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Abstract: The theoretical study of magnetic semiconductors using the dynamical coherent
potential approximation (dynamical CPA) is briefly reviewed. First, we give the results for
ferromagnetic semiconductors (FMSs) such as EuO and EuS by applying the dynamical CPA
to the s-f model. Next, applying the dynamical CPA to a simple model for A1−xMnxB-type
diluted magnetic semiconductors (DMSs), we show the results for three typical cases to
clarify the nature and properties of the carrier states in DMSs. On the basis of this model, we
discuss the difference in the optical band edges between II-V DMSs and III-V-based DMSs,
and show that two types of ferromagnetism can occur in DMSs when carriers are introduced.
The carrier-induced ferromagnetism of Ga1−xMnxAs is ascribed to a double-exchange
(DE)-like mechanism realized in the magnetic impurity band/or in the band tail.
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1. Introduction

For more than three decades, magnetic semiconductors have attracted much attention because of their
combination of magnetic and semiconducting properties.

In the 1960s and 1970s, many papers were published on ferromagnetic semiconductors (FMSs)
such as EuO and EuS [1,2]. Pure EuO and EuS are considered as typical Heisenberg ferromagnets.
Their magnetic moments originate from the half-filled and highly localized 4f shell of the Eu ion at
regular sites. At the high-temperature limit (T = ∞), the orientation of each localized spin (f spin) is
completely random. At paramagnetic temperatures the total magnetization is zero, although short-range
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order is formed as the temperature decreases to the Curie temperature (Tc). Below the Curie temperature,
spontaneous magnetic ordering develops, and at T = 0 the orientations of f spins are perfectly arranged
in one direction. Eu chalcogenides are also insulators with a NaCl-type structure. When a single electron
is introduced into the crystal, the electron enters an otherwise empty (5d, 6s) conduction band. The
electron (hereafter referred to as the s electron) moves in the crystal while interacting with f spins
through the s-f exchange interaction. Thus, the conduction- (s-) electron state in FMSs is strongly
affected by the magnetic order of f spins. This causes numerous anomalous phenomena in FMSs,
such as the redshift of the optical absorption edge with decreasing temperature, the magnetic polaron
effect, spin-disorder scattering around Tc [3], and the metal-insulator transition in Eu-rich EuO [4].
Its extreme properties, such as high electron-spin polarization, colossal magnetic resistance (CMR),
and the enhancement of Tc due to Gd doping, make electron-doped EuO interesting for spintronics
applications. Recently, these features have therefore stimulated systematic experimental studies
with modern techniques and improved sample quality [5–13] as well as theoretical studies [14–18].
The conduction-electron states in FMSs have been discussed on the basis of the s-f (exchange)
model [19,20]; the s-f model is sometimes referred to as the Kondo lattice model [21,22].

Diluted magnetic semiconductors (DMSs) are semiconducting alloys whose lattice is partly made
up of substitutional magnetic atoms. The most extensively studied DMSs since the 1980s are
AII

1−xMnxB
VI-type (II-VI-based) DMSs, in which a fraction of the group II sublattice is replaced at

random by magnetic Mn atoms. Mn impurities substituting for 2+ cations act as stable 2+ ions; therefore,
there are few carriers, which makes these DMSs insulators. It is widely accepted that in II-VI-based
DMSs the carriers (s electrons and p holes) move over many sites while interacting with the localized
(d) spins at Mn sites through the sp-d exchange interaction [23–25]. The exchange interaction strongly
enhances the effect of the magnetic field on band splitting, leading to spectacular magnetooptical effects
(e.g., giant Faraday rotation or Zeeman splitting). Since 1996, attention has also been focused on
the III-V-based DMSs of Ga1−xMnxAs and In1−xMnxAs owing to their high potential for new device
applications. It is highly noteworthy that the doping of Mn into GaAs and InAs leads to ferromagnetism
and interesting magneto-optical and magnetotransport phenomena. This ferromagnetism is generally
referred to as “carrier-induced ferromagnetism” because hole carriers introduced by Mn incorporation
mediate the ferromagnetic coupling between Mn ions [26,27]. The main difference between II-VI and
III-V-based DMSs is that in the latter, Mn ions act not only as magnetic impurities but also as acceptors.
The microscopic mechanism for carrier-induced ferromagnetism is still controversial. To elucidate the
origin and mechanism of the carrier-induced ferromagnetism, however, it appears necessary to clarify
the nature of the carrier states in DMSs.

The carrier states in FMSs and DMSs have not yet been explained theoretically in a sufficiently clear
way. The exchange interaction between the carrier and magnetic moments (localized spin), however,
seems to be a clue to solving most of these problems. Since the localized spins thermally fluctuate in
FMSs, the theory should properly take into account the effect of the thermally fluctuating spins on carrier
states through the exchange interaction. In DMSs, substitutional disorder exists in addition to the thermal
fluctuation of localized spins at Mn sites.

The coherent potential approximation (CPA) is a superior mean-field theory which was
originally devised for describing the electronic structure and/or the properties of binary substitutional
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alloys [28–30]. Rangette et al. first applied the CPA to the s-f model at high temperatures, assuming the
orientations of the magnetic moments to be completely random [31]. In 1974 Kubo extended the CPA to
thermally fluctuating spin systems; Kubo formulated the CPA in terms of effective locators [32]. In 1996
Takahashi et al. formulated the CPA in the t-matrix formula, which has been proved to be equivalent
to the locator-formula CPA. Since then, the CPA has been applied to investigate FMSs [33–37] and/or
DMSs [38–43]. This method is referred to as “dynamical CPA”, because the dynamical spin-flip process
is properly taken into account in the thermal averaging operation. In the classical spin limit, the numerical
results obtained by dynamical CPA are in good agreement with those obtained by dynamical mean-field
theory (DMFT) [44,45]. It has also been reported that the result for optical conductivity obtained by the
dynamical CPA is in reasonable agreement with that obtained by Monte Carlo (MC) simulation [46].
Note that the dynamical CPA can be applied even for a finite magnitude of localized spin. Furthermore,
the analytic formula in limiting cases, such as at high temperatures and at the diluted impurity limit, can
be easily deduced.

In this article we briefly review the study of magnetic semiconductors using the dynamical CPA. We
first discuss the conduction-electron states in FMSs on the basis of the s-f model. We formulate the
dynamical CPA using multiple-scattering theory and discuss the numerical results. Next, we study the
carrier states in II-VI and III-V-based DMSs using a simple model. The numerical results and discussion
are first given for two typical cases with no nonmagnetic attractive potential: (i) the case of a strong
exchange interaction and (ii) the case of a moderate exchange interaction. Since the screened Coulomb
attractive potential acts between a hole and a Mn acceptor center in III-V-based DMSs, we also study
(iii) the case of a moderate exchange interaction with a strong nonmagnetic attractive potential. Then,
based on the Curie temperature Tc numerically estimated in a simple way, we investigate the type and
properties of the magnetism that may occur when carriers are introduced into DMSs. After that, we focus
on (Ga,Mn)As, which has attracted much attention in recent years owing to its so-called carrier-induced
ferromagnetism. Throughout the present review, we study the effect of the exchange interaction between
the carrier and the localized spins on carrier states in magnetic semiconductors. In the Appendix, the
locator formula of the dynamical CPA is briefly summarized.

