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Abstract: This paper is devoted to the description of the general relationships between
microscopic and macroscopic mechanical quantities in non-linear mechanics. From a
thermodynamical viewpoint, it is only necessary to know the two macroscopic potentials
(macroscopic free energy and macroscopic potential of dissipation) to describe the state of
the body and its quasistatic evolution. These global potentials are the averages of the local
ones. We point out some particular cases of non-linearities, especially the case of damaged
materials.
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1. Introduction

This paper is devoted to the description of the general relationships between microscopic and
macroscopic mechanical quantities in non-linear mechanics. Many studies have been dedicated to the
relations between mechanical average quantities as stresses or strains in small or finite transformation
([1–5]).

Our purpose is to reformulate these relations in the framework of a thermodynamical point of view
as proposed in [6]. This paper proposes some extensions of classical relations to nonlinear mechanics in
small perturbations.

This thermodynamical point of view is useful to separate reversibility and irreversibility of the global
response. The overall behaviour of a body, whose local properties are known, is the solution of a
complicated boundary value problem, whose boundary conditions are specific.
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Consider a small volume element of an heterogeneous material, two scales are distinguished on this
volume. The microscopic one, where the properties vary from point to point as in a highly heterogeneous
body, and the macroscopic one, where the properties are those of a homogeneous continuum.

In order to determine the overall behaviour with accuracy, it is essential to define the so-called
representative volume element (RVE), which must be small enough to allow us to distinguish the
microscopic heterogeneities and sufficiently large to be representative of the overall behavior. The scale
of the RVE is chosen with respect to the scale of the heterogeneities and their interactions. A discussion
can be found in [7] to specify the condition of the existence of such a RVE.

The local behaviour is determined by two thermodynamical potentials : the local free energy w is
related to the equilibrium state and to the reversibility, and the potential of dissipation d which governs
the irreversible processes.

To characterize the overall behaviour in a thermodynamical sense, it is only necessary to know
the corresponding two macroscopic potentials: the macroscopic free energy W and the macroscopic
potential of dissipation D.

The macroscopic free energy W is related with the equilibrium state and to the reversible part of the
evolution, the potential of dissipation characterizes the irreversibility.

For sake of simplicity, we consider only isothermal processes or we assume in a more general case
that the variation of temperature τ is uniform on the RVE. This condition is a necessary condition to
determine the global free energy W of the body. This quantity is defined only for a thermodynamical
state of equilibrium, which is a mechanical equilibrium state under uniform temperature. The two
potentials are determined and simultaneously the quasistatic evolution of the system is analysed.

We propose to establish the relations between microscopic and macroscopic potentials. We
characterize some macroscopic state variables, for example we define the decomposition of the
macroscopic strain in reversible and irreversible parts.

Denoting the volume of the RVE by Ω, with any microscopic quantity f , we can associate its
macroscopic value F by an averaging process on the RVE,

F =
1

V

∫
Ω

fdω =< f > (1)

By this way a unique macrostate quantity is defined for each microstate. However the macroscopic free
energy at a given state is the total free energy at an equilibrium state. This state is the solution of a
boundary value problem, with particular boundary conditions. To be efficient, these conditions must
satisfy some properties, summarized in the concept of concentration process or localization process
([6,10]). The concentration process takes the bonding conditions between phases into account. The
interface between phases is assumed to be perfect.

Successively, the modes of localization in small perturbation and applications are analyzed first in
linear thermoelasticity, then in plasticity and in partially damaged materials as defined in [10].

2. Mode and Process of Localization

The mode of localization is defined by suitable boundary conditions and properties for the
characterization of the bonding between phases.
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We denote by n the unit normal to the boundary ∂Ω of Ω and we assume that ∂Ω = ∂ΩT ∪∂Ωu where
∂ΩT and ∂Ωu are disjoint parts of ∂Ω, on which respectively the stress vector and the displacement vector
are prescribed. The boundary conditions over ∂Ω must be chosen such that all equations of continuum
mechanics are satisfied in a compatible manner with the averaging process.

2.1. Statical admissible stress field

The local stresses σ satisfy:

• the equations of equilibrium

div σ = 0, over Ω (2)

• the boundary conditions
σ.n = T d on ∂ΩT (3)

In the heterogeneous media the interface between phases is perfect, so that the stress vector is
continuous along each interface Γ:

[σ]Γ.ν = 0, along Γ (4)

All stress fields σ satisfying these conditions (2,3,4) is called statical admissible (S.A.)
with Σ =< σ > in the mode of localization if the boundary conditions is compatible with the averaging
process

Σ =< σ >=
1

V

∫
∂Ω

{σ.n ⊗ x}sdS (5)

2.2. Kinematical admissible fields

The local displacement u satisfies the boundary conditions u = Ud over ∂Ωu. The strain ε associated
with this displacement is defined as

ε =
1

2
(∇u + ∇T u), εij =

1

2
(
∂ui

∂xj

+
∂uj

∂xi

) (6)

over Ω, and the macroscopic strain is then deduced by

E =< ε >=
1

V

∫
∂Ω

1

2
(u ⊗ n + n ⊗ u)dS (7)

