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Abstract: Chemical pulps are produced by chemical delignification of lignocelluloses 
such as wood or annual non-woody plants. After pulping (e.g., kraft pulping), the 
remaining lignin is removed by bleaching to produce a high quality, bright paper. The goal 
of bleaching is to remove lignin from the pulp without a negative effect on the cellulose; 
for this reason, delignification should be performed in a highly selective manner. New 
environmentally-friendly alternatives to conventional chlorine-based bleaching 
technologies (e.g., oxygen, ozone, or peroxide bleaching) have been suggested or 
implemented. In an attempt to find inorganic agents that mimic the action of highly 
selective lignin-degrading enzymes and that can be applicable in industrial conditions, the 
researchers have focused on polyoxometalates (POMs), used either as regenerable redox 
reagents (in anaerobic conditions) or as catalysts (in aerobic conditions) of oxidative 
delignification. The aim of this paper is to review the basic concepts of POM 
delignification in these two processes. 

Keywords: polyoxometalates; keggin type; lignin; delignification; aerobic; anaerobic; 
lignin reactions; products 
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1. Lignin 

Lignin is an integral cell wall constituent in all vascular plants, including herbaceous varieties. 
Lignin provides rigidity, water-impermeability, and resistance against microbial attack. Its amount in 
lignified plants ranges from 15 to 36% by mass. Lignin is an aromatic polymer consisting of 
guaiacyl- (G), syringyl- (S), and p-hydroxyphenyl- (H) phenylpropanoid units (Figure 1), whose 
proportions differ with the botanical origin of the lignin.  

Figure 1. Lignin phenylpropanoid units. 

 
 
The phenylpropanoid units are attached to each other by a series of C-O-C and C-C bonds such as 

β-O-4, β-5, α-O-4, β-β, and 5-5 (Figure 2). The polymer is branched, and crosslinking occurs. Lignin 
polymer models are well illustrated elsewhere [2]. A small percentage of the lignin building blocks are 
not derived from the traditional monolignols, the hydroxy cinnamyl alcohols; these include 
dihydroconiferyl alcohol units, as well as units with aryl conjugated carbonyl/carboxyl groups (e.g., 
vanillin, cinnamaldehydes: conifer- and sinapaldehyde; vanillic acid, and the cinnamic acids: ferulic 
and sinapic acid). Some lignins are acylated with p-hydroxybenzoate (poplar species) or with  
p-coumarate (grasses) [1]. The lignin in the cell walls is intimately mixed with the polysaccharides, 
and there are indications of the occurrence of linkages between lignin and carbohydrates (lignin 
carbohydrate complex, LCC). Among the proposed chemical linkages, the benzyl ether and ester 
types, whose formation is associated with quinone methide rearomatization reactions during lignin 
biosynthesis, have been considered the most probable [3]. 

2. Pulping and Bleaching 

In the pulp and paper industry, lignin is removed chemically in pulping processes such as the kraft 
process. Conventional kraft cooking is performed in an aqueous solution of delignification agents, 
NaOH and Na2S, at the cooking temperature of 155–175 °C for a period dependent on the raw 
material. During this process, lignin is degraded into smaller alkali-soluble fragments, mainly through 
the cleavage of α- and β-aryl ether bonds. The rate of delignification decreases significantly when 
~90% of the lignin has been removed [4], most likely due to the accumulation of the alkali stable 
bonds within lignin and between lignin and polysaccharides/hemicelluloses [5]. These recalcitrant 
structures may be inherently present in wood; biphenyl (5–5), or they may be formed during pulping; 
diphenylmethane, stilbene (Figure 2) [6–8].  

Because the selectivity of delignification at this stage is severely reduced, the process is stopped, 
and the remaining or residual lignin is removed using bleaching agents. Removal of the residual lignin 
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from kraft pulp can be performed in a bleaching sequence consisting of chlorination (elemental 
chlorine (C), or chlorine dioxide (D)) and alkaline extraction (E) steps such as CED or CEDED [4]. 
However, as environmental regulations have became more restrictive regarding the discharge of 
chlorinated organic compounds into the environment, the pulp and paper industry has been forced to 
reduce the use of chlorine-containing bleaching reagents. In one approach, conventional chlorine-
based bleaching agents have been partially replaced by oxygen used as a bleaching agent (O). About 
one-half of the residual lignin can be removed from kraft pulp without significant deterioration of pulp 
quality, i.e. at high selectivity, by applying oxygen in an alkaline medium [4].  