2. Conduction-electron States in a Ferromagnetic Semiconductor (FMS)

2.1. Coherent Potential Approach to the s-f Model

The s-f (exchange) model is currently accepted as a basis for studying the conduction-electron states
in an ordinary FMS such as EuO or EuS. In this model, there are magnetic moments at the regular sites
and a well-defined conduction band. A single conduction electron (s electron) moves in the crystal while
interacting with localized magnetic moments (f spins) through the s-f exchange interaction. Therefore,
the total Hamiltonian Ht is expressed as

Ht = Hs +Hf +Hsf (1)
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where

Hs =
∑
k,µ

εka
†
kµakµ (2)

Hf = −
∑
mn

JmnSm · Sn (3)

Hsf = −I
∑
nµ,ν

a†nµσµν · Snanν (4)

Here, Hs represents the translational energy of an s electron; a†kµ and akµ are, respectively, the creation
and annihilation operators for the Bloch state of an s electron with spin µ and wave vector k, and εk is
the energy of the Bloch state. Hf is the Heisenberg-type exchange interaction between f spins; Sn is the
operator of the f spin located at the nth lattice site, and Jmn is the exchange interaction constant between
f spins at the mth and nth sites. The s-f exchange interaction between an s electron and f spins, Hsf ,
is represented by the simplest form of the intra-atomic exchange model; I is the exchange constant and
σµν is an element of the Pauli matrix for an s electron; a†nµ and anµ are the creation and annihilation
operators for the Wannier states of an s electron with spin µ at site n, respectively.

Generally, magnetic excitation energy is very small compared with the conduction bandwidth and the
s-f exchange energy. Thus, we treat the f spins as a quasi-static system, that is, we take the thermal
average for fluctuating f spins at the final stage of the derivation of physical quantities. Throughout
this paper, we shall confine our discussion to the so-called one-particle picture. Thus, we define the
single-particle Green’s function as

G(ω) =
1

ω −H
(5)

with

H = Hs +Hsf (6)

and write its thermal average for f spins as ⟨G(ω)⟩. Hereafter, the variable ω will be omitted from the
operators for cases where this will cause no confusion.

To apply the multiple-scattering theory [28,29], we divide H into the unperturbed Hamiltonian K and
the perturbation term V . When magnetization arises, an s electron in an FMS is subjected to different
effective potentials through the s-f exchange interaction depending on the orientation of its spin. Thus,
we assume a spin-dependent effective medium in which a carrier is subject to a coherent potential, Σ↑ or
Σ↓, according to the orientation of its spin. The coherent potential Σ↑ (Σ↓) is an energy (ω)-dependent
complex potential. Then, an s electron moving in this effective medium is described by the (unperturbed)
reference Hamiltonian K:

K =
∑
kµ

(εk + Σµ)a
†
kµakµ (7)

Thus, the perturbation term V (≡ H −K) is written as the following sum over each lattice site:

V =
∑
n

vn (8)
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with

vn =
∑
µ,ν

a†nµ(−Iσµν · Sn − Σµδµν)anµ (9)

Next, using the reference Green’s function P given by

P (ω) =
1

ω −K
(10)

we define the t-matrix of the s-f exchange interaction due to a localized spin Sn embedded in the
effective medium by

tn = vn[1− Pvn]
−1 (11)

Note that tn represents the complete scattering associated with the isolated potential vn in the
effective medium, and that K, and thus P , includes no localized spin operator. According to the
multiple-scattering theory, the total scattering operator T , which is related to G ≡ 1/(ω −H) as

G = P + PTP (12)

is expressed as the multiple-scattering series

T =
∑
n

tn +
∑
n

tnP
∑

m ( ̸=n)

tm +
∑
n

tnP
∑

m (̸=n)

tmP
∑

l ( ̸=m)

tl + · · · (13)

Within the single-site approximation, the condition

⟨tn⟩ = 0, for any site n (14)

leads to ⟨T ⟩ ∼= 0 , and thus ⟨G⟩ ∼= P . This is the CPA.
Here, we introduce the diagonal component of P in the Wannier representation,

Fµ(ω) ≡ ⟨nµ|P (ω)|nµ⟩ (independent of n), as

Fµ(ω) ≡ ⟨nµ|P (ω)|nµ⟩ = 1

N

∑
k

1

ω − εk − Σµ

(15)

In the CPA, the coherent potential Σµ is set to satisfy the condition Equation (14) so that ⟨G⟩ ∼= P .
Thus, the density of states (DOS) of the electron with spin µ(=↑, or ↓) is calculated as

Dµ(ω) =
1

N
Tr⟨µ| ⟨δ(ω −H)⟩|µ⟩ = − 1

Nπ
ImTr⟨µ|⟨ 1

ω + i0−H
⟩|µ⟩ (16a)

∼= − 1

Nπ
ImTr⟨µ| 1

ω −K
|µ⟩ = − 1

Nπ
Im

∑
k

1

ω − εk − Σµ

= − 1

π
ImFµ(ω) (16b)

2.2. t-Matrix Elements and Their Thermal Average

Here we show that the t-matrix elements of the s-f exchange interaction for the f spin embedded
in the effective medium, Σ↑ (Σ↓), can be derived without further approximation [33,43]. Because the
exchange term v has four spin-matrix elements, the t-matrix also has four components. For simplicity,
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we will omit the site suffix n in the Wannier representation; tµν ≡ ⟨nµ|t|nν⟩, where µ, ν =↑ and/or ↓.
In accordance with the definition of the t-matrix in Equation (11), we have

t[1− Pv] = v (17)

Equation (17) is written in the spin-matrix-element expression as

t↑↑ − t↑↑F↑v↑↑ − t↑↓F↓v↓↑ = v↑↑ (18a)

t↑↓ − t↑↓F↓v↓↓ − t↑↑F↑v↑↓ = v↑↓ (18b)

where Fµ ≡ ⟨µ|P |µ⟩. Then, Equation (18a) × (F↓v↓↑)
−1 + Equation (18b) × (1− F↓v↓↓)

−1 leads to an
equation including t↑↑ only (t↑↓ is canceled):

t↑↑[(1− F↑v↑↑)(F↓v↓↑)
−1 − F↑v↑↓(1− F↓v↓↓)

−1] = v↑↑(F↓v↓↑)
−1 + v↑↓(1− F↓v↓↓)

−1 (19)

Recalling the commutation relationships between the components of S,

S−Sz = (Sz + 1)S− (20)

(S+)
−1 = [S(S + 1)− (Sz)

2 − Sz]
−1(S−) (21)

we obtain an explicit expression for t↑↑ using no further approximations. Here, S is the magnitude of the
localized spin S, and the z component of the f spin is Sz: S+ = Sx + iSy and S− = Sx − iSy. Other
t-matrix elements are also obtained by a similar procedure.