The displacement is continuous along all interfaces between phases

[u]Γ = 0, along Γ (8)

All strain fields ε satisfying these conditions will be said to be kinematically admissible (K.A.) with E

in the mode of localization.
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2.3. Hill-Mandel conditions of macrohomogeneity

The boundary conditions (T d, Ud) must satisfy the hypothesis of macrohomogeneity in the sense of
Hill-Mandel:

for any stress field σ∗ S.A. with Σ∗ =< σ∗ > in the mode and any field ε′ K.A. with E′ =< ε′ > in
the mode, we must have :

Σ∗ : E′ =< σ∗ : ε′ > (9)

2.4. The process of localization

By adding the knowledge of the local constitutive law, we can study the evolution of the system for a
given history of the prescribed boundary conditions. But the determination of a macroscopic behaviour
requires that the process of localization, defined by a mode of localization and local constitutive law,
ensures existence and uniqueness of the microscopic fields. In such a case we can deduce the form
of the macroscopic constitutive law in the following way. For given macroscopic quantities we solve
the boundary value problem associated with the process of localization and then the local fields are
determined. Finally using the averaging process we find the unknown macroscopic quantities.

2.5. Particular mode of localization

There exist three particular well-known modes of localization for which the boundary conditions, the
average process and the Hill-Mandel conditions are simultaneously verified.

The first one is the concentration process under macrohomogeneous stresses T d = Σ.n over ∂Ω,
where Σ is a second order symetric tensor. Then for all σ∗ S.A. in the mode, Σ∗ must be equal to Σ.
The displacement u′ is closed to U ′ = E′.x over ∂Ω∫

∂Ω

(u′ − U ′) ⊗ ndS = 0 (10)

This is obtained by taking σ∗ = Σ in the Hill-Mandel condition, and then we have E′ =< ε(u′) >.
Secondly, a concentration process under macrohomogeneous strain Ud = E.x over ∂Ω can be chosen.

All kinematical fields u′ verify automatically the average condition on strains E =< ε(u′) > , and for
any σ∗ statically admissible field we obtain from the macrohomogenous condition the average condition
on stresses Σ∗ =< σ∗ >.

The third mode is the periodic description. The RVE is reduced to the geometry of an elementary
cell. Choosing T d as an antiperiodic function over ∂ΩT , and Ud a periodic field over ∂Ωu, the average
condition on stresses is due to the equilibrium, the average condition on strains is ensured by the
compatibility of the local strain, and the Hill-Mandel macrohomogeneous condition is deduced from
the periodicity ([11,12]).

3. Potentials and General Properties

The local behavior is defined by the local free energy w(ε, α, τ), where ε is the strain, α represents a
set of internal variables and τ is the variation of temperature. The state equations are given by

σR =
∂w

∂ε
, A = −∂w

∂α
, s = −∂w

∂τ
(11)
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σR is the reversible stress, A is the thermodynamical force associated with the evolution of α and s is
the entropy. The Clausius-Duhem inequality of entropy production is reduced to

D = σ : ε̇ − (ẇ + sτ̇) ≥ 0 (12)

where the stresses σ are in equilibrium inside the body. Then

D = (σ − σR) : ε̇ + A α̇ ≥ 0 (13)

Two sources of dissipation appear, one is due to viscosity with the thermodynamical force σir = σ−σR,
the other one is associated with the evolution of internal variables.

To solve the problem of evolution, a complementary law is needed. The irreversible processes
are driven by a potential of dissipation d(ε̇, α̇), which is a convex function of its arguments, the
thermodynamical forces (σir, A) satisfy the normality rule :

(σir, A) ∈ ∂d(ε̇, α̇) (14)

this corresponds to the property:

∀(ε̇∗, α̇∗), d(ε̇, α̇) + σir : (ε∗ − ε̇) + A (α̇∗ − α̇) ≤ d(ε̇∗, α̇∗) (15)

We assume henceforth that the local behaviour has no viscosity, σir vanishes then the reversible stress
satisfies the conservation of momentum.

3.1. The boundary value problem of localization

We prescribe a macroscopic strain E and a uniform variation of temperature τ for a given distribution
of internal parameters α over the RVE.

