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Abstract: Heterogeneous photocatalysis offer many possibilities for finding appropiate 
environmentally friendly solutions for many of the the problems affecting our society (i.e., 
energy issues). Researchers are still looking for novel routes to prepare solid photocatalysts 
able to transform solar into chemical energy more efficiently. In many developing 
countries, biomass is a major energy source, but currently such countries lack of the 
technology to sustainably obtain chemicals and/or fuels from it. The Roadmap for Biomass 
Technologies, authored by 26 leading experts from academia, industry, and government 
agencies, has predicted a gradual shift back to a carbohydrate-based economy. Biomass 
and biofuels appear to hold the key to satisfy the basic needs of our societies for the 
sustainable production of liquid fuels and high value-added chemicals without 
compromising the scenario of future generations. In this review, we aim to discuss various 
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design routes for nanostructured photocatalytic solid materials in view of their applications 
in the selective transformation of lignocellulosic biomass to high value-added chemicals. 
 
Keywords: heterogeneous photocatalysis; nanoparticles; biomass transformation; solar 
energy; biofuels 

 

1. Introduction 

Nanotechnology has attracted a great deal of attention in the last few years as miniaturisation and 
nanomaterials are often foreseen to be the key for a sustainable future. In a broadest sense, 
nanochemistry makes use of the tools of synthetic and materials chemistry to generate nanomaterials 
with size, shape and surface properties that can be designed to evoke a specific function with the aim 
to be utilised in a particular application/end use. Nanotechnology allows us to manipulate the matter 
on a molecular scale (much less than 100 nanometers), helping us to obtain valuable information for 
the synthesis of new materials with specific properties and with a high degree of reproducibility. In 
this regard, an important part of the scientific community is currently focused on a very challenging 
and relevant research´s direction, which is the synthesis of novel nanostructured materials capable of 
absorbing the photonic energy coming from the sun with the aim of turning it into chemical or 
electrical energy (Scheme 1). 

 
Scheme 1. The efficient use of solar energy and biomass is considered a potential 
solution for energy and environmental challenges. 
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Many of these nanostructured materials find important applications in heterogeneous photocatalysis 
[1–3] due to the relevance of this multidisciplinary area as well as the multipurpose character of the 
solutions derived from it. Photocatalysis offers the possibility of extending the spectrum of  
applications to a variety of processes, including oxidations and oxidative cleavages, reductions, 
isomerizations, substitutions, condensations and polymerizations. 

Applying the concept of nanotechnology to heterogeneous catalysis helps us understand more 
accurately the transformations ocurring on the catalyst´s surface at a molecular level [4]. The synthesis 
of materials with nanometric dimensions will facilitate a better understanding of the reaction 
mechanisms as well as to design novel useful catalytic systems. Nevertheless, despite several advances 
in designing new methods to obtain reproducible materials, there still exist numerous difficulties 
which need to be overcome. From the point of view of the materials, photocatalysts require a series of 
characteristic properties depending on their applications, including particle size, specific surface area 
or space between the electronic levels, among others. 

Research activities have more recently focused on advanced oxidation processes (AOPs) for the 
destruction of synthetic organic species resistant to conventional methods. AOPs rely on the in-situ 
generation of highly reactive radical species, mainly HO•, by using solar, chemical or other forms of 
energy [5,6]. The most attractive feature of AOPs is that this highly effective and strongly oxidizing 
radical facilitates the degradation of a wide range of organic chemical substrates with no selectivity. 

Heterogeneous photocatalysis involves the acceleration of photoreactions in presence of a 
semiconductor catalyst. One of the most relevant applications of heterogeneous catalysis is 
photocatalytic oxidation (PCO) to the partial or total mineralisation of gas/liquid-phase contaminants 
to benign substances [7]. 

Titania photocatalysis, also referred to as the “Honda–Fujishima effect”, was first revealed by the 
pioneering research of Fujishima and Honda [8]. These authors disclosed the possibility of water-
splitting by means of a photoelectrochemical cell comprising of an inert cathode and a rutile titania 
anode. The application of titania photocatalysis was subsequently extended to environmental 
applications. Frank and Bard [9] reported for the first time the application of TiO2 in the photocatalytic 
oxidation of CN− and SO3

2− in aqueous medium under sunlight. Further reports on the photocatalytic 
reduction of CO2 by Inoue et al. [10] attracted more interest in titania photocatalysis. 

2. Basic Principles of Photocatalysis 

Heterogeneous photocatalysis is a discipline which includes a large variety of reactions: organic 
synthesis, water splitting, photoreduction, hydrogen transfer, O2

18–O2
16 and deuterium–alkane isotopic 

exchange, metal deposition, disinfection and anti-cancer therapy, water detoxification, removal of 
gaseous pollutants, etc. [11,12]. Among them, titania-assisted heterogeneous photocatalytic oxidation 
has received more attention for many years as alternative method for purification of both air and water 
streams. The basic photophysical and photochemical principles underlying photocatalysis are already 
established and have been extensively reported [13,14].  

A photocatalytic reaction is initiated when a photoexcited electron is promoted from the filled 
valence band of a semiconductor photocatalyst (SC) to the empty conduction band as the absorbed 
photon energy, hυ, equals or exceeds the band gap of the semiconductor photocatalyst, leaving behind 
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a hole in the valence band. In concert, electron and hole pair (e−–h+) is generated. The following chain 
reactions have been widely accepted: 

Photoexcitation:                    TiO2/SC  +  hυ →   e−  +  h+ (1) 

Oxygen ionosorption:                     (O2)ads +  e−   →    O2
•− (2)

Ionization of water:                       H2O   →    OH−  +   H+ (3)
Protonation of superoxides:           O2

•− +  H+   →    HOO• (4)

The hydroperoxyl radical formed in (4) has also scavenging properties similar to O2 thus doubly 
prolonging the lifetime of photohole: 

HOO•   +   e−  →   HO2
− (5)

HOO−   +   H+ →   H2O2 (6)

Both the oxidation and reduction can take place at the surface of the photoexcited semiconductor 
photocatalyst. Recombination between electron and hole occurs unless oxygen is available to scavenge 
the electrons to form superoxides (O2

•−), its protonated form the hydroperoxyl radical (HO2•) and 
subsequently H2O2. 