In order to show the resulting expressions simply, it is convenient to introduce the following symbols:

V↑ ≡ v↑↑ = −ISz − Σ↑ (22a)

V↓ ≡ v↓↓ = +ISz − Σ↓ (22b)

v↑↓ = −IS− (22c)

v↓↑ = −IS+ (22d)

U↑ ≡ −I(Sz − 1)− Σ↑ (22e)

U↓ ≡ +I(Sz + 1)− Σ↓ (22f)

W↑ ≡ I2S−S+ = I2[S(S + 1)− S2
z − Sz] (22g)

W↓ ≡ I2S+S− = I2[S(S + 1)− S2
z + Sz] (22h)

The physical meanings of the above symbols can be easily explained. V↑ (V↓) is the spin-diagonal
component of the s-f exchange interaction, wherein an s electron with ↑ (↓) spin interacts with an f

spin embedded in the medium of Σ↑ (Σ↓). U↑ (U↓) is the spin-diagonal component of the s-f exchange
interaction, wherein an s electron with ↑ (↓) spin interacts with an f spin that has already flipped in
the previous scattering; thus, the f spin operator Sz is replaced by Sz − 1 (Sz + 1). Both V↑ (V↓) and
U↑ (U↓) describe the scattering process without a spin flip. On the other hand, W↑ (W↓) represents
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the interaction energy required by an s electron with ↑ (↓) spin to flip and then reverse its spin after
intermediate propagation with a flipped spin. The resulting expressions are

t↑↑ =
V↑ + F↓(W↑ − V↑U↓)

1− F↓U↓ − F↑[V↑ + F↓(W↑ − V↑U↓)]
(23a)

t↓↓ =
V↓ + F↑(W↓ − V↓U↑)

1− F↑U↑ − F↓[V↓ + F↑(W↓ − V↓U↑)]
(23b)

t↑↓ =
1

1− F↓U↓ − F↑[V↑ + F↓(W↑ − V↑U↓)]
(−IS−)

= (−IS−)
1

1− F↑U↑ − F↓[V↓ + F↑(W↓ − V↓U↑)]
(23c)

t↓↑ =
1

1− F↑U↑ − F↓[V↓ + F↑(W↓ − V↓U↑)]
(−IS+)

= (−IS+)
1

1− F↓U↓ − F↑[V↑ + F↓(W↑ − V↑U↓)]
(23d)

Note that the diagonal-matrix element tµµ involves only Sz as an operator [i.e., tµµ ≡ tµµ(Sz)]. Thus,
the thermal average over the fluctuation of the localized spin is taken as

⟨tµµ⟩ =
S∑

Sz=−S

tµµ(Sz)exp

(
hSz

kBT

)
/

S∑
Sz=−S

exp

(
hSz

kBT

)
(24)

where h denotes the effective field acting on the localized f spins. Since there is a one-to-one
correspondence between ⟨Sz⟩ and the parameter λ ≡ h/kBT through the relationship

⟨Sz⟩ =
S∑

Sz=−S

Szexp

(
hSz

kBT

)
/

S∑
Sz=−S

exp

(
hSz

kBT

)
(25)

we can describe the electron states in terms of ⟨Sz⟩ instead of λ. Note that the thermal average of the
off-diagonal elements ⟨t↑↓⟩ = ⟨t↓↑⟩ is 0 because the magnetization is assumed to be along the z axis.

The conditions for the CPA are expressed as

⟨t↑↑⟩ = 0 (26a)

⟨t↓↓⟩ = 0 (26b)

It is worth noting that the spin-flip processes are properly taken into account in the above expression
for the t-matrix elements. As a result, each t matrix element tµµ depends on both Σ↑ and Σ↓. Therefore,
we solve Equations (26a) and (26b) simultaneously.

For an undisturbed DOS, we assume the model DOS to have a semicircular form with a
half-bandwidth ∆:

ρ(ε) =
2

π∆

√
1−

( ε

∆

)2

(27)
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Then, Fµ(ω) is calculated as

Fµ(ω) =
1

N

∑
k

1

ω − εk − Σµ

=

∫ ∆

−∆

ρ(ε)

ω − ε− Σµ

dε (28)

=
2

∆


(
ω − Σµ

∆

)
−

√(
ω − Σµ

∆

)2

− 1

 (29)

The procedure of the numerical calculation is as follows. For a given ω, by assigning a suitable
complex value of Σµ (for µ =↑ or ↓), Fµ is calculated by Equation (29). Taking the thermal
average for fluctuating f spins using Equation (24), Σ↑ and Σ↓ are simultaneously determined by
Equation (26). Then, we can calculate Fµ again. This procedure is repeated until the calculation
converges (see Reference [33] for details). In all of the present numerical results, we have numerically
verified that ∫ ∞

−∞
D↑(ω)dω =

∫ ∞

−∞
D↓(ω)dω = 1 (30)

2.3. Results for the Conduction-electron States in an FMS

The parameters that are necessary to describe the present model are the conduction bandwidth 2∆,
the exchange energy IS (= I × S), the magnetization ⟨Sz⟩/S, and the quantum spin factor 1/S. Here,
we take S = 7/2 for the f spin. We first confirm that the exchange interaction term −Iσ · S has two
eigenstates (i.e., the parallel-coupling state and antiparallel-coupling state) according to the manner of
coupling between the s electron’s spin and the localized f spin. The parallel-coupling state (denoted
by p) has an energy eigenvalue of εp = −IS with the degeneracy of 2S + 2, while the
antiparallel-coupling state (denoted by a) has an energy eigenvalue of εa = +I(S + 1) with the
degeneracy of 2S. Therefore, the band splits into two subbands when the exchange energy IS is large
compared with the bandwidth 2∆.

In Figure 1(a), we show the DOS for various exchange energies IS/∆ in the paramagnetic
states. At high temperatures the orientation of f spins is completely random. Therefore, the present
result is equivalent to that obtained by Rangette et al. [31], who applied the CPA to an electron
propagating in a disordered binary alloy in which two kinds of atoms with atomic energies of −IS

and +I(S + 1) are randomly distributed with concentrations of (S + 1)/(2S + 1) and S/(2S + 1),
respectively. When IS/∆ is small, the band remains as a single band, while it broadens with the increase
of IS/∆. For I(2S+1) & ∆ (or IS/∆ & 0.44) the band splits into two subbands, the parallel-coupling
and antiparallel-coupling subbands, whose centers are at −IS and +I(S + 1), and whose total numbers
of states are 2(S + 1)/(2S + 1) = 1.125 and 2S/(2S + 1) = 0.875, respectively.

