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Abstract: The number of grafting procedures, including those performed in primary and 
revision hip arthroplasty, continues to rise around the world. Demand for musculoskeletal 
donor tissue now outstrips supply. There is no single bone substitute that is ideal for all 
circumstances. Bone substitutes act as a scaffold and are usually osteoconductive. They are 
rarely osteoinductive; if they are, a molecular bond is formed between the graft and host 
bone, improving fixation and longevity. Bone graft substitutes are very rarely osteogenic. 
There is a growing body of clinical evidence supporting the use of bone graft substitutes in 
vivo for complex hip arthroplasty. 
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1. Introduction 

One of the greatest challenges facing the orthopaedic surgeon in revision arthroplasty is the 
restoration of lost bone stock. Aseptic loosening remains the primary failure mode for cemented and 
uncemented hip replacements. Wear particles released from the implanted materials provoke an 
inflammatory host response, stimulating osteoclasts to resorb bone [1,2]. 

Bone has a complex structural hierarchy with the ability to adapt its structure to suit the mechanical 
loads to which it is exposed [3]. Cortical and cancellous bone exhibits different mechanical properties 
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due to their different porosities. Bone constitutes approximately 45% bone mineral which 
approximates to hydroxyapatite (Ca10(PO4)6(OH)2) [4]. In vivo, bone behaves as a two-phase 
composite of a collagen matrix reinforced by hydroxyapatite [5]. 

Autografting is considered to be the gold standard for cases requiring restoration of bone stock. 
There are substantial limitations to the technique that make it impractical in the majority of revision 
hip procedures. These include bulk limitations, high rates of graft donor site morbidity [6] and 
increased duration of the procedure. These limitations have led to an increase in the use of allograft. 
Impaction grafting of both the acetabulum and femur in revision surgery was reported by the Nijmegen 
and Exeter groups in the early 1990s [7–9]. The technique of impaction grafting of either the femoral 
or acetabular side involves the creation of a contained defect. This containment is achieved with the 
use of mesh, screws, bulk graft or other augments. Once containment has been achieved, the graft of 
choice is pushed into the defect before being impacted into place by serial tamps. These tamps are 
gradually increased in size in order to achieve effective impaction of the graft and to provide a stable 
bed for subsequent implantation of the prosthesis with or without cement. Allograft bone is not 
reproducible and varies according to donor factors (donor age, bone mineralisation) and  
processing (sterilisation and storage techniques). Mixed results of impaction grafting have been 
reported [7,10–13] but these have improved in non-originator centres over time. Infection remains a 
concern [14,15]. 

More than 500,000 bone grafting procedures are performed annually in the USA [16]. Projected 
donation rates are not sufficient to meet this demand. It was predicted in 1998 that demand would 
outstrip supply for allograft in Scotland by 2000 due to an increase in the revision burden of 100% 
between 1995 and 2000 [17]. This shortfall in supply and concerns regarding results has necessitated 
the development of alternative bone substitutes. 

Investigated alternatives include: 

1. Xenografts 
2. Corraline derived hydroxyapatite 
3. Polymethylmethacrylate 
4. Calcium sulphate 
5. Polyhydroxyacids 
6. Glass-ionomer ceramics 
7. Absorbable ceramics 
8. Collagen matrix 

A number of these materials have limitations, particularly in the context of impaction grafting in 
revision surgery [18]. Impaction grafting involves high compressive forces; collagen matrices and 
polyhydroxyacids lack the requisite strength to be used in the context of such forces. Xenografts and 
coralline grafts both provoke a host response and have the potential to transmit infection [19,20]. 
Xenografts do not osseointegrate as well as allograft and demonstrate the same variability in particle 
size, morphology and mechanical properties as allograft. Calcium sulphate (plaster of Paris) is 
resorbed too rapidly [21] and the results of promising series have not been replicated [22]. Glass 
ionomer and polymethylmethacrylate are not resorbed and therefore cannot be replaced by host bone.  
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As described by Blom et al. [18], an ideal bone graft substitute should impart structural stability, 
allow neo-ossification by means of osseoconduction, osseoinduction and substitution, be cost effective, 
available in unlimited supply and have no potential for transmission of infection or provocation of a 
detrimental host response. Bone is considered a primary model for tissue engineering in that a scaffold 
alone may be implanted with recruitment of the necessary cells and components from the host tissue 
[4]. This review will focus on the use of ceramics as bone substitutes. 

2. Ceramics 

2.1. Ceramics 

Ceramics are inorganic, non-metallic solids. Sintering is an important part of the preparation 
process of the ceramics. This involves heating the ceramic to a temperature below the melting point. 
During the sintering process, the density of the ceramic increases in relation to a reduction in the 
porosity of the ceramic. It is during the sintering process that the polycrystalline nature of the final 
ceramic is formed. The grain size distribution formed during this stage of the processing is an 
important determinant of the final mechanical properties. A temperature of 900 °C is required to form 
grain boundaries for biphasic calcium phosphate ceramics; the grain boundaries also play an important 
role in determining the final mechanical properties [23].  

2.2. Glass-Ionomer Ceramics 

The common property of the glass-ionomer ceramics is the presence of glass. They are 
manufactured by sintering the glass in different proportions of SiO2, Al2O3, CaF2 and AlPO4 with or 
without the addition of hydroxyapatite. As stated earlier, they are not resorbable; this is due to the 
presence of the silicate and aluminium. The non-porous nature of the glass ionomers means that they 
only allow peripheral osseointegration with no osseoconduction within the particles. They do have the 
advantage of not promoting foreign body reactions when implanted [24]. Although it is clear that the 
glass-ionomer becomes incorporated into the bone matrix, it is unclear whether this is detrimental or 
perhaps even beneficial. 