3. Mechanism of Titania-Assisted Photocatalysis 

Titania has been widely used as a photocatalyst for generating charge carriers, thereby inducing 
reductive and oxidative processes, respectively [15]. Generally, ΔG is negative for titania-assisted 
aerobic photocatalytic reactions, as opposed to a photosynthetic reaction [11]. The corresponding acid 
A of the non-metal substituent is formed as by-product: 

 Organic wastes  ⇒  TiO2/O2/ hυ≥Eg  ⇒  Intermediate(s) ⇒  CO2  +  H2O   +   A    (7)

The [>TiIVOH•+] and [>TiIIIOH] represent the surface-trapped valence band electron and surface-
trapped conduction band electrons, respectively. The surface-bound OH radical represented by 
[>TiIVOH•+] is chemically equivalent to the surface-trapped hole allowing the use of the former and 
latter terms interchangeably [16]. According to Lawless and Serpone [17], the trapped hole and a 
surface-bound OH radical are indistinguishable species. A good correlation occurs between charge 
carrier dynamics, their surface densities and the efficiency of the photocatalytic degradation over TiO2. 
In the last two decades, aqueous suspensions of TiO2 have been probed by pico-second and more 
recently femto-second absorption spectroscopies [18,19]. Traditionally, an electron scavenger has been 
employed in such study. A femto-second spectroscopic study of TiO2/SCN− aqueous system by 
Colombo and Bowman [18] indicated dramatic increase in the population of trapped charge carriers 
within the first few pico-seconds. The results also confirmed that for species adsorbed to TiO2, the 
hole-transfer reaction can successfully compete with the pico-second electron–hole recombination 
process. The following interfacial photochemical reactions were described (Figure 1): 

Photoexcitation:             TiO2  + hυ →   e-
CB + h+

VB (8) 

Charge carrier trapping:                          e-
CB   →   e-

TR (9)
Charge carrier trapping:                      h+

VB   →    h+
TR (10)

Electron-hole recombination:        e-
TR + h+

VB(h+
TR) → e-

CB + heat (11)
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Figure 1. Photocatalytic process over TiO2. Adapted from Programa Iberoamericano de 
Ciencia y Tecnologia para el Desarrollo (Red CYTED VIII-G). 

 
 
Photoholes have great potential to oxidize organic species directly (although mechanism not proven 

conclusively [7]) or indirectly via the combination with OH• predominant in aqueous solution [13,20]: 

H2O   +   h+  →   OH•   +   H+ (12) 

R–H   +   OH•   →   R•   +   H2O     (13)
R•   +   h+  →   R+•   →   Degradation products (14)

Mediation of radical oxidative species in photooxidation was evidenced by photo- and electro-
luminescence spectra of TiO2 electrodes in aqueous solutions measured as functions of the electrode 
potential and the solution pH [21]. It was found that the radical oxidative species originally absent 
accumulated after illumination under anodic bias. The primary photoreactions (1)–(11) indicate the 
critical role of charge carriers (electron–hole pair) in photooxidative degradation. Essentially, hydroxyl 
radicals (•OH), holes (h+), superoxide ions (O2

−) and hydroperoxyl radicals (•OOH) are highly reactive 
intermediates that will act concomitantly to oxidize large variety of organic pollutants including 
volatile organic compounds (VOCs) and bioaerosols [22,23]. It is however argued experimentally that 
the oxidative reaction on titania photocatalyst surface occurs mainly via the formation of holes (with 
quantum yield of 5.7 × 10−2) not hydroxyl radicals formation (quantum yield 7 × 10−5) [24]. As a 
photochemical application, TiO2 photocatalysis is invariably affected by the surface properties of the 
TiO2 particle. The photoinduced phenomenon is affected by quantum size. Anpo et al. [25] observed a 
blue shift and increase in reaction yield and photocatalytic activity as the diameter of the TiO2 particles 
become smaller, especially below 10 nm. This observation was attributed to the suppression of 
radiationless transfer and the concurrent enhancement of the activities of the charge carriers. 
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4. Influence of Operational Parameters in Photocatalyst Efficiency 

 4.1. Light intensity 

The photocatalytic reaction rate depends largely on the radiation absorption of the photocatalyst 
[26,27]. Recent reports revealed increase in the degradation rate with increase in light intensity during 
photocatalytic degradation [28,29]. The nature or form of the light does not affect the reaction pathway 
[30]. In other words, the band-gap sensitization mechanism does not have any significant influence in 
photocatalytic degradation. Unfortunately, only 5% of the total irradiated natural sunlight has 
sufficient energy to cause effective photosensitization [31]. Furthermore, energy losses due to light 
reflection, transmission and transformation into heat are inevitable in the photoprocess [32]. This 
limitation has greatly attracted more researchers to the applications of TiO2 to 
decontamination/detoxification. The overall quanta of light absorbed by any photocatalyst or reactant 
is given by Øoverall, the quantum yield: 

Øoverall = rate of reaction / rate of absorption of radiation 

where the rate of reaction (mol/time) accounts for moles of reactant/s consumed or product formed in 
the bulk phase and the rate of absorption of radiation (Einstein/time) relates to the amount (i.e., mol or 
einstein) of photons at wavelength λ absorbed by the photocatalyst. 

The light scattering in solid–liquid regimes is particularly significant. Quantum yield is thus 
experimentally difficult to determine as metal oxides in a heterogeneous regime including TiO2 cannot 
absorb all the incident radiation due to refraction [33].  