In Figure 1(b), we show the DOS in the completely ferromagnetic states. In this case, only the value
Sz = S is realized in the thermal average over the f spin states. Hence, from Equation (26) we obtain

Σ↑ = −IS (31a)

Σ↓ = +IS
(1 + IF↑)

(1− IF↑)
(31b)
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Figure 1. The DOS shown as a function of ω/∆ for IS/∆ = 0.0, 0.2, 0.4, 0.6,
0.8, and 1.0: (a) paramagnetic states (⟨Sz⟩ = 0; left panel) and (b) completely
ferromagnetic states (⟨Sz⟩ = S; right panel). The solid curves show up-spin states
and the dotted curves show down-spin states. The points on the energy axes
indicate −IS and +I(S + 1), and the straight dotted lines indicate −(∆ + IS)
and +(∆ + IS) for reference.
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The results can be interpreted as follows. For the completely ferromagnetic case (i.e., T = 0), the
states of an s electron with up spin only shift by −IS with no damping. On the other hand, the s-electron
states with down spin are damped because they can flip their spin under the condition that the total spin
(= S − 1/2) is conserved if the DOS with up spin is not zero therein. This is because Σ↓ involves
F↑ [≡ F↑(ω)]. This spin-flip process of the s electron is a quantum effect due to the finiteness of
the magnitude of the f spin. Thus, in the classical spin limit [i.e., setting S ≫ 1 and Sz ≫ 1 in
Equation (23)] , Equation (31b) is replaced by

Σ↓ = −IS (32)

In Figure 2, we show the DOS for two typical cases: (a) weak exchange interaction (left panel;
IS/∆ = 0.2) and (b) strong exchange interaction (right panel; IS/∆ = 0.8). In the weak exchange
interaction limit (IS/∆ ≃ 0), the present results agree with those obtained using first-order perturbation
theory. Substituting Equation (23a) into Equation (26a) and Equation (23b) into Equation (26b), and
expanding them in I to the first order, we obtain

⟨V↑⟩ = 0 then Σ↑ = −I⟨Sz⟩ (33a)

⟨V↓⟩ = 0 then Σ↓ = +I⟨Sz⟩ (33b)

This means that the ferromagnetic ordering of f spins gives rise to the −I⟨Sz⟩ shift in the up-spin
band and the +I⟨Sz⟩ shift in the down-spin band. However, even when IS/∆ = 0.2, this is not the case,
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as is shown in Figure 2(a). The bands are broadened owing to the fluctuation of the f spins, and the
down-spin band has a tail which reaches the bottom of the up-spin band even in the case of completely
ferromagnetic states (⟨Sz⟩ = S). This explains why the electron-spin polarization cannot reach 100%;
the origin is the quantum effect coming from the finiteness of the magnitude of the f spin, as already
discussed [34].

Figure 2. The DOS shown for magnetizations ⟨Sz⟩/S = 0.0, 0.2, 0.4, 0.6, 0.8,
and 1.0: (a) IS/∆ = 0.2 (left panel) and (b) IS/∆ = 0.8 (right panel). The
solid curves show up-spin states and the dotted curves show down-spin states.
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As shown in Figure 2(b), in a case of the strong exchange interaction, the band splits into two
subbands depending on the coupling of the s electron spin and f spins: the parallel-coupling subband
(lower-energy side) and the antiparallel-coupling subband (higher-energy side). The total number
of states in the parallel-coupling subband per site is 2(S + 1)/(2S + 1) = 1.125 and that in the
antiparallel-coupling subband is 2S/(2S+1) = 0.875, irrespective of the value of ⟨Sz⟩. When ⟨Sz⟩ = 0,
both subbands are composed of the same number of up- and down-spin states. When ⟨Sz⟩ = S, on
the contrary, all states in the antiparallel-coupling subband have down spin, while the states in the
parallel-coupling subband are composed of all the up-spin states and part of the down-spin states; the
number of states with down spin per site is 0.125 in the parallel-coupling subband.

The energy of the bottom of the band ωb is shifted by the s-f exchange interaction from that of the
undisturbed (model) band (ω = −∆), even when ⟨Sz⟩ = 0. In Figure 3(a), we show the energy shift of
the bottom of the band in the paramagnetic states normalized by IS, (ωb+∆)/IS, as a function of IS/∆;
the exact solution for ωb is given in the Appendix of Reference [38]. Using the result in Figure 3(a), we
can explain why Eu chalcogenide FMSs exhibit different redshifts despite the fact that they all have the
same lattice structure, the same f spin value of S = 7/2, and almost the same exchange interaction
energy IS [47]. Since the optical absorption band is assigned to the 4f 7 → 4f 65d (t2g) band transition,
the redshift is ascribed to the lowering of the energy of the bottom of the (d-like) conduction band with
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the decrease in temperature due to the (d-f ) exchange interaction [1]. In Figure 3(a), we indicate the
magnetic redshifts experimentally observed for EuO (0.27 eV), EuS (0.18 eV), and EuSe (0.13 eV) with
arrows. In this approach, ωb is a function of IS/∆ at paramagnetic temperatures, while ωb = −IS

(independent of ∆) at T = 0. Since the exchange interaction has an intra-atomic character due to the
strong localization of f electrons within the Eu2+ ion, the value of IS does not greatly differ among
these Eu chalcogenides. Thus, the difference in the total redshift can be ascribed to the difference in the
bandwidth 2∆. From Figure 3(a), using IS = 0.35 eV we estimated the values of the bandwidth (2∆)
as 7 eV (EuO), 2.5 eV (EuS), and 1.6 eV (EuSe). Though uncertainty remains due to the experimental
error in measuring the position of the absorption edge, the broad conduction-band picture for EuO is
consistent with the result recently obtained by spin-resolved spectroscopy [12]. The tendency that the
width of the conduction band of EuX decreases with the change of chalcogenides from X = O to Se is
consistent with the electronic structure obtained by optical measurement [1].

Figure 3. (a) The shift of the bottom of the band in paramagnetic states
normalized by the exchange energy, (ωb+∆)/IS, shown as a function of IS/∆.
The arrows indicate the experimentally obtained magnetic redshifts of EuO
(0.27 eV), EuS (0.18 eV), and EuSe (0.13 eV) with IS = 0.35 eV. (b)
The energy of the bottom of the band depicted as a function of T/Tc for
IS/∆ = 0.2, 0.4, 0.6, and 1.0. The value of −⟨Sz/S⟩, which corresponds to
the result of the weak exchange interaction limit, is also shown.
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In Figure 3(b), the energy shift of the bottom of the band is shown as a function of normalized
temperature T/Tc. From Figure 3(b), we can also explain the reason for the apparent success of
first-order perturbation theory in explaining the magnetic redshift. The temperature dependence of the
shift in the energy of the bottom of the band is approximately −Ieff⟨Sz⟩. Thus, Ieff can be regarded to be
the effective exchange constant in which the effect of multiple scattering has already been renormalized.
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The results obtained by applying the dynamical CPA for the s-f model of FMSs are consistent with
the experimental observation of the electron-spin polarization [34], and they explain the temperature
dependence of the electrical resistivity of degenerate FMSs [35]. We should also add that the
coherent potential approach can explain not only the redshift of FMSs but also the blue shift of the
antiferromagnetic semiconductor EuTe [36,37].