Figure 2. Illustrations of typical softwood lignin structures; β-O-4, β-5, α-O-4, β-β  
and 5-5, additionally, for residual lignin stilbene and diphenylmethane structures. R=H 
(non-etherified structure); R = Lignin (etherified structure). 

 
 
Since oxygen is a readily available, environmentally-friendly chemical of low cost, its expanded use 

would be advantageous. Currently however, due to the limited selectivity of oxygen, high brightness 
pulps are produced by applying different sequences with an initial oxygen stage; for example, oxygen 
followed by peroxide (P) with a chelating stage (Q) in between (OQP) [9]. Various other chlorine-free 
agents have been studied or implemented for use in bleaching of kraft pulps. Among these are: 
chemical agents (ozone (Z) and peracids (peracetic acid)); and biological agents (enzymes (laccase-
mediator systems)) [10,11]. Despite many advantages, totally-chlorine-free (TCF) bleaching processes 
based on these agents require further improvement. For example, methods to avoid the undesirable 
degradation of polysaccharides by a number of reduced oxygen species formed via radical-chain 
autooxidation processes (superoxide radical anions, OO.-; hydroxyl radicals, HO.) should be developed 
[10]. In enzyme bleaching, there is a need for the development of efficient mediators [11]. In addition, 
TCF bleaching agents such as ozone and laccase-mediator systems tend to be of higher cost [11,12]. 
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Polyoxometalates (POMs) favorably embrace the advantages of both chemical (active at elevated 
temperatures) and biological (highly selective) lignin-oxidizing agents. They have been under 
investigation as promising alternative bleaching agents, which may provide a basis for closed-mill 
delignification technologies. These studies have included the application of POMs as regenerable 
redox reagents [13,14] or as catalysts in oxygen bleaching [15,16]. 

3. Polyoxometalates in Bleaching 

Among a large number of varieties, the Keggin–type polyoxometalates have been recognized as the 
most suitable POMs for use in oxidative delignification. The advantages of Keggin–type 
polyoxometalates include a range of redox potentials, solubility and molecular charges which can be 
adjusted during synthesis, and a relatively easy regeneration by oxygen, hydrogen peroxide, or ozone. 
Keggin-type heteropolyoxoanions are described by the general formula XM’aM”12-aOb

m-, where Xn+ is 
a d- or p-block “heteroatom” (Xn+ = Al3+, Si4+, P5+), and M’ and M” are dn and d0 metal centers, 
respectively (Figure 3).  

Figure 3. Polyhedral representation of monosubstituted Keggin-type POM 
[Xn+VW11O40](8-n)- where the central tetrahedron represents the XO4(Xn+ = Al3+, Si4+ or P5+) 
unit, the shaded octahedron represents the VO6 unit and the unshaded octahedral represent 
the WO6 units. 

 
 
The Keggin structure has a diameter similar to that of phenylpropanoid units in lignin (∼1.1nm). 

The negative charge of POMs anions can be counterbalanced by hydrophilic cations (e.g., Li+, Na+, 
K+, NH4

+) which provide for the solubility of the resulting complexes in water; or by hydrophobic 
cations (e.g., Ph4P+, Et4N+), which provide for solubility in organic solvents [13,17]. 

The concept of delignification with POMs, as robust inorganic systems which provide controlled 
environments with transition-metal ions, has been developed to mimic the action of fragile lignin 
peroxidases containing iron protoporphyrin IX, in selective oxidation of lignin. POMs are reduced 
while lignin is oxidized (reaction 1); POMs may be re-oxidized by oxygen, hydrogen peroxide, or 
ozone (Ox = O, P, Z) (reaction 2). 