Another factor which limits photonic efficiency is the thermal recombination between electrons and 
holes [34]. For these reasons, it is argued that references to quantum yield or efficiency in 
heterogeneous system are not advised despite previous use of the term by previous references [35, 36]. 
A practical and simple alternative for comparing process efficiencies was suggested by defining the so-
called relative photonic efficiency ζr [37]. A quantum yield can be subsequently determined  
from ζr, as: 

Ø = ζr Øcompound,  

where Øcompound is the quantum yield for the photocatalyzed oxidative disappearance of this chemical 
using a photocatalyst (e.g., Degussa P-25 TiO2 ). 

4.2. Nature and concentration of the substrate 

Organic molecules which can effectively adsorb to the surface of the photocatalyst will be more 
susceptible to direct oxidation [38]. Thus, the photocatalytic degradation of aromatics depends on the 
substituent group. Nitrophenol has been reported to be a much stronger adsorbing substrate than 
phenol and therefore degrades faster [39]. In the degradation of chloroaromatics, Hugul et al. 
demonstrated that monochlorinated phenol degrades faster than di- or tri-chlorinated derivatives [40]. 
In general, molecules with electron-withdrawing groups including nitrobenzene and benzoic acid have 
been found to significantly adsorb in the dark compared to those with electron-donating groups [41]. 
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The concentration of organic substrates in time is also dependent on photonic efficiency during 
photocatalytic oxidation [42]. At high-substrate concentrations, however, the photonic efficiency 
decreases and the titanium dioxide surface becomes saturated, thus leading to catalyst  
deactivation [43]. 

4.3. Nature of the photocatalyst 

There is direct correlation between the surface of organic reagents and surface coverage of TiO2 
photocatalyst [44]. Kogo et al. reported that the number of photons hitting the photocatalyst actually 
controls the rate of the reaction [45]. The latter is an indication that the reaction takes place only in the 
adsorbed phase of the semiconductor particle. A very important parameter influencing the performance 
of nanomaterials in photocatalytic oxidation is the surface morphology, namely particle and 
agglomerate size [46]. Numerous forms of TiO2 have been synthesized by different methods with the 
aim to achieve materials exhibiting desirable physical properties, activity and stability for 
photocatalytic application [47]. Evidently, there is a clear connection between the surface properties, 
the rational development of improved synthesis routes and the potential usefulness of the material 
prepared for particular applications [48,49]. For instance, smaller nano-particle sizes have been 
reported to give higher activities in gaseous phase photomineralisation of organic compounds 
employing nanostructured titanium dioxide [50]. 

4.4. Concentration of photocatalyst  

The rate of photocatalytic reaction is strongly influenced by the photocatalyst concentration, as 
expected. Heterogeneous photocatalytic reactions are known to show proportional increase in 
photodegradation with increasing catalyst loadings [51]. Generally, in any given photocatalytic 
application, the optimum catalyst concentration must be determined, in order to avoid excess catalyst 
and ensure total absorption of efficient photons [52]. This is due to the observation of unfavourable 
light scattering and reduction of light penetration into the solution with an excess of photocatalyst [53]. 

4.5. pH  

The pH of the solution is an important parameter in reactions taking place on particulate surfaces as 
it controls the surface charge properties of the photocatalyst and size of the formed aggregates [54]. In 
the current update of the points of zero charge (pzc, it describes the condition when the electrical 
charge density on a surface is zero) by Kosmulski, Degussa P-25 (80% anatase and 20% rutile) is 
reported to have pzc 6.9 [55]. The surface of titania can be protonated or deprotonated under acidic or 
alkaline conditions, respectively, according to the following reactions: 

TiOH   +   H+  →   TiOH2
+ (15)  

TiOH + OH−   →   TiO−   +  H2O   (16) 

Thus, a titania surface will remain positively charged in acidic medium (pH < 6.9) and negatively 
charged in alkaline medium (pH > 6.9). Titanium dioxide is reported to have higher oxidizing activity 
at lower pH, but excess H+ at very low pH can decrease reaction rates [56]. 
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The effect of pH on the photocatalytic reactions of organic compounds and adsorption on TiO2 

surfaces has been extensively studied [57,58]. Changes in pH can result in enhancement of the 
efficiency of photoremoval of organic pollutants in presence of titanium dioxide without affecting the 
rate equation [59]. Improved degradation of such compounds has been reported under optimized 
conditions [60]. 

4.6. Reaction temperature 

Experimental studies on the dependence of the reaction rate with temperature in the degradation of 
organic compounds have been carried out since 1970s [61]. Many researchers established experimental 
evidences for the dependence of photocatalytic activity with temperature [62–66]. Generally, the 
increase in temperature enhances recombination of charge carriers and desorption process of adsorbed 
reactant species, resulting in a decrease of photocatalytic activity. These facts are in good agreement 
with the Arrhenius equation, for which the apparent first order rate constant Lnkapp should increase 
linearly with exp(−1/T). 

5. Properties and Characteristics of Photocatalysts: Titania vs Other Photocatalysts 

An ideal photocatalyst for photocatalytic oxidation is characterized by the following attributes [11]: 

(1) Photo-stability. 
(2) Chemically and biologically inert nature. 
(3) Availability and low cost. 
(4) Capability to adsorb reactants under efficient photonic activation (hυ ≥ Eg). 

Titania is the most widely employed (nano)material in photocatalytic processes, although there are 
several (nano)materials currently considered as photocatalysts and/or supports for photocatalysis aside 
from titania. These include related metal oxides, metal chalcogenides, zeolites (as supports), etc. 