A solution of the boundary value problem in terms of displacement u or stresses σ is given by
functions of E and α satisfying the set of equations:

• the local stresses are statical admissible

div σ = 0, σ.n = T d over ∂ΩT (16)

• the strain ε is kinematical admissible in the mode :

E =< ε(u) >, u = Ud over ∂Ωu (17)

• the interface Γ is perfect, then the stress vector and the displacement are continuous:

[σ]Γ.ν = 0, [u]Γ = 0 (18)

• the stress and the strain are linked by the constitutive law

σ =
∂w

∂ε
(ε(u), α, τ) (19)

If the local free energy w is a convex function of ε when α and τ are prescribed, the solution u of this
boundary value problem is unique.
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3.2. The global free energy

The macroscopic free energy W is defined by the value of the average

W (E, α, τ) =< w(ε(u), α, τ) > (20)

where u is the solution of the boundary value problem of localization, α and τ being given at
the equilibrium state. Then, from the Hill-Mandel macrohomogeneity condition we deduce the
macroequation of state:

∂W

∂E
=<

∂w

∂ε
:

∂ε

∂E
>=< σ : (I +

∂η

∂E
) >=< σ >:< (I +

∂η

∂E
) > (21)

Noting that ε is written as E + η, with η is a kinematical admissible strain such that < η >= 0, then

we have
∂η

∂E
= 0 and hence the macroscopic stress σ is related to the macroscopic strain by the state

equation
∂W

∂E
=< σ >= Σ (22)

The macrostress at equilibrium is defined in the same way as the microstress, owing to the definition of
the macroscopic thermodynamical potential W .

For a perturbation of temperature δτ , the variation of energy is

−∂W

∂τ
δτ = − <

∂w

∂τ
δτ >=< s > δτ = S δτ (23)

then, the global entropy S, average of the local one, is related to the variation of the global free energy.
The other state equations are expressed as

A • δα = −
∫

Ω

∂w

∂α
δα dΩ = −∂W

∂α
• δα (24)

The internal state in a global description for the system is defined by the value of α(x) at each point of
Ω. At the macroscale the internal state is defined by a field of internal variables. This interpretation is
emphasized by considering the potential of dissipation.

3.3. The global dissipation function

If the evolution of the internal parameters is given by a potential of dissipation d(α̇), convex function
of α̇, the thermodynamical forces A are defined by the normality rule A ∈ ∂d(α̇). We define the
global dissipation function as the function D(α̇) =< d(α̇) > of the field of internal parameters α̇. The
expression of the normality rule is transposed in terms of fields by integration over Ω :

∀α̇∗, D(α̇)+ < A(α̇∗ − α̇) >≤ D(α̇∗) (25)

It is obvious that D is a functional of α̇ and A is a linear form < Aα∗ > on fields α∗ defined over Ω.
Then the normality rule is written in terms of fields

A ∈ ∂D(α̇) (26)

In a general point of view, the governing equations for the macrostate have the same form as the
governing equations for the microstate. The set of internal variables is replaced by a set of fields of
internal variables.

For the overall behaviour, the value of internal state at each material point of Ω must be known.



Materials 2010, 3 302

3.4. Macrohomogeneous body and linear elasticity

For linear elasticity, the macroscopic elastic modulus has not the same value when
macrohomogeneous strain or stress conditions are prescribed on the boundary ∂Ω. But when the body
is macrohomogeneous in the sense of Hill-Mandel ([2,13,14]) the difference between the two moduli
vanishes. More details could be found in [7] or in [15] about the relations between the definition of the
RVE and the macrohomogeneity condition.

Assuming that all constituent phases are linear elastic, the local free energy density is given by

w(ε) =
1

2
ε : C(x) : ε, where C depends on the point x of Ω. The displacement u solution of the

boundary value problem minimizes the potential energy of the system, the solution is unique. When
one prescribes homogeneous strain condition (u = E.y for y ∈ ∂Ω), the potential energy is reduced to
W . The displacement u depends only on the given macroscopic value E and on the spatial distribution
of the mechanical phases. The local stress σ is obtained as the solution of a problem of heterogeneous
elasticity.

The boundary value problem for heterogeneous linear isotropic material is linear, the solution of this
problem depends linearly on the boundary conditions. This proves the existence of concentration tensors
A for stresses and B for strains. The Green functions L,M for the displacement u and the concentration
tensors are such that

σ = A : Σ, ε = B : E

u = L : E, B =
1

2
(∇L + ∇TL)

u = M : Σ

The tensor A is statical admissible with I in the mode of localization, dually the concentration tensor B
is kinematical admissible with I in the mode of localization.

For macrohomogenous body, we can also define the effective modulus of elasticity Σ =< σ >= C :

E. Then
< σ >=< C : ε >=< C : B >: E

then
C =< C : B > (27)

3.5. Properties of the concentration tensors

For fixed subscripts (p, q ), Aijpq satisfies the equilibrium equations and homogeneous boundary
conditions

Aijpq,j = 0, on Ω

Aijpqnj =
1

2
(npδiq + nqδip) over ∂Ω

The strain εE = S : A : Σ = B : E satisfies the condition of compatibility (S = C−1) and the relations
between micro and macro scales can be defined

Σ = C : E, C =< BT : C : B >

S = < AT : S : A >= C−1
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We have used the notation (AT )ijpq = Apqij . Moreover, we have the set of relations :

S : A = B : S, A : C = C : B

< A > = I, < B >= I

3.6. Estimation and bounds of elastic moduli

For composite materials estimation of strain or stress averages on each material phase can be obtained
by solving specific problem of inclusions embedded an homogeneous body of characteristics Co.