3. Carrier States in Diluted Magnetic Semiconductors (DMSs)

3.1. Model Hamiltonian for a Carrier in a DMS and the Application of the Dynamical CPA

In order to study the effect of the sp-d exchange interaction between a carrier (an s conduction electron
or p hole) and localized magnetic moments (d spins) together with magnetic and chemical disorder in
DMSs, we introduce a simple model for A1−xMnxB-type DMSs. In this model, the local potentials
of nonmagnetic (A) ions in a semiconducting compound (AB) are substituted randomly, with mole
fraction (x), by local potentials that include the exchange interaction between a carrier and the localized
spin moment on a Mn (denoted by M) ion. Thus, the potential to which a carrier is subjected at a site
depends on whether the site is occupied by an A ion or M ion. The Hamiltonian H is given by

H =
∑
m,n,µ

εmna
†
mµanµ +

∑
n

un (34)

where un is either uA
n (at the A site) or uM

n (at the M site), depending on the ion species occupying the n

site:

uA
n = EA

∑
µ

a†nµanµ (35)

uM
n = EM

∑
µ

a†nµanµ − I
∑
µ,ν

a†nµσµν · Snanν (36)

Here, a†nµ and anµ are, respectively, the creation and annihilation operators for a carrier with spin µ at
the n site. The transfer-matrix element between m and n, εmn, is assumed to be independent of the types
of constituent atoms that occupy the m and n sites. In II-VI-based DMSs of the AII

1−xMnxB
VI-type, EA

(EM ) represents a nonmagnetic local potential at the A2+ (Mn2+) sites. In III-V-based DMSs such
as Ga1−xMnxAs, the spin-independent potential EM(< 0) can be regarded as a screened Coulomb
attractive potential between a carrier (hole) and the Mn2+ ion (acceptor center). The exchange interaction
between the carrier and localized spin Sn of the Mn site n is expressed by −Ia†nµσµν ·Snanν , where σµν

represents the element of the Pauli spin matrices. We disregard the electron-electron, hole-hole, and/or
electron-hole interactions.

The application of the dynamical CPA to the Hamiltonian in Equation (34) is straightforward [41–43].
Since the present system includes both substitutional disorder and the thermal fluctuation of the localized
spin at an M site, the average of the t-matrix is written as

⟨t⟩av = (1− x)tA + x⟨tM⟩ (37)

Here, we express the average of tn over the disorder in the system as ⟨tn⟩av; (1−x) and x are the mole
fractions of A and M atoms, respectively. tA is the t-matrix that represents the multiple scattering of a
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carrier due to the A ion potential uA [in Equation (35)] embedded in the effective medium. Assuming
the spin-dependent coherent potential Σµ (µ =↑ or ↓), the t-matrix elements are given as [29]

tAµµ =
EA − Σµ

1− (EA − Σµ)Fµ

(38)

Here, Fµ is a diagonal matrix element of a propagator with respect to the effective medium and is given
by Equations (15) and/or (29). tM is the t-matrix that represents the multiple scattering of a carrier due
to the M ion potential uM [in Equation (36)] embedded in the effective medium; ⟨tM⟩ is the thermal
average of tM over the fluctuation of the localized spin. Explicit expressions for tµν are obtained after
minor substitutions in Equation (23); Σµ → Σµ −EM . In the dynamical CPA, the coherent potential Σµ

is set such that the effective scattering of a carrier at the chosen site embedded in the effective medium
is zero on average. Thus, the dynamical CPA conditions are given by

(1− x)tA↑↑ + x⟨tM↑↑⟩ = 0 (39a)

(1− x)tA↓↓ + x⟨tM↓↓⟩ = 0 (39b)

In Appendix A, we outline the dynamical CPA using locator formalism, which has been proved to be
equivalent with the dynamical CPA using t-matrix formalism. The advantage of the locator formalism is
that it can be easily used to obtain the species-resolved DOSs DA

µ (ω) and DM
µ (ω), which are the DOSs

with µ spin associated with an A ion and M ion, respectively.

3.2. General Consideration for the Carrier States in a DMS

In the subsections below, we treat the localized spins classically, although S = 5/2 for the Mn2+

ion. One of the advantages of the classical spin approximation is that it reduces the number of physical
parameters. It is sufficient to assign a value to the exchange energy IS = I × S instead of assigning the
values of I and S separately. In the classical spin approximation, we let 1/S approach 0 (i.e., S → ∞)
while keeping IS constant. The quantum fluctuation of the localized spin is ignored. As a consequence,
both eigenstates have the degeneracy of 2S, and the eigenenergies become symmetric: εp = −IS

and εa = +IS. The s-d exchange interaction between a conduction electron (s electron) and a localized
spin (d spin) favors parallel coupling. On the other hand, in most DMSs, the p-d exchange interaction
between a hole (p hole) and a localized spin favors antiparallel coupling, and the magnitude of the p-d
exchange interaction is several times larger than that of the s-d exchange interaction. The p-d exchange
interaction plays an important role in magneto-optical effects in II-VI-based DMSs and is related to the
carrier-induced ferromagnetism in III-V-based DMSs. Hence, keeping the p-d exchange interaction in
mind, we assume IS < 0 hereafter. Note that the present model requires only two parameters, IS/∆
and EM/∆, after we set EA ≡ 0.

In Sections 3.3–3.5, we will discuss some typical cases of A1−xMxB-type DMSs in which 5% of
the nonmagnetic (A) ions are randomly substituted by magnetic (M) ions. The results reveal the nature
of the magnetic impurity bands and how the carrier states behave with changing magnetization. In
Section 3.6, based on the Curie temperature Tc calculated in a simple way, we will discuss the type and
properties of ferromagnetism which may occur when carriers introduced into A1−xMxB-type DMSs. In
Section 3.7, we will focus on the case of (Ga, Mn)As.



Materials 2010, 3 3753

3.3. The Case of Strong Exchange Interaction

In Figure 4, we show the numerical results with IS = −∆ and EM = 0.0, referred to as the
case of strong exchange interaction hereafter. In the left panel of Figure 4, the spin-polarized DOSs,
D↑(ω) and D↓(ω), are depicted for various values of ⟨Sz⟩/S. In the dilute impurity limit (x → 0),
impurity levels appear at the energies of Ea

∆
=

(
EM∓IS

∆

)
+ 1

4

(
∆

EM∓IS

)
= ±1.25. When x = 0.05,

impurity bands appear around the impurity levels. The total number of states of each impurity band is x,
irrespective of ⟨Sz⟩. The lower (higher)-energy impurity band corresponds to the antiparallel
(parallel)-coupling state.