5.1. Titania (TiO2) 

Nanometric size titania is by far the most widely employed system in photocatalysis due to its 
comparatively higher photocatalytic activity, low toxicity, chemical stability and very low cost. The 
anatase form of titania is reported to give the best combination of photoactivity and photostability [7]. 
Nearly all studies have focused on the crystalline forms of titania, namely anatase and rutile. The 
minimum band gap energy required for photon to cause photogeneration of charge carriers over TiO2 
semiconductor (anatase form) is 3.2 eV corresponding to a wavelength of 388 nm [67]. Practically, 
TiO2 photoactivation takes place in the range of 300–388 nm. The photoinduced transfer of electrons 
ocurring with adsorbed species on semiconductor photocatalysts depends on the band-edge position of 
the semiconductor and the redox potentials of the adsorbates [20]. The schematic diagram of band 
positions for various semiconductors is shown in Figure 2. 
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Figure 2. Diagram of conduction and valence band for various semiconductors. Adapted 
from Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo (Red CYTED 
VIII-G). 

 

5.1.1. Types of TiO2 catalysts 

The most frequently used TiO2 photocatalyst is the Degussa P25 material [68–71]. Its particle size 
is about 25 nm and its surface area is very small (50 m2/g). Reducing the particle size, up to a few 
nanometres, has the benefit of increasing the external surface area. These small particles tend to 
agglomerate by strong interparticle forces when the nanometric size region is reached. Further 
decrease of the particle size to a few nanometers reaches one point below which quantum size effects 
also start to operate and the band gap of the semiconductor increases, blue-shifting the light 
absorption.  

Titania in the form of photocatalyst titania materials of 1D dimensionality such as nanotubes, 
nanofibers and nanowires have also attracted attention for their use in photocatalysis [72–75]. In 
particular titania nanotubes with 10–100 nm in diameter and micrometric length have been the subject 
of intensive investigations. Compared to spherical particles, one-dimensional TiO2 nanostructures 
could provide a high surface area and a high interfacial charge transfer rate. The carriers are free to 
move throughout the length of these nanostructures, which is expected to reduce the e−/h+ 
recombination probability. Titania nanotubes have a relatively high surface area compared to non-
porous titania and time-resolved diffuse-reflectance spectroscopy has shown that charge recombination 
is disfavored by the tubular morphology of the titania. These titania nanotubes can be conveniently 
obtained starting from titania nanoparticles as, for instance P-25, that are digested under strong basic 
conditions in an autoclave at about 150 °C for several hours [76]. Annealing of these nanotube-TiO2 at 
400 °C for 3 h rendered nanotubes that are composed 100% by anatase. Laser flash photolysis of the 
nanotube-TiO2 compared with conventional titania nanoparticles has allowed to estimate apparent 
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quantum yield of charge separation (Øcs). Table 1 lists some of the Øcs values measured for nanotube-
TiO2 compared with different conventional spherical nanoparticles powders. 

Table 1. Surface area and photophysical data obtained by laser flash photolysis of 
nanotube-TiO2 and other TiO2 materials. Reproduced by permission of the Royal Society 
of Chemistry from reference 77. 

TiO2
a BET surface area/m2g-1 Øcs T1/2/µs 

nanotube-TiO2-400 225 2.0 3.5 + 0.4 
Standard TiO2-1 300 7.1 0.6 + 0.2 
Standard TiO2-2 50 4.8 1.0 + 0.2 
Standard TiO2-3 10 1.6 0.7 + 0.2 

aTiO2—commercial samples of spherical shaped nanoparticles. 
 
Despite the research efforts in the search for novel photocatalysts over the last two decades, titania 

(in its anatase form) has remained a benchmark to compare with any emerging material candidate [78]. 
Zhang and Maggard also reported the preparation of hydrated form of amorphous titania with wider 
band energy gap than anatase and significant photocatalytic activity [79].  

There are important drawbacks that severely limit the application of titanium dioxide photocatalyst 
as a general tool either to degrade organic pollutants in the gas or liquid phase or to perform useful 
transformations of organic compounds [80–87]. One of the most important limitations is the lack of 
TiO2 photocatalytic activity with visible light [80,88,89] The reason for this is that the anatase form of 
TiO2 is a wide band gap semiconductor with a bandgap of 3.2 eV in most media, corresponding to an 
onset of the optical absorption band at about 350 nm. This onset of the TiO2 absorption is also 
inadequate to achieve efficient solar light photocatalytic activity, since approx. 5% of the solar light 
energy can be absorbed by TiO2. The above comments explain the continued interest in improving the 
photocatalytic efficiency of TiO2. 

5.1.2. Modified Titania systems for improved photocatalytic activity under visible light 

Two general strategies have been developed to increase the photocatalytic activity of TiO2 for 
visible light irradiation, namely the use of an organic dye as photosensitizer or doping TiO2 with 
metallic and non-metallic elements [2,86,88,90–100]. 

The first route (using an organic dye that absorbs visible light) has worked very well under 
conditions where oxygen/air is excluded and the degradation of the dye is minimized by the efficient 
quenching of the dye oxidation state with an appropriate electrolyte [86,92–94,101–105]. Otherwise, 
particularly the dye becomes rapidly mineralized and the photocatalytic system loses its response 
towards visible light in the presence of oxygen. The mechanism of TiO2 dye sensitization has been 
determined using time resolved subnanosecond laser flash photolysis techniques [101–104,106,107]. 
In dye sensitization, the most relevant points are the absorption spectrum of the dye in the visible 
region and the energy of the electron in the excited electronic state of the dye, which has to be high 
enough to be transferred to the semiconductor conduction band.  

A second chemical route to promote titania photoresponse into the visible spectra is related to the 
doping of TiO2 material either with metallic or non metallic elements [86,88,90–94]. In this case, 
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doping introduces occupied or unoccupied orbitals in the band gap region leading to negative or 
positive doping, respectively. A summary of some novel preparations of UV and visible light 
responsive titania photocatalysts developed over the last few years has been recently compiled [108]. 