Co = 3κoK + 2µoJ, Kijpq =
1

3
δijδpq, J = I − K (28)

Using theorem of minimum of potential energy Hashin-Shtrickman bounds provide rigorous upper
(HS+) and lower bounds (HS−) for the effective properties of composites. Initially developed for
isotropic phases with overall isotropy [16], they were extended for some anisotropic media with
ellipsoidal symmetry as defined in [17].

When the individual phases are isotropic and when the composite has overall isotropy, the spherical
inclusion Eshelby’s solution is used to obtained explicit bounds. The averaged strain inside the inclusion
of material i is given by

εi = (I + Eo : (Ci − Co))
−1 : ε∞

where ε∞ is deduced from the relation E =
∑

i fiεi with fi the volume fraction of material i.

Eo =
αo

3κo

K +
βo

2µo

J

with

βo =
6(κo + 2µo)

5(3κo + 4µo)
; αo =

3κo

3κo + 4µo

Then the effective moduli are estimated by

κest(κo, µo) =
< κ(1 + αo

(κ − κo)

κo

)−1 >

< (1 + αo
(κ − κo)

κo

)−1 >

µest(κo, µo) =

< µ(1 + βo
(µ − µo)

µo

)−1 >

< (1 + βo
(µ − µo)

µo

)−1 >

where < q >=
∑

i fiqi with fi the volume fraction of phase i.
The bulk modulus and shear modulus for any isotropic material are bounded by 0 and ∞. For these

values of κo, µo the estimations κest, µest are bounded by the classical bounds of Voigt and Reus as the
effective values.

<
1

µ
>≤ µeff ≤< µ >,<

1

κ
>≤ κeff ≤< κ >

This suggest to optimize for specific composite the choice of Co to have an estimation closed to the
effective value. For example, under the hypotheses of overall isotropy and isotropic distribution of
phases, the Hashin-Shtrikman bounds are obtained. The HS+ upper bound is obtained for µo =

maxi µi, κo = maxiκi and similarly the HS− lower bounds with µo = mini µi, κo = miniκi.
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• For a two-phase composite with (κ2 < κ1, µ2 < µ1) we have the estimation

κest(κo, µo) =
3κ1κ2 + 4µo < κ >

4µo + 3κ1κ2 <
1

κ
>

, µest(κo, µo) =
(9µoκo + 8µ2

o) < µ > +6µ1µ2(κo + 2µo)

9κoµo + 8µ2
o + 6µ1µ2(κo + 2µo) <

1

µ
>

then the HS bounds are

µHS+

= µest(κ1, µ1), µ
HS−

= µest(κ2, µ2); κHS+

= κest(κ1, µ1), κ
HS−

= κest(κ2, µ2)

• When the composite microstructure is an assemblage of composite spheres bounds are closer than
classical Hashin-Shtrikman bounds and improved in a general way using morphological patterns
approach [18]. In the case of two incompressible phases, the lower bound for isotropic two-phases
composites assemblages is obtained as previously and the upper bound is given by

µHSZ = µ2(1 + f1F (f1, γ, γ); γ =
µ1

µ2

(29)

where F is given by

1

F (c, γ, γo)
=

2

5
(1 − c) +

1

1 − γ
− c(1 − c2/3)2

10
21

(
1
9(1 − γ)

16 + 19γc7/3 +
10

21
+

25

24(γo − 1)

• For any isotropic phases, the general solution is given in [18], generalized description is also
presented in [19] and bounds HSZ are derived for composite sphere assemblage (CSA) of Hashin
[20].

3.7. More complex behaviour

For a more complex behaviour, we can solve the problem of localization with fixed (α, τ) ; the
solution associated with a variation of the macroscopic strain dE is then an elastic response. The solution
of this problem of heterogeneous elasticity is written as

dε = B : dE

dσ = A : dΣ = C : dε

here the value C(x) is the local instantaneous modulus of elasticity
∂2w

∂ε∂ε
. Then the concentration tensors

are associated with these reversible tangent moduli for which we can define a macroscopic tangent
modulus satisfying the general relation

C =< BT : C : B > (30)

4. On the Decomposition of the Macroscopic Strain

Let Σ be the real macrostress and σ the corresponding microscopic one. The local solution during
purely elastic behavior is as previously σE = A : Σ. The stress field r = σ − σE is then self
equilibrated.
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In small strain, the total deformation ε is the sum of the elastic strain εe and some initial strain εi. The
elastic strain is related to σ by the constitutive law (εe = S : σ). The initial strain εi induces an internal
stress field r such that the local strain εres satisfies the compatibility conditions and the constitutive
behaviour

εres = S : r + εi (31)

The macroscopic elastic strain EE is the strain recovered by a purely elastic unloading, which
corresponds locally to the interpretation of σE . The local strains ε and εE = S : σE are kinematically
admissible respectively with E and EE in the mode of localization. From the Hill-Mandel condition
applied with A :< σ >, which is statically admissible with < σ > in the mode of localization, we
obtain :

EE =< AT : εE >, E =< AT : ε > (32)

Then the definition of the macroscopic modulus is recovered as S =< AT : S : A >. The difference
ε − εE is a kinematically admissible field associated with the anelastic part Eres of the macroscopic
strain (Eres = E − EE), and we obtain

Eres =< εres >=< AT : εres >=< AT : εi > (33)

Since r is a self equilibrated stress field and S : A is a kinematically admissible field, then < r : S :

A >= 0, this property is used to established the second equality. The thermodynamical interpretation of
Eres must be investigated, it depends on the local meaning of the strain εi and of its evolution.