Lignin + POMox → Ligninox + POMred      (1) 

POMred + Ox → POMox + H2O      (2) 
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POMs, with a reduction potential sufficiently high to oxidize lignin but low enough for reoxidation 
with oxygen, are capable of transferring electrons from lignin to oxygen (E0

lignin < E0
POM < E0

O), and 
act similarly to lignin peroxidases in white-rot Basidiomycetes fungi. The redox potential of phenolic 
lignin units varies from +0.45 to 0.69 V (vs. NHE (normal hydrogen electrode), pH 2), while the redox 
potential of O, Z, and P is +1.23, +2.07, and 1.76 V (vs. NHE, pH 1.0), respectively [18,19]. In 
accordance with these criteria, POMs with a redox potential in the range of +0.7 to 0.8 V vs. NHE 
have been used for delignification [13,20]. In delignification performed under anaerobic conditions, 
lignin is oxidized by POMs (reaction 1) in one stage and reduced POMs are re-oxidized (reaction 2) by 
oxygen at elevated temperatures in a separate stage; that is, the two reactions of transferring electrons 
from lignin to oxygen are performed in different process stages [13,14]. In an aerobic process, by 
contrast, lignin is oxidized (reaction 1) and reduced POMs are re-oxidized (reaction 2) in one stage 
[16,20]. Because POMs are recycled and can be repeatedly used in a closed system, both of these two 
systems are considered promising alternatives to chlorine-based bleaching systems and a step towards 
effluent-free bleaching plants. However, each system has its own advantages and disadvantages. Both 
systems will be described in the following sections. 

3.1. Delignification with POMs: Anaerobic Conditions 

The concept of delignification based on POMs used as lignin oxidants was developed in the mid 
1990’s [21]. The two steps in which this process occurs are summarized in Figure 4. 

Figure 4. Two steps in POM bleaching. 

 
 

In the first step, performed under anaerobic conditions at elevated temperature (100–140 °C), lignin 
is oxidized and dissolved in an aqueous solution of POMs, which are simultaneously reduced. After 
being treated with POMs, the pulp is separated from the spent POM liquor and washed. It has been 
demonstrated that polyoxometalates are readily washed from the pulp with high washing efficiency of 
99.9% and greater [13] as the size of the Keggin anion corresponds approximately to the height of a 
phenylpropanoid unit (≈11 Å) and because cellulose is also negatively charged [22,23]. It is expected 
that the industrial application would require an advanced industrial washer, such as a four-stage 
displacement drum washer. The reduced POMs are regenerated, using oxygen, for the next bleaching 
process. Under the aggressive conditions of this step, POMs initiate and catalyze the wet air oxidation 
of dissolved lignin degradation compounds and other potentially present organic compounds, which 
are converted to carbon dioxide and water [23]. This means that the POM-based bleaching technology 
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is designed to produce carbon dioxide and water as the only by-products. During the development of 
the POM bleaching technology, a number of different POM anions have been used, beginning with 
[PV2Mo10O40]5- in the first reports. Further progress has been made by using [SiVW11O40]5- which, in 
contrast to [PV2Mo10O40]5-, is stable at neutral pH levels and is characterized by a slightly higher 
oxidation potential. A two-step process using this POM produced delignified pulp that had properties 
comparable to the properties of the pulp delignifed in the CDE bleaching sequence, to the same kappa 
number of 4.6. New POMs, including [SiV2W10O40]6- and [AlVW11O40]6-, have also been synthesized 
to allow reuse of POMs in numerous cycles for achieving mill closure while maintaining effective 
delignification [13,14,21]. 

The results of POM bleaching experiments on kraft pulps of different origins confirmed that POM 
bleaching produces pulp, which has properties that are comparable to those of the CDE pulp. The 
corresponding bleached pulps delignified to very low kappa number (about 4) at the same level of 
refining energy were of similar tensile index, burst index, tear index, and zero span tensile index. 
However, the CDE-bleached pulp was still superior in viscosity (viscosity of unbleached kraft pulp 
28.7 mPa⋅s, DE-bleached pulp 23.1 mPa⋅s, POM-E bleached pulp 19.5 mPa⋅s) [14]. Similar results 
were obtained in the comparative analysis of the properties of bleached pulps obtained in DE and POM 
bleaching followed by alkaline extraction (POM-E) [23].  