Doping with metals 

Pt doping of titania has recently attracted a great deal of attention due to promising improvement in 
photooxidation rate especially in gas phase. Pt–TiO2 has been found to improve the photooxidation 
rate of ethanol, acetaldehyde and acetone in the gaseous phase [109,110]. A further development of 
mesoporous titania as photocatalyst has been reported by Li et al. [111]. These authors have prepared a 
photocatalyst constituted by mesoporous titania embedding gold nanoparticles (Au/TiO2). Its 
preparation requires P-123 as structure directing agent, a mixture of TiCl4 and Ti(OBu)4 and AuCl3 as 
the source of gold using ethanol as solvent. The gel is cast on a Petri dish to form a thin layer that is 
subsequently aged at 100°C to form a homogeneous mesostructured nanocomposite. Calcination at 
350 °C in air removes the template while inducing crystallization of TiO2 and formation of gold 
nanoparticles. 

TiO2 has also been doped with other metals, including V, Cr, Mn, Fe and Ni. The presence of the 
dopant was found to cause large shift in the absorption band of titanium dioxide towards the visible 
region. However, there are contradictory reports, particularly in the case of metal doping, describing 
either an increase or a decrease of the photocatalytic activity [2,12,97,112]. This controversy arises in 
part from the difficulty to establish valid comparisons between the photocatalytic activity of various 
solids testing different probe molecules and employing inconsistent parameters. Also, the doping 
procedure and the nature of the resulting material is very often not well defined and, most probably, 
controversial results can be obtained depending on the way in which the metal has been introduced. It 
also depends on the final concentration of the dopant. Thus, it has often been reported that there is an 
optimum doping level to achieve the maximum efficiency and beyond this point a decrease in 
photocatalytic activity is again observed [95,113]. Nevertheless, a generalised consensus has been 
reached with regards to the inappropriateness of metal doping as valid solution to enhance the 
photocatalytic activity of TiO2.  

Doping with non-metallic elements 

Doping with carbon, nitrogen, sulfur and other non-metallic elements has been recently reported to 
introduce visible light absorption on titanium dioxide [88, 90,113–123]. Asahi et al. were the first to 
show an absorption increase in the visible region upon nitrogen doping [114]. This opened the way to 
study titania doping with non-metallic elements [98, 115,124]. However, due to corrosion and 
instability of doped materials, it remains to be seen whether non-metallic element doping can be 
regarded as a general and valid approach to increase the photocatalytic efficiency of titania. 

The photophysical mechanism of doped TiO2 is not yet understood but the p-type metal ion dopants 
(with valencies lower than that of Ti4+) are believed to act as acceptor centres as opposed to the  
p-type [80].   
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5.2. Binary metal oxides 

In addition to TiO2, there are some other traditional metal oxides, which have also been extensively 
investigated due to their specific advantages. Many metal oxide semiconductors, including ZnO, ZrO2, 
Fe2O3 and WO3, have been examined and used as photocatalysts for the degradation of organic 
contaminants [125]. Among them, ZnO, α-Fe2O3 and WO3 are representative. However, they all have 
inherent drawbacks to be employed in photocatalysis. ZnO is easily photo-corroded under bandgap 
irradiation by photogenerated holes. WO3 is a stable photocatalyst for O2 evolution under visible light 
irradiation, but not suitable, for instance, for H2 production due to its low conduction band level.   
α-Fe2O3 has the same problem as WO3 and, moreover, is not very stable in acidic solutions.  

A nanocrystalline mesoporous Ta2O5 photocatalyst for H2 production was recently synthesized 
through a combined sol–gel process with a surfactant-assisted templating mechanism [126]. The 
effects of NiO as co-catalyst loading and doping with Fe have also been studied [126,127].  

5.3. Metal sulfides 

Metal sulfides are normally considered attractive candidates for visible light responsive 
photocatalysis. The valence band of metal sulfides normally consist of 3p orbitals of S, which result in 
a more occupied valence band and narrower bandgap as compared to metal oxides. Recent studies 
have focused on CdS, ZnS and their solid solutions.  

CdS has a suitable bandgap (2.4 eV) and good band positions for visible light assisted water 
splitting. However, S2− in CdS is easily oxidized by photogenerated holes, which is accompanied by 
the release of Cd2+ into solution, similar to ZnO. Such photo-corrosion is in fact a common problem to 
most metal sulfide photocatalysts. 

Recent developments aiming at improving CdS and ZnS photocatalysts can be divided into four 
directions: (1) synthesis of one-dimensional and porous CdS; (2) doping and formation of solid 
solutions of CdS and ZnS; (3) addition of co-catalysts to CdS; and (4) development of support and 
matrix structures for CdS. 

With regards to the synthesis of porous CdS, a solvothermal method was utilised to prepare CdS 
nanorods [128] and nanowires [129]. Mesoporous CdS nanoparticles with an average pore size of 5.4 
nm and a particle size of 4–6 nm have also been prepared by template-free, ultrasonic-mediated 
precipitation at room temperature [130]. Bao et al. have also prepared nanoporous CdS, including 
nanosheets and hollow nanorods, by means of a two-step aqueous route, consisting of an initial 
precipitation of nanoporous Cd(OH)2 intermediates and a subsequent S2−/OH− ion exchange [131]. The 
obtained CdS nanostructures contain pores with 3 nm diameter. White et al. have also recently 
prepared CdS quantum dots supported on porous polysaccharides as novel contrast agents to provide 
better insights into the pore structure of materials that cannot be seen by simple microscopy  
imaging [132] (Figure 3). 
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Figure 3. Mesoporous polysaccharide supported CdS quantum dots. Adapted from 
reference [132]. 

 
 
 
 
 
 
 
 
 
 
 
 
Comparatively, ZnS possesses a bandgap too large to respond to visible light (3.6 eV). Doping and 

formation of solid solutions of ZnS and narrow bandgap semiconductors can enhance the visible light 
utilization of ZnS. ZnS and CdS have similar crystal structures, which make them form solid  
solutions easily.  