5. Transformation along a Moving Surface

During loading history, damage in continuum mechanics can be induced by the initiation and the
growth of microcavities and microcracks. The description of damaged is based on the evolution of the
microscopic properties, taking the growth of such degradation into account, through the idea that when
some threshold value of stress, strain or embedded energy is reached, the material can’not support further
tensile loading.

A connection with fracture mechanics can be made in an asymptotic sense [21] or in a hierarchic
description [22]. Variational formulation were performed to describe the evolution of the surface between
the sound and the damaged materials ([23,24]). Some particular case of homogenization is proposed by
Petryck [26] for this analysis. In the case of elastic brittle materials or partially damaged materials some
previous results have been obtained ([10,25]).

At each time the domain Ω is composed of two distinct volumes Ω1 and Ω2 which are occupied by
two materials with different mechanical characteristics. The interface between the two phases is perfect
and denoted by Γ. The phase 1 changes into the phase 2 in an irreversible manner due to the mechanical
loading along the moving surface Γ, defined by an equation of the form S(x, t) = 0. The extension of
the phase 2 is related to this moving surface, the equation of the surface is obtained in an explicit manner
depending on the history of the loading. In order to study the general formulation of the relationships
between microscopic mechanical fields and macroscopic quantities we do not discuss the characteristics
of the evolution of the interface, and at each point of the interface we consider that the normal velocity
φ is determined.
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When the interface moves, the evolution of any macroscopic quantity F is given by:

Ḟ =< ḟ > − 1

Ω

∫
Γ

[f ]ΓφdS (34)

where [f ]Γ[f ] = f1 − f2 is the jump of the quantity f at a point of Γ , n is the normal vector to Γ

external to phase 1. As the interface is moving, the transport condition for any mechanical quantity f at
a geometrical point of Γ is given by the convected derivative Dφf

Dφf = lim
∆t→0

f(x + φn∆t, t + ∆t) − f(x, t)

∆t
(35)

Along Γ, the displacement and the stress vector are continuous, then their rates satisfy the compatibility
equations of Hadamard

[Dφ(σ.n)]Γ = 0, Dφ[u]Γ = [v]Γ + φ[∇u]Γ.n = 0 (36)

So, we must take into account these discontinuities. As the displacement is continuous along Γ, [u]Γ = 0,
then the gradient along Γ of the displacement ∇Γu is continuous. If n is the normal vector of the surface
Γ, the discontinuity of the gradient of the displacement has the form

[∇u]Γ = λ ⊗ n (37)

The stress vector is continuous, [σ]Γ.n = 0. Combining all the property of continuities, the
discontinuities of σ and ∇u have a property of orthogonality:

[σ]Γ : [∇u]Γ = 0 (38)

5.1. Case of linear elasticity

In this section, the two phases are linear elastic media. At time t, the distribution of the phases
is known and the localization process is defined by the equilibrium state of a heterogeneous elastic
medium. The displacement u, at equilibrium, satisfies the equations of the boundary value problem
associated with the mode of localization. At each time the tensors of concentration are defined and the
macroscopic behaviour is obtained as previously by

E =< AT : S : A >: Σ = S : Σ (39)

Between time t and t+dt, the concentration and the shape of the phases have changed, then the
concentration tensors A and B have evolution associated with the normal velocity φ of propagation
of the interface. The variation of the geometry of the phases induces a variation of the elastic moduli.
For a macroscopic evolution of the loading, the phase l is transformed into the phase 2 along some parts
of Γ. The rate of A, denoted by Ȧ, is linked to the normal velocity of propagation, the same is true for
Ṁ. So the local response is

σ̇ = A : Σ̇ + Ȧ : Σ, v = M : Σ̇ + Ṁ : Σ (40)

The rates of the concentration tensors verify Hadamard’s relations on Γ:

[Dφ(A.n)]Γ = 0, [DφM]Γ = 0 (41)
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The global evolution of the macroscopical quantities are then deduced, using the hypothesis of
macrohomogeneity:

Σ̇ =< σ̇ > − 1

Ω

∫
Γ

[σ]Γ] φdS (42)

Ė =< AT : ε̇ > − 1

Ω

∫
Γ

AT : [∇u]Γ φdS (43)

In a similar way, the variation of the elastic moduli is given by

Ṡ =
1

Ω

∫
Γ

2g φ dS, g =
1

2
[AT : S : A]Γ − AT : [∇M]Γ (44)

where g is the density of energy release rate.