Figure 4. Left panel: DOS as a function of ω/∆ for various values of
⟨Sz⟩/S. The solid lines represent the down-spin carrier and dotted lines
represent the up-spin carrier. The impurity levels Ea = ±1.25∆ are indicated
by dots on the abscissa. Right panel: (a) A-site component of the DOS,
(1 − x)DA

↓ (ω)∆ and −(1 − x)DA
↑ (ω)∆. (b) M-site component of the DOS,

xDM
↓ (ω)∆ and −xDM

↑ (ω)∆. The thick, thin, and dotted lines represent the cases
of ⟨Sz⟩/S = 1.0, 0.5, and 0.0, respectively. Note the difference in the scale of
the vertical axes of (a) and (b). From Takahashi and Kubo [42].
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The impurity bands are strongly affected by changes in ⟨Sz⟩. On the other hand, the host band is
negligibly affected. To elucidate the origin of the change in the DOS, we calculate the species-resolved
DOS. In the left panel of Figure 4, we depict the A- and M-site components of the DOS, (1− x)DA

µ (ω)

and xDM
µ (ω), respectively. DA

µ (ω) [DM
µ (ω)] represents the local DOS with µ spin (µ =↑ or ↓) associated

with the A (M) ion. Note that

Dµ(ω) = (1− x)DA
µ (ω) + xDM

µ (ω) (40)
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Since DA(ω) and DM(ω) are normalized, the total numbers of A-site states and M-site states are 1−x

and x, respectively. The numerical result shown in the right panel reveals that the impurity state is mainly
composed of M-site states and that the change in the impurity band is mainly ascribed to the change
in DM

µ (ω).

3.4. The Case of Moderate Exchange Strength (II-VI-based DMSs)

To the best of our knowledge, no magnetic impurity band has been observed in AII
1−xMnxB

VI-type
DMSs [23]. Thus, II-VI-based DMSs correspond to the present model with |EM ± IS| < 0.5∆. For
convenience, we take the exchange energy IS = −0.4∆ and the band offset energy EM = 0.0 for
II-VI-based DMSs. Numerical results for the parameters are presented in Figures 5–7. In the left panel
of Figure 5, the spin-polarized DOS is shown for various values of ⟨Sz⟩. As can be seen in Figure 5(b),
the carrier states at the M site spread over the whole range of band energy, in contrast with the case of
strong exchange interaction. The weak ⟨Sz⟩ dependence of xDM(ω) suggests that the coupling between
the carrier spin and the localized spin is not strong, except at the band edges.

Figure 5. The results for II-VI-based DMSs. Left panel: DOS as a function
of ω/∆ for various values of ⟨Sz⟩/S. The solid lines represent the down-spin
carrier and the dotted lines represent the up-spin carrier. The arrow indicates
the Fermi level εF/∆ for n = x (= 0.05). Right panel: (a) A-site component
of the DOS, (1 − x)DA

↓ (ω)∆ and −(1 − x)DA
↑ (ω)∆. (b) M-site component

of the DOS, xDM
↓ (ω)∆ and −xDM

↑ (ω)∆. The thick, thin, and dotted lines
represent the cases of ⟨Sz⟩/S = 1.0, 0.5, and 0.0, respectively. From Takahashi
and Kubo [42].
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The most powerful tool for studying the exchange interaction between a carrier and localized spins in
II-VI-based DMSs is optical measurement. In most II-VI-based DMSs the energy splitting between σ+

and σ− A excitons in a DMS is well described as [23,24]

δE = N0(α− β)x⟨Sz⟩ (41)

The virtual crystal approximation (VCA) is a first-order perturbation theory with respect to the
exchange interaction. When applying the VCA to the present model, we obtain the energy shift in
the band edge due to the M -site local potential:

Σb(±) = (EM ∓ I⟨Sz⟩)x (42)

depending on the carrier’s spin (±). Therefore, N0α and N0β are regarded as the exchange constants
for conduction electrons and valence electrons, respectively; N0α = 2I for an electron and N0β = 2I

for a hole. However, some experimental results indicate that the application of the VCA is limited
[38], although the VCA has been widely accepted as describing the field-induced exchange splitting of
extended states in II-VI-based DMSs [23–25]. Therefore, it is important to clarify the limit of application
of the VCA and to devise a theoretical treatment beyond the VCA.

Here we consider the optical absorption spectrum on the basis of the dynamical CPA treatment in
which the multiple-scattering effect is considered [43]. In calculating the optical absorption spectrum,
we assume that the transition dipole moments of the A and M ions are the same. Under this assumption,
the optical absorption spectrum is given by the k = 0 components of the DOS. Since the explicit k
dependence of εk is not used in the present framework, we assume that k = 0 corresponds to the
minimum point of the model band. Therefore, taking ε0 = −∆, we define the optical absorption
spectrum as [30]

Aµ(ω) = − 1

π
Im

1

ω +∆− Σµ(ω)
(43)

Figure 6(a) shows how the band tail is modified and spin-polarized with the development of
magnetization. Note that even with ⟨Sz⟩ = 0, the band is not the same as the model band, owing to
the disorder of the random distribution of M ions and the fluctuation of localized spins. With increasing
⟨Sz⟩, the bottom of the down-spin band shifts to a lower energy, accompanied by an energy shift of the
bottom of the up-spin band. The two band edges agree with each other except in the case of ⟨Sz⟩ = S,
although the down-spin band is strongly suppressed in the band tail. The agreement of the band edges
is a consequence of the spin-flip of a carrier. Thus, the present result for the band-edge shift is very
different from that obtained by the VCA. On the other hand, exchange band splitting is observed in
magneto-optical measurements such as magneto-absorption and magnetoreflectivity spectra. Hence, we
assume that the peak of the optical absorption spectrum A(ω), shown in Figure 6(b), corresponds to
the band edge observed in optical measurements. In the right panel of Figure 7, the optical band-edge
energy, ωp, at which the optical absorption spectrum shows a peak, is presented for up- and down-spin
bands as a function of ⟨Sz⟩. The behavior of ωp convincingly explains the asymmetrical splitting of
the Zeeman energy component; when a magnetic field is applied, the pattern of spin splitting of the A
exciton term is asymmetric relative to the position of ⟨Sz⟩ = 0 [40]. In the right panel of Figure 7,
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the spin-splitting energy ωp(up)-ωp(down) is displayed as a function of x⟨Sz⟩ for various values of x.
The data for each x are fit by a straight line. With increasing x, the slope of the line, corresponding
to N0β, decreases. The same behavior has been experimentally observed in Zn1−xMnxTe [48]
and Cd1−xMnxTe [49].