(AgIn)XZn2(1−X)S2 solid solutions between ZnS and AgInS2 have a narrower bandgap. The 
absorption of the solid solutions shifted monotonically to longer wavelengths as the ratio of AgInS2 to 
ZnS increased. Photophysical and photocatalytic properties of these nanomaterials were highly 
dependent on composition mainly due to a change in band position caused by the contribution of the 
Ag 4d and S 3p, and Zn 4s4p and In 5s5p orbitals to the valence and conduction bands,  
respectively [133]. 

6. Preparation of Photocatalysts 

 6.1. Sol-gel method: A promising route for TiO2 nanophotocatalysts synthesis 

The sol–gel process is currently considered one of the most promising alternatives due to its 
inherent advantages including low sintering temperature, versatility of processing and homogeneity at 
molecular level. This method allows the preparation of TiO2-anatase at low temperature. This phase 
has been extensively investigated because of its high activity in photocatalytic applications [84,134]. 

TiO2 powders and gels with porous structure and high photocatalytic performance have been 
reported [135,136.]. However, the preparation of porous TiO2 films with high specific surface area is 
attracting more and more attention [137–139]. Photocatalytic processes are chemical reactions on the 
surface. The increase of surface area should improve the efficiency of the process as it implies larger 
contact surfaces exposed to the reagents [140,141]. Porous inorganic TiO2-anatase films can be 
obtained using templating membranes [142] or conventional alkoxide sol–gel route with the addition 
of surfactants [143]. Templates facilitate the retention of the initial polymer morphology up to the final 
porous structure. Polyethylene glycol is particularly suitable for modifying the porous structure of 
coatings [144,145] due to its complete decomposition at relatively low temperatures [146,147]. 
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However, precise control on synthesis and deposition processes is crucial to achieve thick, crack-free 
and homogeneous coatings. 

One of the advantages of sol-gel synthesis of mesoporous materials is the possibility to form 
uniform films on a substrate. Using the method studied in detail by Sanchez et al. [148,149] uniform 
films of mesoporous titania on glass can be obtained dipping the glass slide into an acidic solution of 
titanium alcoxide in ethanol. The surfactant concentration is lower than the critical micellar 
concentration (cmc) immediately after dipping the glass, but cmc is reached when the glass is 
gradually removed from solution (together with ethanol evaporation) and the surfactant starts to 
template the formation of thin layers of a mesoporous titanium oxide. The key point is to carefully 
control the rate of solvent evaporation to be sufficiently slow to allow the templation and 
oligomerization of the titanium oxide around the self assembled micelles created by the surfactant in 
its liquid crystal state.  

Applying the above methodology, Stucky et al. prepared highly structured materials constituted by 
anatase nanoparticles (5–10 nm) ordered forming a mesoporous film of TiO2 perpendicular to the glass 
slide [150]. The as-synthesized TiO2 material is initially structured in the 5–100 nm length scale 
forming mesopores, but the walls are formed by an amorphous TiO2 phase. Calcination of the material 
produces crystallization of the as-synthetized amorphous titanium dioxide into anatase phase  
(Figure 4) without destroying the mesoporous ordering of the film. Careful control of the calcination 
temperature (<500 °C) is also crucial to avoid the formation of the significantly less photocatalytic 
active rutile phase.  

Figure 4. Structure of anatase. 
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6.2. Ultrasonic preparation of nanostructured photocatalysts 

The use of non-conventional irradiation methods (e.g., sonication and microwave radiation) during 
the synthesis could be of help in order to avoid or at least reduce crystallite growth. In this sense, the 
use of ultrasonic irradiation during the synthetic procedure has been reported to facilitate the formation 
of smaller homogeneous nanoparticles and lead to an increase in surface area [2,151,152] 

The presence of solid particles (metal supports) in the liquid system enhances the cavitation 
phenomenon under ultrasonic treatment  [153,154] as the microbubbles tend to break up into smaller 
ones thus increasing the total number of regions of high temperature and pressure. Ultrasound can also 
enhance the mass transfer towards the liquid–solid interface [155]. 

Aging under sonication led to pure-anatase nanoparticles (the most active photocatalytic phase of 
titania) irrespective of the titanium precursor used and increased significantly the surface area of the 
nanostructured material. This enhancement in surface area resulted in an increase in molar conversion 
in the selective oxy-dehydrogenation of 2-propanol to acetone using Pt/TiO2 as a photocatalyst [2]. 

In the same type of reaction, the subsequent photodeposition of platinum on Ti- and V-containing 
zeolites results in a sharp increase in molar conversion, low or negligible deactivation with time-on-
stream and significant increase in selectivity to acetone (90–96%) [156]. 

6.3. Other non-conventional synthesis methodologies 

Different methods have been used to prepare TiO2 materials: reactive method [157], chemical 
vapour deposition, sputtering, pulsed laser deposition (PLD) [158] or hydrothermal method [159]. 
Mergel et al. [157] deposited films by electron beam evaporation of granular TiO2 of purity 99.5% in a 
BAK640 high vacuum chamber pumped with a diffusion pump. The thickness of the films obtained by 
this method ranged from 0.9 to 2.4 mm.  

Yamamoto et al. [158] synthesized TiO2 films with anatase and rutile structure by pulsed laser 
deposition (PLD) with a NdYAG laser under controlled O2 atmosphere. The same authors have also 
successfully prepared epitaxial anatase films on several types of oxide substrates with different lattice 
parameters (LaAlO3, SrTiO3, MgO and yttria-stabilized zirconia; YSZ). The high quality epitaxial 
rutile films were also grown on α-Al2O3 substrate. During deposition, substrates were maintained at 
500 °C and exposed to 35 mtorr O2 gas pressure. The typical thicknesses of epitaxial films were in the 
200 to 880 nm range. From optical absorption measurements, the optical band gaps for anatase and 
rutile TiO2 epitaxial films were evaluated to be 3.22 eV and 3.03 eV, respectively. The contribution of 
photoactivated electrons and holes to photocatalysis in these epitaxial TiO2 films can be improved via 
further approaches to reduce crystal defects. 