2.3. Absorbable Ceramics 

Synthetic hydroxyapatite (Ca10(PO4)6(OH)2), tricalcium phosphate (Ca3(PO4)2) and combinations of 
the two are commonly used as bone graft substitutes [25]. These are formed by the precipitation of a 
powder from an aqueous solution at a certain pH range. The powder is then cold pressed to form 
tablets and these tablets are then sintered to produce a material with porosity by volume in the range of 
1 to 5%. Porosity to allow osseoconduction is achieved by the addition of materials that create porosity 
within the structure and are then burnt off during the sintering. Examples include glucose and 
naphthalene. An alternative to these techniques is the preparation of commercially available porous 
hydroxyapatite (HA) from natural cancellous bone. Mechanical and structural properties have been 
observed to vary widely amongst specimens of these substances [26]. Densities of Endobon® 
specimens range from 0.35 to 1.44 g·cm-3, and across this range of densities the ultimate compressive 
stress was seen to increase from 1 to 11MPa and the ultimate compressive modulus from 0.2 to  
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3.1 GPa. Isotropic specimens were also observed to poses higher compressive moduli than anisotropic 
specimens of the same density. 

HA and tricalcium phosphate (TCP) have been shown to osseointegrate [27,28]. The coating of 
human bone marrow stromal cells (HBMSC) with amino-acid functionalized HA nanoparticles leads 
to a significant increase in osteoblast differentiation when compared to uncoated cells [29]. The in vivo 
component of this study demonstrated comparable osteoid formation after 21 days in 
immunocompromised mice. The seeding of poly(DL-lactic acid) (PLA) graft with HBMSCs leads to 
improved results in vitro and in vivo animal models when compared to PLA alone [30]. In vitro testing 
demonstrated improved results in shear testing and in vivo testing revealed a significant increase in 
new bone and blood vessel formation. Green et al. have demonstrated that porous calcium carbonate 
microspheres confined to a 3D pellet promote in vitro formation of osteoid tissue [31] and that these 
microspheres can augment in vivo bone formation when used in impaction grafting [32]. 

HA and TCP do have problems with maintaining structural integrity under load [33]. A pore size of 
300-500 μm has been shown to be optimal for osseoconduction [34,35]. Bouler et al. demonstrated that 
the thickness of the bridges between the pores were important; when these fell below a critical size, the 
ceramic disintegrated when exposed to low compressive forces [23]. 

Until recently it was suggested that the mechanical properties of the calcium phosphate materials 
were not sufficient to permit their use where they must bear the initial structural load alone [33]. This 
would not appear to be the case. In its non-porous state, the tensile and compressive strength is far in 
excess of that of cancellous and cortical bone. In its porous state, the compressive strength is equal to 
that of cancellous bone and the tensile strength 72% that of cancellous bone [36]. Plugs of HA/TCP 
granules and HA/TCP combined with a collagen matrix demonstrate no significant difference to 
autologous graft, allograft cortical bone or host bone following 6 months of ad lib weight bearing in 
canine tibia when peak torque, stiffness and energy to peak torque were analysed [37]. The difficulty 
faced with the application of bioactive ceramics to the in vivo environment is in the departure of their 
mechanical behaviour from that of human cancellous or cortical bone. The ceramics are more brittle, 
their fracture toughness is lower and the elastic modulus higher for the bioactive ceramics, even in the 
case of glass-ceramic A-W which exhibits higher mechanical strength than the other bioactive 
ceramics [38]. Bone is a composite structure consisting of nano-scale apatite crystals deposited onto a 
3 dimensional collagen matrix. It is the composite structure, which gives bone its inherent mechanical 
properties, and attempts to simulate this structure can lead to improved graft mechanical properties. 
Combination of ceramic with a polymer such as cellulose, leads to improved bending strength and 
Young’s modulus [39]. A significant deterioration in these properties was observed over 14 days with 
soaking in simulated body fluid. It was felt this decline was due to the degradation of the adhesion 
between the ceramic particles and cellulose fibres. An alternative approach is to embed to ceramic in a 
self-hardening carrier such as fibrin glue, this allows the customised shaping of the graft and within six 
weeks, the mechanical properties of the composite are approaching that of the trabecular bone [40]. 

Bouler et al. studied the influence of synthesis parameters on the compressive strength of porous 
biphasic calcium phosphate ceramics [23]. Two different ratios of HA:TCP were studied, 45:55 and 
75:25, the former demonstrated better compressive strengths. Other variables analysed included 
percentage and mean size of macropores, sintering temperature and isostatic compression pressure. Of 
these the isostatic compression pressure was the least important. At set volume percentage porosity, a 
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smaller number of pores of approximately 500 μm were better than many of 100 μm. The thickness of 
the bridges between the pores was critical, when the size of these fell below a critical limit the 
compressive strength was severely compromised. The porosities within the structure must 
communicate in order to allow cellular ingress into the structure; the porosity however needs to remain 
above a certain threshold for that application in order to provide the necessary mechanical support to 
facilitate the process [41]. The authors felt that the mechanical properties of the scaffold structure of 
the graft were an important consideration when comparing 70% total porosity specimens to 80%. The 
percentage strut porosity of the graft was related to the bone volume formed at three weeks and the 
mineral apposition rate at one to two weeks; with 20% strut porosity associated with higher volumes 
and rates than 10%.  