Total dissipation

The total energy W =
1

2
Σ : S : Σ arises to the macroscopic dissipation

Dm =
1

2
Σ : Ṡ : Σ =

1

Ω

∫
Γ

G φdS ≥ 0

G = Σ : g : Σ

the quantity G is the energy release rate defined along Γ . So even if the local behavior is reversible,
the propagation of a surface of discontinuity inside the body generates dissipation. The macroscopic
behaviour has variable elastic moduli.

5.2. Internal stresses

More generally, when both materials are elastoplastic or with initial strains, because of the existence
of incompatible strains, a self equilibrated stress field r appears, and the local stress can be decomposed
as

σ = A : Σ + r = σE + r (45)

The field r being self-equilibrated the following relations are obtained

< r >= 0, [r]Γ.n = 0

r.n = 0 along ∂Ω, div r = 0 over Ω

The local strain ε is related to the displacement u K.A. with E. Let us denote by εe the elastic strain

εe = ε − εp = S : σ (46)

Let us introduce two other displacement fields:

• the first one uE = M : Σ is K.A with EE = S : Σ and defines the strain

εE = ε(uE) = S : σE (47)
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• the second one uir is K.A. with Eir =< εir > and defines the strain

εir = ε(uir) = εp + S : r (48)

Thanks to these definitions, one obtains:

ε = εe + εp = S : A : Σ + S : r + εp = εE + εir

u = uE + uir = M : Σ + uir

E = EE + Eir

For a given macroscopic evolution Σ̇, the plastic strain rate can evolve and the propagation of Γ can
occur. The evolution of the state obeys to the decomposition

ε̇ = ε̇p + S : σ̇, σ̇ = σ̇E + ṙ (49)

In the previous relations, σ̇E corresponds to the microscopic variation for a purely elastic behaviour
get with the same propagation of the interface Γ. So, it gives

σ̇E = A : Σ̇ + Ȧ : Σ (50)

where the localization tensor A verifies the Hadamard’s compatibility equations. The rate of each
displacement have discontinuities according to the continuity compatibility equations

Dφ[u]Γ = 0, Dφ[uE]Γ = 0, Dφ[uir]Γ = 0 (51)

The application of the Hill-Mandel hypothesis to these displacement fields and to the related strain
fields gives a set of relations

Ė = < AT : ε̇ > − 1

Ω

∫
Γ

AT : [∇u]Γ φdS

ĖE = < AT : ε̇E > − 1

Ω

∫
Γ

AT : [∇uE]Γ φdS = S : Σ̇ + Ṡ : Σ

By substraction, it allows us to define the variation of the irreversible strain

Ėir =< AT : ε̇ir > − 1

Ω

∫
Γ

AT : [∇uir]Γ φdS (52)

or
Ėir =< AT : ε̇p > + < AT : S : ṙ > − 1

Ω

∫
Γ

AT : [∇uir]Γ φdS (53)

Since the residual stress r is a self equilibrated field, we get from < r >= 0, [r]Γ.n = 0,

0 = < ṙ > − 1

Ω

∫
Γ

[r]Γ φdS

0 = [Dφ(r.n)]Γ

Hence, the rate of internal stresses ṙ is not self-equilibrated and the macroscopic irreversible strain takes
the form

Ėir =< AT : ε̇p > − 1

Ω

∫
Γ

AT : [∇uir]Γ φdS +
1

Ω

∫
Γ

[r]Γ : ∇M φdS (54)
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The irreversible part of the macroscopic strain is decomposed into two parts: one due to the volume
irreversibility, the other due to the variation of the residual stress field, which is essentially dependent
with the geometry of the phases. Even if the internal strain has no evolution, there exists an irreversible
macroscopic strain due to the variation of internal stresses essentially dependent on the evolution of the
geometry of phases.

Dissipation

In the case of a plastic behaviour, the free energy of the system takes the form W (Σ, εp, α) =
1

2
<

σ : (ε − εp) > +h(α) where α is any internal variable.

The embedded energy associated with the residual stresses r is then Wb =
1

2
< r : S : r > . Thus the

dissipation rate is

Dm = Σ : Ėir − Ẇb +
1

2
Σ : Ṡ : Σ − ∂h

∂α
α̇ ≥ 0 (55)

The expression of Dm in term of local quantities is

Dm =< σ : ε̇p > −∂h

∂α
α̇ +

1

Ω

∫
Γ

([w]Γ − σ : [∇u]Γ)φdS (56)

In this form two parts are distinguished ; the first one is related to the plastic effects, the second one
is related to the moving surface. The part of the dissipation due to plasticity and hardening in not
directly related to the irreversible strain. These equations shows that the main difficulty in a macroscopic
approach is to determine the relative part due to plasticity and to local rupture in macroscopic tests.

Case of plasticity

The case of plasticity is recovered when no transformation exist along Γ. In the dissipation, two
kinds of hardening are then present: the hardening due to the incompatibility of the plastic strain, the
self-hardening of each constituent. The hardening is described in the energy embedded in the residual
stresses and in the self-hardening energy, which emphasizes the role of the embedded energy on the
hardening.