An important aspect of this POM delignification concept is that the protons released during lignin 
oxidation in the first step are consumed by oxygen during the re-oxidation of POMs and mineralization 
of lignin in the second step. Taking into account this fact, the reactions 1 and 2 may be represented by 
the reactions 3 and 4. 

2POMox + LigH2 → 2POMred + Ligox + 2H+    (3) 

4POMred + O2 +4H+ → 4POMox +2H2O     (4) 

The reactions 3 and 4 clearly indicate a need for a buffer to maintain the system pH. A group of 
POMs described by the formula Na5(+2)[SiV1(-0.1)MoW10(+0.1)O40] has been synthesized to develop a 
self-buffering POM delignification system. The capability of these POMs to keep a nearly neutral pH 
within a small range has been demonstrated [23,24]. 

The two-step POM delignification process offers numerous advantages compared to other TCF 
bleaching technologies. These include an acceptable selectivity of POM delignification performed in a 
radical-free environment (anaerobic conditions), which can be improved by conducting the process in 
less acid conditions (by selection of a POM which is more tolerant to an increase in pH); and an 
effective regeneration of POMs, which provides the basis for an effluent-free technology. 
Unfortunately, there are some disadvantages of this approach in the application of POMs for pulp 
bleaching. The disadvantages are primarily related to the high concentration of POMs used in lignin 
oxidation; most of the delignification trials have been accomplished by using 0.5 M POM at 8–10% 
pulp consistency. Due to the high molar mass of POMs (the molar mass of [PV2Mo10O40]5- and 
[SiVW11O40]5- is 1732 g/mol and 2741 g/mol, respectively), the required quantity of POMs on a mass 
basis is many times higher than the quantity of agents which are conventionally used in both chorine-
based (Cl2, ClO2) and chlorine-free (e.g., O2, O3, H2O2) bleaching technologies. Accordingly, to apply 
the two-step POM-based delignification on a commercial scale, an improvement of the process related 
to the efficiency of lignin oxidation with POMs is required. Elucidation of the reactions taking place 
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during POM treatment of pulp and a better understanding of the desirable and undesirable 
modifications which lignin undergoes may help achieve this goal. 

Effect on lignin 

The reactivity of phenolic and non-phenolic lignin structural units has been studied using 
monomeric and dimeric lignin model compounds (LMCs) [17,25–27]. A possible reaction pathway for 
a cleavage of the phenolic lignin model compounds has been proposed; this pathway would include 
two one-electron oxidation steps producing cyclohexadienyl cations from the initially formed phenoxy 
radicals (Figure 5) [25].  

Figure 5. Proposed pathway for formation of the cyclohexadienyl cation upon oxidation of 
a phenolic lignin model compound by two equivalents of POMs [25]. 
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In contrast to phenolic LMCs, the etherified LMCs follow a different mechanism and the 
experiments on non-phenolic lignin subunits have revealed that the reaction may proceed via 
successive oxidation of the benzylic carbon atom [26]. Model studies, however, do not reflect all the 
reactions that lignin might undergo as a macromolecule in the pulp matrix. Oxidation of pine milled 
wood lignin (MWL) with POMs has also been explored [28]. The MWL was insoluble under the 
conditions studied, and oxidative reactions were found to be taking place primarily at the surface of the 
suspended lignin macromolecules, providing incomplete information on the lignin reactivity. To 
understand the changes which lignin undergoes during POM treatment of softwood and hardwood 
kraft pulps, residual lignin has been isolated from pulps at different levels of POM delignification and 
analyzed [29–31]. In addition, the nature of lignin degradation compounds dissolved during POM 
delignification has been explored to help elucidate lignin cleavage reactions [32]. Whereas the efforts 
to isolate higher-molecular weight lignin have been unsuccessful, low-molecular weight aromatic 
compounds have been identified in the POM spent liquor. This may be an indicator of the lignin 
reactions occurring on its surface; or, on the other hand, it could indicate the continuation of the 
degradation of higher-molecular weight lignin after dissolution, if the reactions took place in the bulk 
of the lignin. Among the lignin degradation products of POM treatment of different kraft pulps were 
acetosyringone and acetovanillone, as the products of the Cβ-Cγ bond cleavage; vanillin, vanillic acid, 
and syringaldehyde, which are the products of the Cα-Cβ bond cleavage; and 2,6-dimethoxy 
benzoquinone, which confirms the C1-Cα bond cleavage in lignin. The presence of 3,4-dimethoxy 
carbonyl and carboxyl aromatic compounds, veratraldehyde, and veratric acid, respectively, reveals a 
potential methylation reaction taking place with methanol released during the lignin demethylation 
reaction [28] in POM treatment of kraft pulps, since these structures are not naturally present in lignin. 
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Benzoic acid and p-hydroxy benzaldehyde in the spent liquor solution may have originated from 
extractives remaining in the kraft pulps. The lignin origin of p-hydroxybenzaldehyde, however, cannot 
be ruled out without further investigation (Figure 6) [32]. Even though acid-catalyzed and/or 
homolytic cleavage of lignin in these conditions may be expected [33], common products of these 
processes were not identified. 