The porosity of the ceramic also influences the rate of resorption of the ceramic due to the increase 
in surface area. Two processes dictate the rate of resorption: dissolution and phagocytosis. These have 
been observed in calcium phosphate ceramics that has been implanted into ovine bone [42]. The 
process appeared to occur by a variety of mechanisms; multinucleated giant cells causing localised 
areas of resorption and a generalised uniform dissolution at the implant surface. HA and TCP have 
been observed to resorb at different rates. When rates of dissolution were compared in buffered acid 
and base solutions, the TCP dissolved 12 times faster in acid solution and 22 times faster in base 
solution [36]. HA and TCP ceramics have also been observed to resorb at different rates when 
implanted into rabbit bone. Over 24 weeks over 46% of the TCP resorbed compared to over 27% of 
the HA yet the HA allowed 8% more new bone formation [43]. The rate of resorption of carbonate-
substituted HA appears to related to the carbonate content with increased resorption with increasing 
carbonate content up to 2.35 wt% [44]. 

The structure of the ceramic utilised can be manipulated in an attempt to increase the biological 
response of the host tissue. The aim of these manipulations is to decrease the period of time taken for 
the construct to achieve the mechanical strength to bear load and therefore aid patient rehabilitation. It 
has been suggested that the use of stoichiometric hydroxyapatite leads to a faster biological response 
than commercial hydroxyapatite [4]. In simulated body fluid tests, the time until production of an 
apatite layer was reduced by 30% compared to stoichiometric hydroxyapatite. 

The use of Bioglass® in conjunction with a poly(DL-lactic acid) matrix had an inverse dose related 
effect on osteoblast activity if not pre-treated; if the scaffold was pre-treated with serum for 24 hours,  
5 wt% Bioglass® composite was associated with an increase in alkaline phosphatase activity when 
compared to 0 wt% and 40 wt% samples [45]. 

Bone coverage and ingrowth has been observed to occur more rapidly in some bioactive glasses and 
glass ceramics than in hydroxyapatite [46,47].  Substitution of ions including sodium, magnesium and 
silicon is of interest as these ions are present in vivo and may improve the coverage and ingrowth rates. 
Ionic substitution affects the apatite properties such as lattice parameters, crystal size and crystallinity. 
These in turn influence the stability and solubility of the HA formed. Silicon is of particular interest as 
it has been identified at around 5 wt% at sites of active calcification [48]. In vitro studies have 
demonstrated that physiological levels of silicon stimulate osteoblastic cell differentiation and type 1 
collagen synthesis [49]. It is possible to incorporate silicon (Si) into HA by direct substitution for 
phosphorus (or phosphate). Up to 0.4 wt% silicon substitution can be achieved by a simple aqueous 
precipitation method [50], and levels of up to 1.5 wt% can be substituted as a single phase [4,50]. The 
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amount of bone ingrowth and coverage in an animal in vivo model is significantly improved in the case 
of both 0.8 wt% and 1.5 wt% silicate-substituted hydroxyapatite when compared to pure 
hydroxyapatite [51]. Investigations of the mechanism behind this indicate that increased dissolution at 
grain boundaries and triple junctions may be responsible for the increased rate of bone ingrowth and 
coverage observed [52]. At six weeks in vivo, organised ingrowth of collagen fibrils can be observed at 
the surface of SiHA, deeper within the implant poorly organised and mineralised fibrils are observed 
[53]. Titanium substitution has been recently investigated [54]. HA containing levels of up to 1.6 wt% 
by co-precipitation were produced and investigated following in vitro culture with primary human 
osteoblasts. Significantly higher cellular activity was observed for 0.8 wt% TiHA than with HA and 
this was associated with well-organised actin cytoskeletal protein formation after 1 day in culture. This 
holds promise for future investigation. 

The method of preparation of HA/TCP can have an effect on the subsequent biological activity 
associated with the particles in vitro. A sintering temperature of 110 °C stimulated release of 
interleukin (IL)-1β, IL-6, tumour necrosis factor (TNF) α, prostaglandin (PG)E2 whereas particles 
sintered at 900 and 1,200 °C did not [55]. Particles that had been plasma sprayed also failed to release 
inflammatory mediators. The addition of HA particles to cell culture causes an initial significant 
reduction in cell counts [56]. The subsequent effect on the cell counts, mediated by TGF-β1 and PGE2, 
are dependent upon the particle size in the culture. Particles in the 37 to 63 and 177 to 250 μm ranges 
were associated with a more rapid increase in cell counts over seven days than were particles in the 0.5 
to 30 or 420 to 841 μm ranges.  

Comparative studies of ceramic bone graft substitutes have revealed some differences between 
different compositions in terms of their in vivo animal model performance. A comparison of four 
different porous biphasic calcium phosphate ceramics (HA-βTCP), one of which was reinforced with a 
bioresorbable polylactic acid, a pure HA ceramic and a carbonated apatite (CA) ceramic revealed that 
neither the HA or CA ceramic were osteoinductive in soft tissue and had inferior bone integration 
when compared to the HA-βTCP. The addition of the polylactic acid reduced osseoinduction and 
integration [57]. A comparative study of dense calcium sulphate, βTCP and a porous silicated calcium 
phosphate over 12 weeks revealed that the former underwent rapid dissolution and elicited a mild 
inflammatory response and the latter two supported early bone apposition [58]. The βTCP samples 
then underwent an inflammatory response impairing further bone deposition and leading to bone 
resorption, which the silicated samples did not. 