Case of damaged material

It is observed that the reduction of material stiffness is generally due to the evolution of defects
such as cavities, cracks, etc. These zones cannot support tensile stresses. It is proposed to characterize
damaged material only with the property that the stress vanishes in the damaged zone. It is necessary
to distinguish between two different zones : the sound elastoplastic material with volume Ω and the
damaged one where the stresses are identically equal to zero. The previous results obtained in [23] is
then recovered. In particular a relation between the global tangent modulus and the local one is obtained
in the form:

Σ̇ : Ė =< σ̇ : ε̇ > −
∫

Γ

∇w.nφ2dS (57)

This condition gives us a condition of stability in this case as pointed out in [30].
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6. Examples and Applications

6.1. Damage model and CSA

The composite spheres assemblage of Hashin is analyzed in [10]. In this paper, the rate boundary
value problem, when a criterion of propagation of the interface is given in terms of an energy release
rate, is discussed.

The system is composed by a compact assemblage of spheres with external radii in order to fill the
whole domain. The microscopic structure is constituted by composite spheres with a core made with
material 2 and the shell by material 1, both materials are homogeneous and linear elastic. As in the
general case, material 1 transforms into material 2 ; the transformation is irreversible and the criterion is
a generalized Griffith’s one based on the energy release rate of the transformation. The volume fraction
of material 2 is denoted by c. Applying the same method than in [28], the assemblage is considered
well-disordered. Using the particular three phase model of [29], the homogeneous equivalent medium
denoted by material 0 is unknown. In phase i the local characteristics are the bulk modulus denoted by
ki and shear modulus by µi. In what follows k1 is assumed to be larger than k2.

A generalized Griffith law is given to govern the transformation

G < Gc, φ = 0 ; G = Gc, φ ≥ 0 (58)

The composite sphere is submitted to an isotropic loading, the radial displacement is prescribed on
the external boundary (R = Re). For isotropic linear elasticity the solution is determined considering a

Figure 1. The composite sphere.

R

R

e
1

2i

radial displacement

u = ui(R)er, ui(R) = AiR +
Bi

R2
, i = 1, 2 (59)

The boundary conditions imply:

u1(Re) = E Re, u2(0) = 0, B2 = 0 (60)

For a given history of E, the external surface is submitted to a radial force:

σ1(Re).er = Σer (61)
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For given volume fraction of material 2, c =
R3

i

R3
e
, the solution of heterogeneous elastic sphere is

b =
B1

R3
i

=
3(κ1 − κ2)A1

3κ2 + 4µ1

E =
D(c)

3κ2 + 4µ1

A1

Σ = σrr(Re) =
3E

D(c)

(
(3κ2 + 4µ1)κ1 − 4µ1c(κ1 − κ2)

)
where

D(c) = 3κ2 + 4µ1 + 3c(κ1 − κ2), c =
R3

i

R3
e

The last equation defines the global behaviour of the composite sphere as having an effective bulk
modulus

κeff =
(3κ2 + 4µ1)κ1 − 4µ1c(κ1 − κ2)

3κ2 + 4µ1 + 3c(κ1 − κ2)
(62)

Then it is obvious that when c tends to zero, κeff tends to κ1.
When the radius Ri increases, the rigidity of the composite sphere decreases and some dissipation

occurs. The dissipation is given by the rate

4πR2
iG(Ri, E)Ṙi = −∂W

∂Ri

Ṙi (63)

This defines the energy release rate associated with the dissipation along a moving surface [24].
Along the interface Γ the energy release rate has the value

G(Ri, E) =
9E2

D2(c)
(κ1 − κ2)(3κ2 + 6µ1)(3κ1 + 4µ1) (64)

The response under monotonic loading

The loading parameter E is increasing. Initially, the core does not evolve, the critical value Gc is not
reached. At one time the critical value Gc is reached, the strain is Ec(co). After that the actual value of
Ri is determined by the implicit equation

G(Ri(t), E(t)) = Gc (65)

this is the consistency condition. During this phase the internal radius Ri increases monotonically with
E and attains the value Re at the value ET of the loading.

To any chosen critical value Gc corresponds a Griffith type local criterion for fracture, and this induces
that the local stretch u(Ri)/Ri is a constant proportional of the square root of Gc. ¿From equations 64
and 65 we deduce that when the damage occurs

E

D(c)
= αc (66)

where αc is a constant. We remark that D is an increasing function of c. During the damage evolution
A1 = Ec

αc =
Ec

3κ2 + 4µ1

=
1

3κ1 + 4µ1

u(Ri)

Ri

. (67)
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Figure 2. The response of the composite sphere with local damage.