Figure 6. Low-molecular weight compounds identified in softwood and birch kraft pulp 
POM solution [32]. 
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The results obtained using the different lignin-related substrates revealed that phenol oxidation 

reactions are the most significant reactions occurring during lignin oxidation with POMs. LMCs with 
free phenolic hydroxyl groups (PhOH) reacted both faster and at lower temperature (room 
temperature) than the etherified analogs, which reacted only at temperatures ≥120 °C [26]. Fast 
oxidation of phenolic units was confirmed in POM oxidation of kraft pulps when the content of PhOH 
groups rapidly decreased in the corresponding residual lignins with the progress of POM 
delignification [29,30,34]. Since POM oxidation of phenols yields quinones, it is expected that the 
quinone content in pulps will increase with the progress of POM delignification. Actually, the decrease 
in permanganate oxidizability observed for POM-delignified pulps, which indicates a loss of lignin 
aromaticity, may be an effect of quinone formation, since aromatic ring cleavage was not detected in 
experiments on the effect of POMs on LMCs [26,29,30,34]. The results of a number of studies on the 
effect of POMs on lignin have indicated quinone formation. For example, ortho- and para-quinone 
structures resulted from POM treatment of different lignin model compounds [25,27] (Figure 7); para-
quinone was detected in the solution of unbleached birch kraft pulp treated with POMs [32]; a reddish-
orange hue of the pulps, which is commonly noticed after treatment with POMs, was also attributed to 
the formation of quinones [35]. In addition, ortho-quinone formation in lignin is consistent with a loss 
of methoxyl groups (Figure 7a) [25,27,28]. Lignin demethylation has been observed in the POM 
treatment of pine MWL [28] and in the residual lignins of hardwood kraft pulps with the progress of 
POM delignification [34]. Conversely, para-quinone products give evidence for the occurrence of the 
C1-Cα cleavage reactions [25,32] (Figure 7). An abundance of quinone structures in residual lignin 
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after POM treatment of pulp may be an important reason for a successful brightening of POM treated 
pulps with sodium hydroxide and hydrogen peroxide [35], as they are efficient quinone-removing 
agents [4].  

Figure 7. Quinonoid and aromatic products of POM treatment of phenolic LMCs: (a) 
monomers; and (b) dimers containing β-O-4 bond [25,27]. 
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In addition to quinone formation confirmed in different model studies and studies on MWL and 
kraft pulps, an increase in other carbonyl groups, such as -CαHO and -Cα = O, has been observed in 
the remaining POM-treated MWL and residual lignin of kraft pulps [28,34]. This result corroborates a 
reaction mechanism based on the successive oxidations of the benzylic carbon atoms, as proposed in 
the studies on etherified LMCs [26].  

The LMC studies indicated differences in reactivity of H, G, and S lignin units (phenolic LMCs,  
S > G > H; etherified LMCs G > S [27,28]), whereas no difference in the delignification efficiency 
was observed between softwood (G lignin) and hardwood (SG lignin) kraft pulps [30]. At the 
beginning of the POM treatment, however, residual lignin isolated from softwood kraft pulp was of a 
higher PhOH content than that isolated from hardwood kraft pulp, which may have contributed to its 
reactivity (pulps were of approximately the same kappa number).  