It has been established that the synthesis parameters of the ceramic play a vital role in its success in 
vivo and that these parameters may be common to different ceramic compositions. Porous biphasic 
ceramics perform well in vivo and carbonation and the addition of polylactic acid are not beneficial. 
The substitution of both silicon and titanium into the ceramic structure hold promise but we have yet to 
determine the success of such techniques in human in vivo studies and what the ideal synthesis 
parameters and composition may be for these ceramics. Delivery of the ceramic either as a pre-formed 
composite or in a self-hardening composite solution may prove beneficial if further work can improve 
the long-term adhesion between the ceramic and polymer components. Ceramic bone substitutes have 
an effect on the cellular environment when implanted and synthesis parameters again appear to 
influence this. The future direction of ceramic bone substitute development will focus on the refining 
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the composition and synthesis parameters of the ceramics and their interaction with the cellular 
environment and how we may best influence this to improve the integration and survival of the graft. 

2.4. Clinical Use of Ceramics 

The first series reporting the use of ceramics (TCP) as a bone graft substitute appeared in 1988. The 
results in 43 trauma patients were reported and although the follow up was short and incomplete, the 
initial results were promising [59]. The first report of hydroxyapatite ceramic use as a bone graft 
substitute in revision arthroplasty surgery appeared as a small part of a series of 45 cases reported in 
1990 [60].  Porous biphasic ceramics have been shown to be a successful and safe material for use in 
impaction grafting in an ovine model, with clinical, radiological and histological changes comparable 
to allograft [61]. This material has been used successfully in an unselected consecutive cohort of 
patients undergoing acetabular reconstruction during revision hip surgery [62]. 

Oonishi et al. have reported excellent results using HA to fill massive acetabular [63] and femoral 
defects [64] during revision hip surgery. This is despite the joint reaction force experienced by the hip 
joint following arthroplasty being in the range of 250%−360% of body weight [65]. Oonishi et al. 
observed that the two main disadvantages of HA when used in vivo were the difficulty of placement 
and retention in defects and the time taken for restoration of bone. Their work on animal models 
suggested that Bioglass® had the advantage of ease of handling and rapid resorption (two weeks c.f. 
12 weeks for HA) [66].  Coralline HA grafts have also demonstrated acceptable results in the medium 
term for acetabular reconstruction in complex revision hip surgery [67].  

In posterior spinal fusion for idiopathic scoliosis, Triosite, a synthetic porous ceramic  
(60% HA:40% TCP) demonstrated equivalent results in terms of fusion when compared to autograft. 
The ceramic group demonstrated a lower incidence of wound complications post operatively [28]. It 
was felt this difference was due to the lack of an antigenic response to the material, an observation 
supported by other authors [68].  

A number of authors have reported the use of ceramic bone graft substitutes as a graft expander 
used in conjunction with autograft or allograft [62,69,70]. The results in revision hip surgery were 
good in the short to medium term. The relatively small sizes of these series and the mixed indications 
for revision as well as the different graft combinations limit the usefulness of the information available 
to date. A recent long term cohort study comparing the use of allograft alone and a 50:50 mix of HA 
and allograft in impaction grafting for revision total hip replacement showed promising survival rates 
that were not significantly different between the two groups at 13 years (84% allograft alone, 82% 
allograft/HA mixture) [71]. This study also demonstrated comparable graft incorporation and patient 
scores between both groups. 

The problems with early massive subsidence in some autograft impaction grafting series [11] have 
not been demonstrated by other authors. Massive subsidence appears to be associated with more 
extensive femoral cortex destruction and defects in the initial stem-allograft construct created [72]. 
Other authors have identified that instability leading to massive subsidence is multifactorial and 
ultimately implant stability must be determined at the time of surgery [73]. Histological analysis of 
samples from the interface in clinically sound constructs has demonstrated bone remodelling and 
partial restoration of bone stock between 11 and 27 months [74]. Improved instrumentation has a role 
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to play in increasing the success of impaction grafting procedures with vibration and drainage 
identified to be important in surrogate markers of reducing the risk of fracture and improving graft 
strength [75]. The use of coralline graft with bone marrow in isolation demonstrated poor results, when 
used in conjunction with autograft, the results were good [76]. The use of a hydroxyapatite-bioactive 
glass ceramic composite in isolation demonstrated significantly worse results than autograft alone in 
the context of posterolateral lumbar spine fusion [77]. 

It has been suggested that pharmacological agents may have a stimulatory effect on the resorption 
of the ceramic bone graft or bone ingrowth [78,79]. More new bone would appear to be formed with 
silica based bioactive glass used as a graft in an animal model when a bisphosphonate is given in 
conjunction, the amount is however less than if the bisphosphonate is given in isolation [79]. 
Bisphosphonates are highly selective for bone. Different types of bisphosphonate vary in their precise 
mechanism of action but broadly, the class of drugs leads to an inhibition of bone resorption. 
Mechanisms of influence on osteoclasts include inhibiting formation, recruitment, differentiation, 
resorption and inducement of apoptosis. The authors of the study theorised that the biospheres that 
they used induced a high rate of bone turnover, the addition of the bisphosphonate was felt to shift this 
turnover towards a positive balance of bone deposition by inhibiting the resorption. The only clinical 
failure of BoneSave (a porous biphasic ceramic) observed in our unit has been in a patient undergoing 
bisphosphonate therapy in the peri- and postoperative period. Statins would appear to have no effect 
when administered systemically and a detrimental effect when administered locally despite their 
osteoblastic and osteoclastic effects [78]. A beneficial effect in terms of bone ingrowth into the pores 
of HA ceramic has been demonstrated in rabbits when low-intensity pulsed ultrasound is applied 
without a detrimental effect on the mechanical strength of the ceramic [80]. 