Figure 6. The results for II-VI-based DMSs. (a) Low-energy part of the DOS
D(ω). (b) Optical absorption spectrum A(ω) in arbitrary units (arb. units).
The solid lines represent the down-spin carrier and the dotted lines represent
the up-spin carrier. The values of the band-edge energy, ωb/∆, obtained by a
simple approximation are plotted as dots on the lines of ⟨Sz⟩ = S and ⟨Sz⟩ = 0

(see text). Note that the energy of the bottom of the model band is ω = −∆.
From Takahashi [43].
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Assuming that ωb = −∆+Σ(ωb) under the dynamical CPA condition [Equation (39)], we can obtain
equations for the band-edge energy ωb; the equations are cubic when ⟨Sz⟩ = 0 and quadratic when
⟨Sz⟩ = S. The approximate values for the band-edge energy are plotted as dots on the lines of ⟨Sz⟩ = S

and ⟨Sz⟩ = 0 in Figure 6(a), (b), and in the left panel of Figure 7. Using the approximate values for
the band-edge shift with up and down spins, Σb(+) and Σb(−) when ⟨Sz⟩ = S, we calculate N0β from
N0β = [Σb(−)− Σb(+)]/xS. The result shows that N0β is a function of x, and [39,40]

N0β ≈ 2I(
1 + 2EM

∆

)2 − (
2 IS

∆

)2 when x ≈ 0 (44a)

N0β = 2I when x = 1 (44b)

The present treatment reveals that the apparent enhancement of |N0β| with decreasing x observed
in Cd1−xMnxS is a consequence of the multiple-scattering effect, which is significant for small x in a
disordered system [39]. The VCA is applicable when |EM | ≪ ∆ and |IS| ≪ ∆ [50].
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Figure 7. Left panel: Absorption peak energy ωp/∆ as a function of ⟨Sz⟩/S.
The solid line represents the down-spin carrier and the dotted line represents the
up-spin carrier. The error bar represents the half-peak width. The values of ωb/∆

obtained by a simple approximation are plotted as dots on the lines of ⟨Sz⟩ = S

and ⟨Sz⟩ = 0 (see text). Right panel: Exchange splitting [ωp(up)−ωp(down)]/∆

as a function of x⟨Sz⟩/S for various values of x. The straight lines are adjusted
to obtain the best fit with each set of x data. From Takahashi [43].
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3.5. The Case of Strong Attractive Potential

Figure 8 shows the results for IS = −0.4∆ and EM = −0.6∆. Although the same exchange
energy, IS = −0.4∆, as that for the II-VI-based DMSs, is assumed, the nonmagnetic local potential EM

generates an impurity band. Furthermore, comparing the DOSs shown in Figure 4 (strong exchange
interaction) and Figure 8 (strong attractive potential), it is easy to see a strong similarity. The
lower-energy part of the DOS for IS = −0.4∆ and EM = −0.6∆ is almost the same as that for
IS = −∆ and EM = 0.0. The reason for the similarity can be explained as follows. First, the impurity
level is the same, Ea = −1.25∆, because it is determined by the value of IS + EM(= −∆). When
⟨Sz⟩ = 0, a magnetic impurity band forms around the impurity level; the number of down- and up-spin
states is x/2 each. The impurity band forms in imitation of the model band. When ⟨Sz⟩ = S, the
down-spin bands in the two cases agree with each other because the DOSs were calculated for the same
value of EM + IS. When ⟨Sz⟩ = S, the up-spin bands shift toward higher energies and merge into the
host band in both cases, although the up-spin bands do not coincide because different values of EM −IS

were used. Therefore, even in the up-spin bands, we observe a similar tendency in the behavior of the
two cases. The above similarities of the carrier state in the two cases can be explained as follows. In
DMSs with strong attractive potential, the carrier is so strongly attracted to the M site due to EM(< 0)

that the exchange interaction operates effectively in comparison with the case of EM = 0. Consequently,
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the exchange interaction in the case of strong attractive potential yields a very similar effect to that in
DMSs with a strong exchange interaction.

Figure 8. The results for the DMSs with strong attractive potential. Left panel:
DOS as a function of ω/∆ for various values of ⟨Sz⟩/S. The solid lines represent
the down-spin carrier and the dotted lines represent the up-spin carrier. The
impurity level Ea = −1.25∆ is indicated by the dot on the abscissa. Right
panel: (a) A-site component of the DOS, (1−x)DA

↓ (ω)∆ and −(1−x)DA
↑ (ω)∆,

(b) M-site component of the DOS, xDM
↓ (ω)∆ and −xDM

↑ (ω)∆. The thick, thin,
and dotted lines represent the cases of ⟨Sz⟩/S = 1.0, 0.5, and 0.0, respectively.
From Takahashi and Kubo [42].
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3.6. Mechanism of Carrier-induced Ferromagnetism in DMSs

In order to study the mechanism of carrier-induced ferromagnetism that may occur when carriers are
introduced into DMSs, we calculate the Curie temperature Tc in a very simple way. Throughout this
article we assume that the carriers are degenerate. Then we obtain the carrier density with µ spin nµ and
the total energy E(⟨Sz⟩) by

nµ =

∫ εF

−∞
Dµ(ω)dω (45)

and

E(⟨Sz⟩) =

∫ εF

−∞
ω[D↑(ω) +D↓(ω)]dω (46)

respectively, as functions of the Fermi level εF . Note that E(⟨Sz⟩) is the sum of the kinetic and
exchange energies. For a fixed value of ⟨Sz⟩/S, the total carrier density n (≡ n↑ + n↓) has a one-to-one
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correspondence with εF and therefore E(⟨Sz⟩) can be expressed as a function of n. Thus, we can
estimate Tc as a function of n using

kBTc =
2

3x
[E(0)− E(S)] (47)

where E(0) and E(S) are the energies of the paramagnetic state and the completely ferromagnetic state,
respectively.

First we investigate the case of EM = 0. In Figure 9 the result for Tc/∆ is presented as a function
of n for various values of IS/∆. We immediately notice that there are two different types of behavior
of Tc as a function of n depending on the size of |IS|/∆. When |IS|/∆ is small (|IS|/∆ . 0.3),
ferromagnetism occurs over a wide range of n. The Curie temperature gradually increases with the
increase in n and reaches a broad maximum. Then it gently decreases and vanishes at a critical value nc.
The maximum Tc stays at a low value, and nc is much larger than x(= 0.05). On the other hand, when
|IS|/∆ is large (|IS|/∆ & 0.7), ferromagnetism occurs in a narrow range of n (. x). Tc rises steeply
and reaches a maximum at nx ≈ x/2, and then it decreases rapidly. The maximum Tc is high and nc is
slightly less than x. These two different features can also be seen clearly in Figure 10, where nc and the
maximum Tc are depicted as functions of n. The carrier density nx at which Tc reaches the maximum
is also shown. Two different characteristic features were recognized in the phase diagrams obtained in
earlier studies by Chattopadhyay et al. [51], Yagi and Kayanuma [52], and Calderón et al. [53].