Even though in kraft pulping lignin is primarily degraded through the cleavage of its most abundant 
β-O-4 structure (Figure 2), some β-O-4 bonds are still present in residual lignin of kraft pulps [36]. 
Because the bleaching result depends considerably on the agent’s ability to cleave this structure, the 
POM treatment of β-O-4 dimers was performed [25,27], whereby the researchers observed cleavage of 
the C1-Cα bond in phenolic guaiacyl- and syringyl- glycerol β-aryl ethers (Figure 7b). This finding is 
consistent with the observed reduction in the content of the β-O-4 bonds resulting from the POM 
treatment of pine MWL [28]. The 2D NMR HSQC analysis of residual lignins isolated from kraft 
pulps also indicated a weakening of the correlations assigned to this lignin bond [29,34]. Moreover, 
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the products of the β-O-4 bond cleavage, identified in the LMC studies, were also identified in the 
POM spent liquor of the treatment of kraft pulps. This finding corroborates the delignification 
mechanism, which includes C1-Cα bond cleavage (Figure 6) [32]. The lignin model studies, however, 
did not support the claim that the delignification mechanism includes Cα-Cβ bond cleavage 
(Cα-aldehyde and Cα-carboxyl acid aromatic structures). Nevertheless, the cleavage of the β-O-4 
bonds, the most abundant bonds in native lignin, and important bonds in residual lignin, which was 
revealed in the POM experiments on LMCs, MWL and kraft pulps, would contribute positively to the 
total delignification result in the POM treatment of kraft pulps.  

In contrast to the POM-treated pulp, unbleached kraft pulp treated under the same conditions except 
without POMs, showed only a minimal decrease in kappa number; the kappa numbers of unbleached 
mixed-pine kraft pulp, pulp treated under the same conditions without POMs, and POM-treated kraft 
pulp were 33.6, 29.2, and 7.4, respectively [35]. In addition to the cleavage of β-O-4 bonds, studies 
have suggested that the cleavage of the β-5 bond, a typical native lignin bond (Figure 2), occurred 
during POM treatment of pine MWL and kraft pulps [28–30]. The cleavage of another important lignin 
bond, β-β (Figure 2), was observed only during POM delignification of kraft pulps [29,30]. 
Accordingly, the delignification of pulps during POM treatment is attributed primarily to lignin 
oxidation with POMs. 

Model studies included investigation of the phenolic diphenylmethane structure, which may appear 
as a result of condensation reactions in the residual lignin of kraft pulps (Figure 2) [6,8,37], although 
there are studies which have ruled out the existence of this condensed structure in residual lignin [38]. 
The C1-Cα cleavage was indicated by the presence of the para-benzoquinone product [25] (Figure 8). 
This finding is important because the relative number of C-C bonds gradually increases in residual 
lignin during kraft pulping and the delignification result depends on the ability of a bleaching agent to 
break C-C bonds in lignin. Also, an immediate disappearance of the correlations assigned to stilbene 
structures in the 2D NMR HSQC spectra of residual lignin of POM-treated kraft pulps indicates that 
stilbenes (alkali-stable structures resulting from the Cβ-Cγ bond cleavage in the β-1 and β-5 lignin 
structures; Figure 2) are readily modified during the POM oxidation of both softwood and hardwood 
(birch) kraft pulp [29,31,34]. 

Figure 8. Degradation of a phenolic diphenylmethane with POMs [25]. 
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The identification of oligomers in the model studies indicated a potential for repolymerization of 
lignin during the POM treatment of pulps [25]. While this undesirable path of radical coupling was 
confirmed in the experiments on MWL [28], no increase in polymerization degree was noticed in gel 
permeation chromatograms of residual lignins isolated from softwood and hardwood kraft pulps before 
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and after POM delignification [31,34]. These conflicting results in the studies obtained using lignin 
models/MWL and residual lignins isolated from POM-treated pulps indicate a need for further 
evaluation of the efficiency of POM delignification. 

Characterization of residual lignins from unbleached and POM-delignified kraft pulps showed a 
closer association between lignin and cellulose after the POM treatment of pulps. Alkaline extraction 
of residual lignin, however, successfully resulted in a decrease in carbohydrates in lignin [31]. For this 
reason, it is important to follow the POM treatment with an alkaline extraction step to break any 
potentially present alkali-labile lignin-carbohydrate associations and remove oxidized lignin fragments 
that are insoluble under acid conditions [14,25,31,34,35]. 