3. Conclusions 

The ideal bone graft substitute should exhibit a number of properties in order to allow its 
widespread use as a realistic and cost effective alternative to autograft or allograft. The material 
should: 

1. Be inexpensive 
2. Be available in unlimited quantities 
3. Be reproducible 
4. Provide structural stability at least until substituted by host bone 
5. Allow neo-ossification by means of osseoconduction and osseoinduction 
6. Have no infectivity 
7. Provoke no antigenicity 

The improvement in the available bone graft substitutes is leading to a decrease in the reliance on 
auto- and allograft for use in revision arthroplasty surgery. There are a growing number of clinical 
trials demonstrating good results in the short, medium and now long term. Further long term results in 
large series of patients are awaited with interest. The potential to combine these absorbable substitutes 
with pharmacological agents, mechanical stimulus or morphogens such as transforming growth factor 
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beta, bone morphogenic proteins or cartilage derived morphogenic proteins creates the possibility of 
restoration of massive bone loss at revision surgery.  

References 

1. Howie, D.W.; Haynes, D.R.; Rogers, S.D.; McGee, M.A.; Pearcy, M.J. The response to 
particulate debris. Orthop. Clin. North. Am. 1993, 24, 571−581. 

2. Willert, H.G.; Semlich, M. Reactions of the articular capsule to wear products of artificial joint 
prostheses. J. Biomed. Mater. Res. 1997, 11, 157−164. 

3. Frost, H.M. The Utah paradigm of skeletal physiology: An overview of its insights for bone, 
cartilage and collagenous tissue organs. J. Bone Miner. Metab. 2000, 18, 305−316. 

4. Bonfield, W. Designing porous scaffolds for tissue engineering. Phil. Trans. R. Soc. A 2005, 364, 
227−232. 

5. Borsato, K.S.; Sasaki, N. Measurement of partition of stress between mineral and collagen phases 
in bone using X-ray diffraction techniques. J. Biomech. 1997, 30, 955−957. 

6. Younger, E.M.; Chapman, M.W. Morbidity at bone graft donor sites. J. Orthop. Trauma. 1989, 3, 
192−195. 

7. Gie, G.A.; Linder, L.; Ling, R.S.M.; Simon, J.-P.; Sloof, T.J.; Timperely, A.J. Impacted 
cancellous allograft and cement for revision total hip arthroplasty. J. Bone Joint Surg. Br. 1993, 
75, 14−21. 

8. Ling, R.S.; Timperley, A.J.; Linder, L. Histology of cancellous impaction grafting in the femur. A 
case report. J. Bone Joint Surg. Br. 1993, 75, 693−696. 

9. Sloof, T.J.; Schimmel, J.W.; Buma, P. Cemented fixation with bone grafts. Orthop. Clin. North 
Am. 1993, 24, 667−677. 

10. Amstutz, H.C.; Ma, S.M.; Jinnah, R.H.; Mai, L. Revision of aseptic loose total hip arthroplasties. 
Clin. Orthop. 1982, 170, 21−33. 

11. Eldridge, J.D.; Smith, E.J.; Hubble, M.J.; Whitehouse, S.L.; Learmonth, I.D. Massive early 
subsidence following femoral impaction grafting. J. Arthroplasty 1997, 12, 535−540. 

12. Schreurs, B.W.; Sloof, T.J.; Buma, P.; Gardeniers, J.W.; Huiskes, R. Acetabular reconstruction 
with impacted morsellised cancellous bone graft and cement. J. Bone Joint Surg. Am. 1997, 79, 
159−168. 

13. Solgard, S. Impaction allografting in cementless revision of the femoral component. Hip Int. 
2002, 12, 233−234. 

14. Jofe, M.H.; Gebhardt, M.C.; Tomford, W.W.; Mankin, H.J. Reconstruction for defects of the 
proximal part of the femur using allograft arthroplasty. J. Bone Joint Surg. Am. 1988, 70, 
507−516. 

15. Mankin, H.J.; Doppelt, S.H.; Sullivan, T.R.; Tomford, W.W. Osteoarticular and intercalary 
allograft transplantation in the management of malignant tumours of bone. Cancer 1982, 50, 
613−630. 

16. Greenwald, A.S.; Boden, S.D.; Goldberg, V.M.; Khan, Y.; Laurencin, C.T.; Rosier, R.N. Bone-
graft substitutes: Facts, fictions, and applications. J. Bone Joint Surg. Am. 2001, 83, 98−103. 



Materials 2009, 2                            
 

 

1904

17. Galea, G.; Kopman, D.; Graham, B.J.M. Supply and demand of bone allograft for revision hip 
surgery in Scotland. J. Bone Joint Surg. Br. 1998, 80, 595−599. 

18. Blom, A.W.; Heal, J.; Learmonth, I.D. Restoration of bone stock loss at revision total hip 
arthroplasty using allograft and bone substitutes. Curr. Orthop. 2002, 16, 411−419. 