Σ

E
E

o

c ETEc(co)

Σ = 3κ1E

Σ = 3κ2E

At intermediate time t < T the sphere is not completely transformed, G(Ri(t), E) < Gc for any
E < E(t), then the composite sphere has the answer of an elastic heterogeneous medium with new
concentration c = R3

i /R
3
e . The global bulk modulus decreases with the transformation. With this

propagation law of the interface, from it’s initial position determined by co = R3
i (O)/R3

e , we have
successively for an increasing function E(t):

E(t) < Ec(co), G(Ri, E(t)) < Gc, Ri(t) = Ri(0)

E(t) ≥ Ec(co), G(Ri(t), E(t)) = Gc, Ri(t) = f(E(t))

E(t) = ET , G(Re, ET ) = Gc Ri(T ) = Re

E(t) ≥ ET , Ri(t) = Re

(68)

and the answer can be plotted as in Fig.1 Now we consider the macroscopic behaviour of a composite
spheres assemblage when two families exist in the structure, with volume fraction of phase 2 denoted by
cI and cII (cI > cII). For any given macroscopic E, we can show in an analytical way that

(GI − GII)(cI − cII)(µ1 − µ2) > 0 (69)

As previously at the beginning of the loading the macroscopic behaviour is linear elastic, until the
criterion of propagation is reached for one family. So we have the following cases:

• if µ1 > µ2, the difference between the two concentrations (cI − cII) increases until the larger
reaches the value 1,

• if µ1 < µ2, the difference between the two concentration decreases, than the assemblage tends to
the assemblage of only one family.

• if µ1 = µ2 both concentrations could increase.
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So if we consider the assemblage of the two families as a perturbation of the assemblage of one family,
this study can be considered as an analysis of bifurcation for small differences (cI − cII). In the first case
a new well disordered family can appear along the first one. So the answer of the global behaviour in
such a case is not unique.

Even the system is composed by only one family of similar composite spheres, the local response
to the loading increment is not unique. In fact, many kinds of bifurcations can exist. This shows the
necessity to study stability and bifurcation of each equilibrium path in homogeneization of nonlinear
mechanical behaviour to ensure the existence of the macroscopic law.

6.2. Variational procedures

The most recent procedures for predicting the overall nonlinear properties of composites are the
variational procedures. The first contribution [31] were extended by many studies [32–34].

For nonlinear elasticity, in small strain, variational characterization are due to the convexity of the
free energy relative to the strain.

Considered a composite made up of power-law materials with the same exponent n and the same
reference strain εo but different flow stress σo. The variational characterization of the effective behaviour
is given by

Φ(E) = inf
v

( 1

1 + m
εm

o < σo(x)ε1+m
eq (v(x)) >

)
(70)

where v satisfy boundary conditions v = E.x over ∂Ω, and εeq =

√
2

3
ε : ε. Introducing a linear

inhomogenous material, incompressible and isotropic with an arbitrary non-negative shear modulus µ(x)

depending on the point position x

σo(x)ε1+m
eq = (

3

2
µε2

eq)
(m+1)/2σo(x)(

3

2
µ)−(m+1)/2 (71)

Using Hölder’s inequality on the function introduced in the last equation for the couple of function

f = (
3

2
µε2

eq)
(m+1)/2, g = σo(x)(

3

2
µ)−(m+1)/2

and r = 2/(m + 1), s = 2/(1 − m), bounds are obtained ([33]) and optimum value is obtained using of
the overall elastic energy of the comparison linear composite.

For isotropic incompressible two-phase material, it can be noticed that the prediction derived from the
classical Hashin-Shtrickman upper bound is a rigorous bounds upper bounds for all isotropic composites
and similarly, the prediction deduced form the HSZ upper bound is a rigorous upper bound for all
isotropic CSA ([33]).

More general results and applications for nonlinear composite can be found in [36].

7. Conclusions

This paper shows how local mechanical behaviour can influence the global behavior of an
heterogeneous medium. In all cases, the microstructure must be taken into account. In linear elasticity
the macroscopic behaviour is defined by the spatial distribution of the phases, in nonlinear cases the
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evolution of the internal state contributes to the evolution of the microstructure. In the last case a complex
boundary value problem must be solved. Even if the determination of a global quantity by average
process guarantees the uniqueness of a macroscopic mechanical variable, the choice of the localization
process is very important. The choice of this process must ensured the local response is unique when
the external loading evolves. The study of the condition of stability and non-bifurcation is emphasized
in order to be able to define the macroscopic behaviour, some cases of non-uniqueness have been given.

The role of the incompatible internal strains or stresses have been presented. In the case of partially
damaged materials defined by a transformation along a moving surface, even if at local scale the
components are linear elastic, the macroscopic behavior is no more non-dissipative. When initially
there exists strains and self equilibrated stresses in the structure, the propagation of the interface will
increase their influence on the mechanical macroscopic behavior.

Extension in finite strain can be given with application to polycrystals. The macroscopic law of a
polycrystal have the same form of the micro one and we underlined that the decomposition in elastic and
plastic parts of the behaviour is determined by the definition of the orientation of the polycrystal. This
orientation is given as an average quantities of the orientation of the local crystals. Taking the definition
of this orientation into account represents some information of the microstructure.[37]
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