3.2. Delignification with POMs: Aerobic Conditions 

POMs have been studied as catalysts in oxygen delignification of unbleached pulps in aqueous or 
organic solvent-water media to increase the selectivity of delignification. For this purpose, the 
heteropolyanions, HPA-n of the general formula [PMo12-nVnO40](3+n)- (n = 1–6), have been used. The 
most important properties of the HPA-n series of polyoxometalates are their simple re-oxidation with 
oxygen, a property which enables reactions (1) and (2) to occur in the same step, and their stability at 
pH 2.5–5, a property which requires acidic process conditions. The redox potential of the HPA-n series 
of POMs decreases with increasing n, and catalytic action in oxidative delignification is performed 
with HPA-5 in particular ([PMo7V5O40]8-, redox potential 0.60 vs. NHE at pH 2) [15,16,20]. Vanadium 
is responsible for the oxido-reduction path of the HPA-n polyoxometalates: while oxidizing lignin, 
HPA-5 is reduced in the reaction V5+ → V4+; reduced HPA-5 is re-oxidized with oxygen in the 
reaction V4+ → V5+. The VO2

+ formed via dissociation of HPA-n (reaction 5) is characterized by 
higher redox potential (0.87 V vs. NHE at pH1) than the parent HPA-n. Dissociation is more likely to 
occur with higher n and in strongly acidic media [16,19]. 

HPA-n → HPA-(n-1) + VO2
+     (5) 

In addition to HPA-5, the VO2
+ ions were an important contributor in catalytic oxidation of lignin. 

However, due to their higher redox potential, VO2
+ ions are less selective lignin oxidizing agents 

leading to the oxidative degradation of polysaccharides. Moreover, the free VO2
2+ ions are not 

oxidized by O2 in an acidic solution [19], which means that they cannot be recycled. Therefore, it is 
desirable to suppress HPA-5 dissociation, which can be done by pH control, by addition of polar 
organic solvents (ethanol), or by increasing the ionic strength of the solution. For example, adding 
ethanol into the system in the amount of up to 40–50% improves delignification selectivity due to the 
partial reduction of the concentration of VO2

+ in the solution; greater than 60% ethanol, however, 
suppressed the rate of lignin oxidation due to the low concentration of VO2

+ [16]. The pH of the 
system also strongly influences the delignification; and while degradation of polysaccharides increases 
with decreasing pH, the delignification efficiency decreases at pH higher than 2.  

The delignification efficiency depends on the concentration of HPA-5 and was optimal at about  
2 mM, whereas at higher concentrations delignification efficiency was reduced, probably due to 
increase in the ionic strength in the solution [18]. To mitigate the problems related to the low 
selectivity of delignification and the reduction in pulp viscosity due to degradation of polysaccharides 
in the HPA-5/O2 bleaching, Mn(II)-substituted HPA-5 (HPA-5-MnII) was synthesized by the use of 
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manganese diacetate in the last step of the synthesis of HPA-5. Use of the catalyst HPA-5-1.5MnII, 

characterized by the [HPA-5]/[Mn2+] ratio of 1.5, in the aerobic delignification of eucalyptus kraft pulp 
resulted in a slightly lower decrease in kappa number but higher viscosity of the pulp compared to 
HPA-5 (kappa number and viscosity of unbleached eucalyptus kraft pulp were 13.9 and 1290 cm3/g, 
respectively; HPA-5/O2-delignified pulp, kappa number 5.8, viscosity 920 cm3/g; HPA-5-1.5MnII/O2-
delignified pulp, kappa number 6.2, viscosity 1050 cm3/g). The higher selectivity of HPA-5-1.5MnII 
(designated HPA-5-MnII) compared to HPA-5 may be attributed to the formation of MnII complexes 
with lacunary HPA-5, which is more stable than HPA-5 and produces less VO2