19. Begley, C.; Doherty, M.; Mollan, R.; Wilson, D. Comparative study of the osteoinductive 
properties of biocermic, coral and processed bone grafts. Biomaterials 1995, 16, 1181−1185. 

20. Charalambides, C.; Beer, M.; Cobb, A.G. Poor results after augmenting autograft with xenograft 
(Surgibone) in hip revision surgery: A report of 27 cases. Acta Orthop. 2005, 76, 544−549. 

21. Bell, W. Resorption characteristics of bone and bone substitutes. Oral Surg. 1964, 17, 650−657. 
22. Coetzee, A. Regeneration of bone in the presence of calcium phosphate. Arch. Otolaryngol. 1980, 

106, 405−409. 
23. Bouler, J.M.; Trecant, M.; Delecrin, J.; Royer, J.; Passuti, N.; Daculsi, G. Macroporous biphasic 

phosphate ceramics: Influence of five synthesis parameters on compressive strength. J. Biomed. 
Mater. Res. 1996, 32, 603−609. 

24. Suominen, E.; Aho, A.; Juhanoja, J.; Yli-Urpo, A. Hydroxyapatite-glass composite as a bone 
substitute in large metaphyseal cavities in rabbits. Int. Orthop. 1995, 19, 167−173. 

25. Behairy, Y.; Jasty, M. Bone grafts and bone substitutes in hip and knee surgery. Orthop. Clin. 
North Am. 1999, 30, 661−671. 

26. Hing, K.A.; Best, S.M.; Bonfield, W. Characterization of porous hydroxyapatite. J. Mater. Sci. 
Mater. Med. 1999, 10, 135−145. 

27. Itokazu, M.; Matsunaga, T.; Ishii, M.; Kusakabe, H.; Wyni, Y. Use of arthroscopy and interporous 
hydroxyapatite as a bone graft substitute in tibial plateau fractures. Arch Orthop. Trauma Surg. 
1996, 115, 45−48. 

28. Ransford, A.O.; Morley, T.; Edgar, M.A.; Webb, P.; Paauti, N.; Chopin, D.; Morin, C.; Michel, 
F.; Garin, C.; Pries, D. Synthetic porous ceramic compared with autograft in scoliosis surgery. A 
prospective, randomized study of 341 patients. J. Bone Joint Surg. Br. 1998, 80, 13−18. 

29. Babister, J.C.; Hails, L.A.; Oreffo, R.O.; Davis, S.A.; Mann, S. The effect of pre-coating human 
bone marrow stromal cells with hydroxyapatite/amino acid nanoconjugates on osteogenesis. 
Biomaterials 2009, 30, 3174−3182. 

30. Bolland, B.J.; Kanczler, J.M.; Ginty, P.J.; Howdle, S.M.; Shakesheff, K.M.; Dunlop, D.G.; 
Oreffo, R.O. The application of human bone marrow stromal cells and poly(DL-lactic acid) as a 
biological bone graft extender in impaction bone grafting. Biomaterials 2008, 29, 3221−3227. 

31. Green, D.W.; Walsh, D.; Yang, X.B.; Mann, S.; Oreffo, R.O. Stimulation of human bone marrow 
stromal cells using growth factor encapsulated calcium carbonate microspheres. J. Mater. Chem. 
2004, 14, 2206−2212. 

32. Green, D.W.; Bolland, B.J.; Kanczler, J.M.; Lanham, S.A.; Walsh, D.; Mann, S.; Oreffo, R.O. 
Augmentation of skeletal tissue formation in impaction bone grafting using vaterite microsphere 
biocomposites. Biomaterials 2009, 30, 1918−1927. 

33. Hanft, J.; Sprinkle, R.; Surprenant, M.; Werd, M. Implantable bone substitute materials. Implant 
Biomat. 1995, 12, 437−455. 



Materials 2009, 2                            
 

 

1905

34. Kuhne, J.H.; Bartl, R.; Frisch, B.; Hammer, C.; Jannson, V.; Zimmer, M. Bone formation in 
coralline hydroxyapatite: Effects of pore size studied in rabbits. Acta Orthop. Scand. 1994, 65, 
246−252. 

35. Tsuruga, E.; Takita, H.; Itoh, H.; Wakisaka, Y.; Kuboki, Y. Pore size of porous hydroxyapatite as 
the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 1997, 121, 317−324. 

36. Jarcho, M. Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. Relat. Res. 1981, 
157, 259−278. 

37. Hamson, K.R.; Toth, J.M.; Stiehl, J.B.; Lynch, K.L. Preliminary experience with a novel model 
assessing in vivo mechanical strength of bone grafts and substitute materials. Calcif. Tissue Int. 
1995, 57, 64−68. 

38. Kokubo, T.; Kim, H.M.; Kawashita, M. Novel bioactive materials with different mechanical 
properties. Biomaterials 2003, 24, 2161−2175. 

39. Yoshida, A.; Miyazaki, T.; Ashizuka, M.; Ishida, E. Bioactivity and mechanical properties of 
cellulose/carbonate hydroxyapatite composites prepared in situ through mechanochemical 
reaction. J. Biomater. Appl. 2006, 21, 179−194. 

40. Le Nihouannen, D.; Goyenvalle, E.; Aguado, E.; Pilet, P.; Bilban, M.; Daculsi, G.; Layrolle, P. 
Hybrid composites of calcium phosphate granules, fibrin glue, and bone marrow for skeletal 
repair. J. Biomed. Mater. Res. A 2007, 81, 399−408. 

