alignment of director parallel to z-axis, D if the director has a deformed configuration, and O when the director is oscillating and cosine becomes negative too. Angle [image: there is no content] turns more than [image: there is no content] on the distance R. As told before, giant flexoelectric coefficients are possible and then the oscillation could be experimentally tested in cylindrical cells.


Figure 10. Phase diagram of the cylindrical confinement, when the anchoring parameter b is fixed and equal to 6. The three regions are denoted by U for the uniform alignment of director parallel to the cylinder axis, D when the director has a deformed configuration, and O if director is oscillating and cosine becomes negative too.
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A last note on the flexoelectric term. The flexoelectric vector is a sum of two contributions:


P→ =  (eS n→ div n→+ e Bn→× rot n→)==eSD(sinθ u→r+cosθ u→z)+eBR(−cosθ u→r+sinθ u→z)=eSD n→+eBR t→



(61)




where [image: there is no content]. These two components which are perpendicular each other: when they are coupled with the electric field, parallel to the cylinder axis, we have then the two contributions in bulk energy with an opposite sign.



To conclude this section, let us discuss the saddle-splay contribution to the free energy, that is:




[image: there is no content]



(62)





In the previous assumptions, [image: there is no content], [image: there is no content] is simply renormalizing the value of the surface energy and then we do not further discuss it.










10. The Saddle-Splay Contribution and the PHAN Cell


Sometimes, it is possible to note a periodicity in the HAN cells observed by the polarised light microscope. Because of this periodic configuration, the cell is in the PHAN configuration, that is a nematic cell with a period hybrid alignment. Two angles describe the PHAN configuration: θ and φ. The last angle is formed by the projection of the director in the plane of the cell with the x-axis.



The free energy density is that by Nehring and Saupe, and given by Equation (19). The frame of reference is [image: there is no content], with [image: there is no content] the cell plane and [image: there is no content]axis perpendicular to the cell plane. The homeotropic wall is at z0 = 0, where z is the axis perpendicular to the cell plane. The planar wall is at z1 = d, where d is the thickness of the cell. The easy-axis of the planar alignment is chosen coincident with the x-axis. The director [image: there is no content] is described as:


[image: there is no content]



(63)







The Euler-Lagrange equations are non-linear. They were solved in Ref.25, with a numerical approach to determine the threshold thickness of the cell between the planar and the PHAN. Here, we want to grasp the role of the saddle-splay contribution, with just simple calculations. Let us then consider the tilt angle [image: there is no content] depending on z, and the φ angle depending on x, in the following way:


[image: there is no content]



(64)







The tilt is zero if [image: there is no content], and it is [image: there is no content] at z = d. With Λ we denote the wavelength along [image: there is no content]axis. The free energy density is:




[image: there is no content]



(65)





Let us integrate on the volume [image: there is no content], where [image: there is no content] is a fixed distance on [image: there is no content]axis. We have:




[image: there is no content]



(66)





Neglecting the anchoring with respect to φ, and assuming just tilt anchoring, with a surface energy density of the form:


[image: there is no content]



(67)




where [image: there is no content] for planar anchoring with [image: there is no content], and [image: there is no content] at the homeotropic anchoring [image: there is no content]. After integrating on surfaces of the cell:


[image: there is no content]



(68)




and then the total free energy is:




[image: there is no content]



(69)





Let us evaluate the saddle-splay contribution to free energy density, using Equation 4 of Ref.25, that here reduces to:


[image: there is no content]



(70)




where [image: there is no content]; after integration on a surface [image: there is no content], we have:




[image: there is no content]



(71)





The total energy is then:




[image: there is no content]



(72)





Comparing with the free energy of HAN configuration:


[image: there is no content]



(73)




and after simple calculations we find:




[image: there is no content]



(74)





Neglecting the last term, we find a threshold value for the cell thickness:




[image: there is no content]



(75)





If [image: there is no content], then we find a HAN configuration, but if [image: there is no content] the modulated PHAN texture is displayed in the cell. In Ref.25, we can see the experimental observation of thickness threshold in a nematic sample. This is just a rough discussion on the role of saddle-splay contribution in producing periodic instabilities, but enough to understand the origin of a threshold thickness in the sample.



Let us remember that [image: there is no content] is a Lifshitz invariant, with the same structure of flexoelectric contribution [image: there is no content] when [image: there is no content]. We could imagine a surface contribution of the form [image: there is no content], where coefficients are different. This could increase the variety of observable configurations.




11. Conclusions


This paper is divided in two parts. In the first we have discussed the analogies among Lifshitz invariants in magnetic materials and liquid crystals. We saw that the structure of these invariants is the same, and that they are producing periodic instabilities in both cases. In the Lifshitz invariant, the interaction is between an external action and the order parameter, in a form that contains the gradient of order parameter. The external action can be an electric field applied to the bulk, and in this case the relevant effect is the flexoelectricity, or the confinement due to free surfaces or cell walls. The Lifshitz invariant related to surfaces gives the saddle-splay contribution to surface energy.



In the second part of the paper we discussed in depth the role of flexoelectricity in the case of confined nematics. We performed detailed calculations in the case of planar and cylindrical geometry. Phase diagrams are also shown, to see the alignment phase transitions due to electric field and the role of flexoelectric parameter.
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