+ in acidic  
conditions [39]. The feasibility of HPA-5-MnII/O2 delignification of eucalyptus kraft pulp was 
confirmed in pilot-scale experiments [40]. In these experiments, a higher delignification rate was 
observed compared to laboratory results, but pulp viscosity was reduced more than expected (kappa 
number and viscosity of unbleached pulp 14.4 and 1160 cm3/g; kappa number and viscosity of oxygen-
delignifed pulp, 7.7 and 990 cm3/g; kappa number and viscosity of HPA-5-MnII/O2-delignifed pulp 6.6 
and 835 cm3/g, respectively). Additionally, in contrast to laboratory studies in which most of the 
lignin/LMCs were oxidized to CO2, the pilot scale experiments were less successful, with the catalyst 
solution having a COD of 16.6 kg/ton [40–42]. These results showed that even though the HPA-5-
MnII/O2 delignification system represents a promising alternative for chlorine-based bleaching 
processes, further development and scale-up optimization of the system is necessary. 

3.2.1. Effect on lignin 

Studies of the effect of HPA-5/O2 and HPA-5-MnII/O2 on lignin have been performed using 
hardwood (eucalyptus) and softwood (spruce) species, monomeric and dimeric lignin model 
compounds, and dioxane lignin adsorbed on pulp [20,41–44]. The results of these studies indicated 
that the conversion of phenolic lignin units occurs 5–6 times faster than that of non-phenolic lignin 
units and that the syringyl units are more readily oxidized than the guaiacyl analogues. A simplified 
reaction scheme has been suggested by Evtuguin and Pascoal Neto [20]. They suggested that similarly 
to the mechanism of POM delignification in the anaerobic system, the reaction starts with one-electron 
oxidation of lignin phenolic units resulting in phenoxy radicals, which lose one more electron and 
form cyclohexadienyl cations [25] (Figure 5). In contrast to anaerobic POM treatment delignification, 
participation of oxygen is suggested in lignin autooxidation during aerobic delignification catalyzed by 
POMs/HPA-5. The role of the VO2

+ released from the HPA-5 is demonstrated in the suppression of 
these lignin autooxidation reactions, and even more in the oxidation of non-phenolic structures for 
which the VO2

+ ions were suggested to be the active catalysts [43]. The rate-determining step of the 
oxidative delignification of both phenolic and non-phenolic lignin units is the first one-electron 
oxidation step. Similar to the studies of anaerobic POM delignification, the studies of aerobic POM 
delignification indicated that the delignification includes cleavages of the Cα-Cβ and C1-Cα bonds, 
demethylation, and formation of quinone structures. The comparative analysis of lignin before and 
after HPA-5/O2 treatment of dioxane lignin adsorbed on pulp showed that the content of the β-O-4,  
β-β, and β-5 bonds (Figure 2) was reduced, which is the same result observed in the POM anaerobic 
delignification of MWL and kraft pulps [28,29,34]. In contrast to the results of POM anaerobic 
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delignification, however, it has been suggested that during HPA-5 catalyzed aerobic oxidation of 
lignin in wood, aromatic ring cleavage occurs [44]. 

3.2.2. Laccase as a catalyst of re-oxidation of POMs 

As laccase may be an efficient catalyst of re-oxidation of different kinds of POMs, biocatalytic re-
oxidation of reduced POMs with laccase has been proposed as a method that will enhance re-oxidation 
efficiency in aerobic delignification [45]. Re-oxidation can be performed in the same stage as pulp 
POM delignification at the temperature of ∼60 °C, which is in between the temperatures required for 
POM delignification (90–100 °C) and for laccase activity (30–60 °C). Alternatively, laccase-catalyzed 
re-oxidation of POMs can be performed at a lower temperature in a separate stage after the first stage 
of pulp treatment with POMs at a high temperature. Experimental trials have been performed in which 
a two-stage process was followed by a one-stage process to achieve a higher degree of delignification 
with better selectivity (higher pulp viscosity). This multi-stage approach has showed the potential for 
further improvement [45].  

4. Conclusion  

As a promising alternative to chlorine-based bleaching, oxidative delignification with 
polyoxometalates has been suggested. Both of the approaches, one based on the anaerobic process in 
which polyoxometalates are used as oxidative delignification agents, and a second based on an aerobic 
process in which polyoxometalates are used as catalysts, have their advantages and disadvantages. 
Currently, both processes require further development to make implementation feasible. 
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