41. Hing, K.A.; Annaz, B.; Saeed, S.; Revell, P.A.; Buckland, T. Microporosity enhances bioactivity 
of synthetic bone graft substitutes. J. Mater. Sci. Mater. Med. 2005, 16, 467−475. 

42. Frayssinet, P.; Trouillet, J.L.; Rouquet, N.; Azimus, E.; Autefage, A. Effects of the chemical 
composition of calcium phosphate ceramics on their osseointegration. Orthop. Int. 1993, 1, 
308−313. 

43. Shimazaki, K.; Mooney, V. Comparative study of porous hydroxyapatite and tricalcium 
phosphate as bone substitute. J. Orthop. Res. 1985, 3, 301−310. 

44. Spence, G.; Patel, N.; Brooks, R.; Bonfield, W.; Rushton, N. Osteoclastogenesis on 
hydroxyapatite ceramics: The effect of carbonate substitution. J. Biomed. Mater. Res. A. 2009, in 
press.  

45. Yang, X.B.; Webb, D.; Blaker, J.; Boccaccini, A.R.; Maquet, V.; Cooper, C.; Oreffo, R.O. 
Evaluation of human bone marrow stromal cell growth on biodegradable polymer/Bioglass 
composites. Biochem. Biophys. Res. Commun. 2006, 342, 1098−1107. 

46. Ikeda, N.; Kawanabe, K.; Nakamura, T. Quantitative comparison of osteoconduction of porous, 
dense A-W glass-ceramic and hydroxyapatite granules (effects of granule and pore sizes). 
Biomaterials 1999, 20, 1087−1095. 

47. Oonishi, H.; Hench, L.L.; Wilson, J.; Sugihara, F.; Tsuji, E.; Kushitani, S.; Iwaki, H. Comparative 
bone growth behavior in granules of bioceramic materials of various sizes. J. Biomed. Mater. Res. 
1999, 44, 31−43. 

48. Carlisle, E.M. Silicon: A Possible Factor in Bone Calcification. Science 1970, 167, 279−280. 
49. Reffitt, D.M.; Ogston, N.; Jugdaohsingh, R.; Cheung, H.F.; Evans, B.A.; Thompson, R.P.; Powell, 

J.J.; Hampson, G.N. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic 
differentiation in human osteoblast-like cells in vitro. Bone. 2003, 32, 127−135. 



Materials 2009, 2                            
 

 

1906

50. Gibson, I.R.; Best, S.M.; Bonfiled, W. Chemical characterization of silicon-substituted 
hydroxyapatite. J. Biomed. Mater. Res. 1999, 44, 422−428. 

51. Patel, N.; Brooks, R.A.; Clarke, M.T.; Lee, P.M.; Rushton, N.; Gibson, I.R.; Best, S.M.; Bonfield, 
W. In vivo assessment of hydroxyapatite and silicate-substituted hydroxyapatite granules using an 
ovine defect model. J. Mater. Sci. Mater. Med. 2005, 16, 429−440. 

52. Porter, A.E.; Patel, N.; Skepper, J.N.; Best, S.M.; Bonfield, W. Comparison of in vivo dissolution 
processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 
2003, 24, 4609−4620. 

53. Porter, A.E.; Buckland, T.; Hing, K.; Best, S.M.; Bonfield, W. The structure of the bond between 
bone and porous silicon-substituted hydroxyapatite bioceramic implants. J. Biomed. Mater. Res. A 
2006, 78, 25−33. 

54. Huang, J.; Best, S.M.; Bonfield, W.; Buckland, T. Development and characterization of titanium-
containing hydroxyapatite for medical applications. Acta Biomater. 2009, in press.  

55. Harada, Y.; Wang, J.T.; Doppalapudi, V.A.; Willis, A.A.; Jasty, M.; Harris, W.H.; Nagase, M.; 
Goldring, S.R. Differential effects of different forms of hydroxyapatite and 
hydroxyapatite/tricalcium phosphate particulates on human monocyte/macrophages in vitro. J. 
Biomed. Mater. Res. 1996, 31, 19−26. 

56. Sun, J.S.; Tsuang, Y.H.; Chang, W.H.; Li, J.; Liu, H.C.; Lin, F.H. Effect of hydroxyapatite 
particle size on myoblasts and fibroblasts. Biomaterials 1997, 18, 683−690. 

57. Habibovic, P.; Kruyt, M.C.; Juhl, M.V.; Clyens, S.; Martinetti, R.; Doicini, L.; Theilgaard, N.; van 
Blitterswijk, C.A. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J. 
Orthop. Res. 2008, 26, 1363−1370. 

58. Hing, K.A.; Wilson, L.F.; Buckland, T. Comparative performance of three ceramic bone graft 
substitutes. Spine J. 2007, 7, 475−490. 

59. McAndrew, M.P.; Gorman, P.W.; Lange, T.A. Tricalcium phosphate as a bone graft substitute in 
trauma: a preliminary report. J. Orthop. Trauma. 1988, 2, 333−339. 

60. Heise, U.; Osborn, J.F.; Duwe, F. Hydroxyapatite cermic as a bone substitute. Int. Orthop. 1990, 
14, 329−338. 

61. Blom, A.W.; Cunningham, J.; Hughes, G.; Lawes, T.J.; Smith, N.; Blunn, G.; Learmonth, I.D.; 
Goodship, A.E. The compatibility of ceramic bone graft substitutes as allograft extenders for use 
in impaction grafting of the femur. J. Bone Joint Surg. Br. 2005, 87, 421−425. 