7. Photochemical Transformations of Biomass via Heterogeneous Photocatalysis 

Photocatalysis is a good example of Green Chemistry. The relationship between Photocatalysis and 
Green Chemistry can be described in different ways. The name of the discipline itself is related to two 
of the so-called principles of Green Chemistry. “Photo” means light and if it is sunlight, as this is the 
case, there will be Energy Economy (6th Principle). On the other hand, catalytic processes are always 
preferable to non-catalytic ones (9th Principle). Furthermore, photocatalysis employed for the 
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transformation of biomass has impact on another two Green Chemistry principles, the use of 
renewable feedstocks (7th Principle) and the design for degradation (10th Principle). 

Lignocellulosic substances (e.g., wood) undergo UV-induced degradative reactions. Early studies 
from Stillings and Van Nostrand on cellulose showed cotton fibers irradiated with UV-light under 
nitrogen atmosphere underwent photochemical transformations that led to an increase in the number of 
reducing sugars with a corresponding evolution of carbon monoxide and carbon dioxide [159]. 

Desai and Shields also studied the photochemical degradation of cellulose filter paper 25 years later 
[160]. Working with rubber-stoppered static irradiation tubes that were initially filled with air (in 
contrast with the nitrogen-purged system of Stillings and Van Nostrand), they observed a spectrum of 
fully reduced and oxygenated hydrocarbons produced upon degradation. Such hydrocarbons were only 
observed after irradiation periods longer than 1–2 h, whereas no delay was observed in an initially 
oxygen-free atmosphere (vide infra). Biomass, the most versatile renewable resource, could therefore 
be turned into a wide range of chemicals and derivatives by means of photocatalysis. 

In this section, we will highlight some of the most trendy and high potential processes for future 
development in the photochemical transformations of a range of biomass using heterogeneous 
photocatalysts.  

7.1. Photocatalytic hydrogen production 

Nanotechnology have boosted the modification of existing photocatalysts for the production of 
hydrogen and the discovery and development of new candidate materials, as shown in Figure 5. The 
rapidly increasing number of scientific publications on nanophotocatalytic H2 production (1.5 times 
every year since 2004) provides clear evidences for the significance of this hot topic. Many papers 
studied the effect of different nanostructures and nanomaterials on the performance of photocatalysts, 
since their energy conversion efficiency is principally influenced by nanoscale properties. 

Figure 5. Evolution of the number of publications on (nano)photocatalytic production of 
hydrogen. Data from Web of Science (ISI, 2009).   

 
 
 
 
 
 
 
 
 
 
 
 
 



Materials 2009, 2                            
 

 

2244

Biomass sources have been utilized for the sustainable production of hydrogen [161,162]. A 
number of processes have been developed for this purpose (e.g., steam gasification [163], fast 
pyrolysis [162,164], and supercritical conversion [165,166]. However, these processes require harsh 
reaction conditions including high temperatures and/or pressures and consequently imply high costs.  

Compared to these energy intensive thermochemical processes, photocatalytic reforming may be a 
good approach as this process can be driven by sunlight and performed at room temperature. 
Producing hydrogen by photocatalytic reforming of renewable biomass may also be more practical and 
viable than that of photocatalytic water-splitting due to its potentially higher efficiency. Water-
splitting processes are  relatively low efficient as limited by the recombination reaction between 
photogenerated electrons and holes [167].  

However, to the best of our knowledge, there are only a few reports on the photocatalytic reforming 
of biomass to hydrogen in the literature. Pioneer studies were conducted in 1980 [168]. Kawai and 
Sakata reported that hydrogen could be generated from carbohydrates on RuO2/TiO2/Pt photocatalyst 
under 500W Xe lamp irradiation. The process is expressed as equation (1) together with the 
photosynthesis of carbohydrates by green plants (Equation 2), as follows: 

(C6H12O6)n   +   6n H2O                               6n CO2   +   12n H2   (1)

6n H2O   +   6n CO2                                    (C6H12O6)n  +  6n O2   (2)

light, RuO2/TiO2/Pt

light, green plant

12n H2O                                   12n H2   +   6n O2     (3)  
where (C6H12O6)n represents saccharose (n = 2), starch (n ≈ 100) or cellulose (n ≈ 1,000–5,000) after 
hydrolysis. This  method may also be applied to decomposition of excrements containing cellulose, 
protein and fat, acompaned by the production of H2 as biofuel. 

The same authors subsequently reported that hydrogen could also be generated under identical 
conditions from other biomass sources including cellulose, dead insects, and waste materials  
[169–171]. These studies demonstrate the feasibility of the photocatalytic production of hydrogen from 
biomass.  

Recent studies in H2 production from the photocatalytic reforming of glucose (a model compound 
of cellulose) have also been performed using M/titania catalysts (where M is Pt, Rh, Ru, Au, or Ir; 
titania as commercial TiO2 Degussa P25) [172]. Rh/TiO2 was found to be the optimum catalytic 
system providing approx. 3500 µmol of H2 for 0.5 g of catalyst and 5 h of irradiation.  

Verykios et al. found that using alcohols (model compounds of biomass structure) as hole 
scavengers will result in increased quantum yields and enhanced rates of photocatalytic hydrogen 
production [173]. This is a good example of solar energy conversion into chemical energy (H2 as an 
energy carrier). The reaction is a mild 100% selective oxidation  process as well as a “chemical storage 
of light energy”. 