62. Blom, A.W.; Wylde, V.; Livesey, C.; Whitehouse, M.R.; Eastaugh-Waring, S.; Bannister, G.C.; 
Learmonth, I.D. Impaction bone grafting of the acetabulum at hip revision using a mix of bone 
chips and a biphasic porous ceramic bone graft substitute. Acta Orthop. 2009, 80, 150−154. 

63. Oonishi, H. Orthopaedic applications of hydroxyapatite. Biomaterials 1991, 12, 171−178. 
64. Oonishi, H.; Iwaki, Y.; Kin, N.; Kushitani, S.; Murata, N.; Wakitani, S.; Imoto, K. Hydroxyapatite 

in revision of total hip replacements with massive acetabular defects: 4 to 10 year clinical results. 
J. Bone Joint Surg. Br. 1997, 79, 87−92. 

65. Hashimoto, N.; Ando, M.; Yayama, T.; Uchida, K.; Kobayashi, S.; Negoro, K.; Baba, H. Dynamic 
analysis of the resultant force acting on the hip joint during level walking. Artif. Organs. 2005, 29, 
387−392. 



Materials 2009, 2                            
 

 

1907

66. Oonishi, H.; Kushitani, S.; Yasukawa, E.; Iwaki, H.; Hench, L.L.; Wilson, J.; Tsuji, E.; Sugilhara, 
T. Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin. Orthop. 
Relat. Res. 1997, 334, 316−325. 

67. Wasielewski, R.C.; Sheridan, K.C.; Lubbers, M.A. Coralline hydroxyapatite in complex 
acetabular reconstruction. Orthopedics 2008, 31, 367. 

68. Uchida, A.; Nade, S.; McCartney, E.; Ching, W. The use of ceramics for bone replacement. J. 
Bone Joint Surg. Br. 1984, 66, 269−275. 

69. Kawanabe, K.; Iida, H.; Matsusue, Y.; Nishimatsu, H.; Kasai, R.; Nakamura, T. A-W glass 
ceramic as a bone substitute in cemented hip arthroplasty: 15 hips followed 2-10 years. Acta. 
Orthop. Scand. 1998, 69, 237−242. 

70. Nich, C.; Sedel, L. Bone substitution in revision hip replacement. Int. Orthop. 2006, 30, 525−531. 
71. Aulakh, T.S.; Jayasekera, N.; Kuiper, J.H.; Richardson, J.B. Long-term clinical outcomes 

following the use of synthetic hydroxyapatite and bone graft in impaction in revision hip 
arthroplasty. Biomaterials 2009, 30, 1732−1738. 

72. Nelissen, R.G.; Valstar, E.R.; Poll, R.G.; Garling, E.H.; Brand, R. Factors associated with 
excessive migration in bone impaction hip revision surgery: a radiostereometric analysis study. J. 
Arthroplasty 2002, 17, 826−833. 

73. Gokhale, S.; Solimna, A.; Dantas, J.P.; Richardson, J.B.; Cook, F.; Kuiper, J.H.; Jones, P. 
Variables affecting initial stability of impaction grafting for hip revision. Clin. Orthop. Relat. Res. 
2005, 432, 174−180. 

74. Nelissen, R.G.; Bauer, T.W.; Weidenhielm, L.R.; LeGolvan, D.P.; Mikhail, W.E. Revision hip 
arthroplasty with the use of cement and impaction grafting. Histological analysis of four cases. J. 
Bone Joint Surg. Am. 1995, 77, 412−422. 

75. Bolland, B.J.; New, A.M.; Madabhushi, G.; Oreffo, R.O.; Dunlop, D.G. The role of vibration and 
drainage in femoral impaction bone grafting. J. Arthroplasty. 2008, 23, 1157−1164. 

76. Boden, S.D.; Martin, G.J.J.; Morone, M.; Ugbo, J.L.; Titus, L.; Hutton, W.C. The use of coralline 
hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract 
for posterolateral lubar fusion. Spine 1999, 24, 320−327. 

77. Acharya, N.K.; Kumar, R.J.; Varma, H.K.; Menon, V.K. Hydroxyapatite-bioactive glass ceramic 
as stand-alone graft substitute for posterolateral fusion of lumbar spine: A prospective, matched, 
and controlled study. J. Spinal Disord. Tech. 2008, 21, 106−111. 

78. Ma, B.; Clarke, S.A.; Brooks, R.A.; Rushton, N. The effect of simvastatin on bone formation and 
ceramic resorption in a peri-implant defect model. Acta Biomater. 2007, 4, 149−155. 

79. Valimaki, V.V.; Moritz, N.; Yrjans, J.J.; Vuorio, E.; Aro, H.T. Effect of zoledronic acid on 
incorporation of a bioceramic bone graft substitute. Bone 2006, 38, 432−443. 

80. Iwai, T.; Harada, Y.; Imura, K.; Iwabuchi, S.; Murai, J.; Hiramatsu, K.; Myoui, A.; Yoshikawa, 
H.; Tsumaki, N. Low-intensity pulsed ultrasound increases bone ingrowth into porous 
hydroxyapatite ceramic. J. Bone Miner. Metab. 2007, 25, 392−399. 

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 
This article is an open-access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