Hydrogen can also be photocatalytically generated from chemicals or biomass using Pt/TiO2 
photocatalyts [174,175]. The high selectivity in this process was ascribed to the oxidation by a 
photoactive neutral, atomic oxygen species, detected by photoconductivity, and resulting from the 
neutralization of dissociatively chemisorbed O−(ads) species by positive photogenerated holes h+: 

O−
(ads)    +   h+   →  O*(ads) 
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7.2. Photo-transformation (non-catalytic) of biomass: Solar gasification 

Concentrated solar energy can supply the energy to drive the gasification process [176–179]. Solar 
gasification decreases the amount of biomass that needs to be burned in the gasification process, thus 
improving the process thermal efficiency.  

Heat is provided to the gasification unit using concentrated solar gasifiers and specially designed 
solar reactors. Two different reactor configurations are used for solar gasification including direct 
irradiation of the reactants through a transparent window (usually made of fused quartz) and indirect 
heating through an opaque wall, in which the solar energy is absorbed by a nontransparent wall  
and transferred to inside particles. Solar energy is also used to dry wet biomass prior to the  
gasification process. 

Figure 6. Concept of the reactor for solar gasification (Figure adapted from Adinberg et al. 
[179]. Reproduced from reference [77] by permission of the Royal Society of Chemistry. 

 
 
Figure 6 shows the concept of a solar gasification reactor based on a design by Adinberg et al. 

[179]. The reactor is a central spherically or cylindrically shaped reactor. An array of vertical tubes are 
evenly distributed around the reactor. Incoming solar radiation is absorbed in these tubes, which 
contain a molten salt. The tubes provide thermal storage of the solar energy as well as a reaction 
chamber. Secondary concentrating optics (compound parabolic concentrator) can be added to enhance 
the thermal concentration and reduce thermal losses. The absorbed radiation can heat the molten salt 
up to approximately 850 °C. 

7.3. Other high added-value chemicals from photochemical conversion of biomass  

The photoconversion of biomass into oxygenated hydrocarbons is another interesting alternative 
[180,181]. The oxygen sources for this reaction can be an aqueous media and/or alcohol/CH3CN (more 
selective photo-oxidation) used to disolve sensitizing ions (e.g., Fe3+, 2+), or “hydrated” carbohydrates.  

Selective photo-oxidation of biomass can provide a wide range of high added-value chemicals 
including some of the so-called platform molecules (Table 2) [182]. Platform molecules are generally 
compounds with various functionalities that can be turned into a plethora of chemicals and products 
through different catalytic transformations including oxidations, hydrogenations, amidations and 
esterifications [183–185].  
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Table 2. Top twelve sugar-derived platform molecules [182]. 

Platform molecule Structure 
 
1,4-Diacids (succinic, fumaric and malic 
acids) 

HO R OH

O

O

 
2,5-Furandicarboxylic acid 

O COOHHOOC

 
 
3-Hydroxypropionic acid HO OH

O

 
Aspartic acid 

HO
OH

O

O

NH2

 
Glucaric acid HO

OH

O

OH

OH

OH

OH

O  
 
Glutamic acid HO OH

O

NH2

O

 
 
Itaconic acid HO

OH

O

O

 
Levulinic acid HO

O

O

 
3-Hydroxybutyrolactone 

O O

HO

 
Glycerol 

HO OH

OH

 

 
Sorbitol HO

OH

OH

OH

OH

OH

 
 
Xylitol/Arabinitol 

HO OH

OH

OH

OH

 

8. Future Challenges and Prospects  

The main drawback of heterogeous photocatalysis (especially for degradation technology) is related 
to its inherently low quantum efficiency, only reaching 1% under optimised conditions (i.e., only one 
out of one hundred incident photons is able to produce an oxidation/reduction step). Lamps can 
provide the necessary photons but the costs of photon production must be taken into account in the 
whole economics of the process and it can be very high. Sun can also give photons but only ca. 5% 
(ca. 30 Wm−2) can be used by TiO2, and these values are realistically insufficient. 
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Three main challenges exisiting in heterogeneous photochemistry need therefore to be examined so 
as to understand what factors govern photochemical processes in heterogeneous systems.  

Firstly, identification of the factors determining the activity of photocatalysts and subsequent 
realisation of how these factors influence their activity. Sometimes the aim is to achieve the greatest 
photocatalytic activity possible, whereas in others the desire may be to completely shut down the 
photochemical activity of the solids` surface.  

Another major and no less significant challenge is to discover how to govern the selectivity of 
photocatalysts and what factors manipulate this selectivity. For example, even in conventional 
applications of photocatalysis in water and air purification, one may often wish to achieve complete 
mineralization of organic pollutants without necessarily producing hazardous by-products. Of greater 
importance for heterogeneous photocatalysis, however, may be the photochemical synthesis of desired 
high-value chemicals.  

The last challenge deals with efforts on how to improve the spectral sensitivity of solid metal-oxide 
photocatalysts so that they can absorb considerable more light energy, thus significantly improving the 
efficiencies in processes. 

Several future trends for further development are also currently under investigation. Most of such 
research lines are presently at their infancies but they are envisaged to hold a great potential in the near 
future. These include: 

• the preparation of photocatalytic nanostructures capable of selective photocatalytic degradation 
of organic pollutants; 

• novel preparation of ternary mixed oxide systems for photooxidative degradation; 
• novel photocatalyst preparations from titanium oxo families as more members of the families 

become available in the future; 
• designing of more reliable photocatalyst that can be photoactivated by visible and/or solar light; 
• exploring the possibilities to work with other materials than titania (e.g., metal sulfides); 
• photosensitizing TiO2 in the visible by doping, especially by platinization and continue the 

investigation of anionic doping; 
• taking advance of photocatalysis for preparative fine chemistry; 
• use of photocatalysis as a new medical tool (e.g., in cancer treatment); 
• novel photocatalysts for the production of energy: biohydrogen either from biomass or from 

photocatalytic spliting of water. 
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