Figure 9. The result for Curie temperature Tc/∆ as a function of carrier density
n for various values of IS/∆ with x = 0.05 and EM = 0. The result based on
the assumption that an impurity band has the same shape as the model DOS is
drawn as ‘LIMIT’ (see text). From Takahashi and Kubo [42].

When |IS|/∆ . 0.3, the maximum Tc is approximately proportional to (IS/∆)2. This suggests
that in the range of |IS|/∆ . 0.3 the perturbative treatment of IS/∆ is available and that a
Ruderman-Kittel-Kasuya-Yosida (RKKY)-like mechanism is expected to operate for a moderate carrier
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density. In order to clarify the properties of ferromagnetism that occurs when |IS|/∆ is small enough,
we show the explicit expression for Tc using the mean field approach. Assuming spin-split ±xI⟨Sz⟩ for
the model band, we estimate the gain in total energy E(0)−E(⟨Sz⟩) to be ρ(εF )(xI⟨Sz⟩)2, where ρ(εF )
is the DOS at the Fermi level εF . Consequently, the Tc is obtained as

kBTc =
2

3
xρ(εF )(IS)

2 (48)

With a further increase in |IS|/∆, the maximum Tc rises rapidly (0.3 . |IS|/∆ . 0.7) and then tends
to saturate. For |IS|/∆ & 0.7, ferromagnetism is induced only when n . x and the maximum Tc occurs
at nx

∼= x/2. The case with IS = −∆ shown in Figure 4 belongs to this region.

Figure 10. Phase diagram for EM = 0 and x = 0.05. The critical value nc (solid
line; left scale) and the maximum Tc (dotted line; right scale) are presented as
functions of |IS|/∆. The carrier density nx at which Tc reaches the maximum
is included (solid line; left scale). From Takahashi and Kubo [42].

Here, we consider the mechanism of ferromagnetism that occurs in the magnetic impurity band of
DMSs. In Figure 11, we extract the lower-energy part of the DOS from Figure 4. A magnetic impurity
band forms around impurity level “A” and imitates the model band. The total number of states in the
impurity band per site is equal to x, irrespective of the value of ⟨Sz⟩. When ⟨Sz⟩ = S, all states in the
impurity band are down-spin states, whereas when ⟨Sz⟩ = 0, the impurity band is composed of the same
number of up- and down-spin states. The impurity band has a larger bandwidth in the ferromagnetic
state than in the paramagnetic state. Hence, when the carrier concentration n is small, the ferromagnetic
state has lower energy than the paramagnetic state. The energy gain initially increases with increasing
n and reaches a maximum at n ∼ x/2. Then it gradually decreases and finally vanishes at n ∼ x.
The gain of kinetic energy results in ferromagnetism below a certain temperature. This implies that a
double-exchange (DE)-like mechanism for ferromagnetism is operative in the impurity band. Assuming
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that the impurity band has the same shape as the model DOS [defined by Equation (27)] in the limit of
the strong exchange interaction, the bandwidth of the magnetic impurity band is estimated to be 2

√
x∆

when ⟨Sz⟩ = S and
√
2x∆ when ⟨Sz⟩ = 0. The results for Tc based on this assumption are inserted in

Figures 9 and 12 as “LIMIT”. The maximum Tc is estimated to be

kBTc =
2(2−

√
2)

9π

√
x∆ (49)

at n = x/2. The maximum Tc (= 0.0093∆) for x = 0.05 is indicated by an arrow in Figure 10.

Figure 11. The DOS of the impurity band in the case of IS/∆ = −1.0 and
EM = 0. The thick, thin, and dotted lines represent the cases of ⟨Sz⟩/S = 1.0,
0.5, and 0.0, respectively. Dot A indicates the impurity level for x → 0. From
Takahashi and Kubo [41].
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It is worth noting that the Zener double-exchange mechanism for ferromagnetism is usually
understood to be effective only when the exchange energy is larger than the width of the carrier band
(or |IS| & 2∆) in the case where magnetic ions sit on every site [54]. In the present case, the exchange
energy is not greater than the width of the model band. Nevertheless, a DE-like mechanism functions
because the magnetic impurity bandwidth is smaller than the exchange energy (or |IS| &

√
2x∆).

From the n dependence of Tc shown in Figure 9, we conclude that the DE-like mechanism in a
magnetic impurity band becomes dominant when |IS|/∆ & 0.7 if EM = 0. On the other hand, the
DE-like mechanism is not relevant to the ferromagnetism in II-VI DMSs because the magnetic impurity
level does not appear as illustrated in Figures 5 and 6, in which the parameters |IS|/∆ = 0.4 and
EM = 0 were employed.

Next, we study the role of the attractive potential in order to elucidate the origin of the carrier-induced
ferromagnetism in III-V-based DMSs. We have already pointed out the similarity of the lower-energy
part of the DOSs between Figure 4 (strong exchange interaction) and Figure 8 (strong attractive
potential). The similarity is due to the fact that the impurity level has the same energy, which is
determined by the effective attractive potential EM + IS. From the strong similarity in the low-energy
part of the DOS, we may expect that ferromagnetism occurs through the same mechanism in both cases.
In Figure 12 the effect of the nonmagnetic potential EM on Tc is presented for IS fixed at −0.4∆. The
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impurity level appears for EM < −0.1∆ in this case. When EM & 0.0 the Tc stays low and nc is
much larger than x, while for EM . −0.2∆ a high Tc is realized and nc is less than x. In the latter
region the DE-like mechanism becomes operative. The criterion for the DE-like mechanism to operate
is roughly estimated to be IS + 0.4EM . −0.6∆. The result suggests that the DE-like mechanism can
be operative when an attractive potential assists in the production of an impurity band even though the
exchange interaction is not particularly strong.

Figure 12. The result for Tc/∆ as a function of n for various values of EM/∆

with x = 0.05 and IS = −0.4∆. The result denoted by ‘LIMIT’ is included (see
text). From Takahashi and Kubo [42].

3.7. Specific Results for (Ga,Mn)As

Here we discuss (Ga,Mn)As, which has attracted much attention in recent years owing to its
so-called carrier-induced ferromagnetism. Though the microscopic mechanism for carrier-induced
ferromagnetism is still controversial, the following properties seem to be generally accepted for
(Ga,Mn)As: (i) Mn ions substitute randomly for Ga cations in the zincblende structure [26]. (ii) A
Mn ion in GaAs gives rise to an acceptor level at about 0.113 eV above the valence band [55]. (iii) The
Mn ion has highly localized d states with a magnetic moment of ∼ 5µB (or S = 5/2) [55–57]. (iv) The
Mn-induced states near the Fermi energy play a key role in the origin of ferromagnetism. According
to photoemission studies [58–60], X-ray absorption spectroscopy [61], and band calculations [62,63],
these states are mainly created in As 4p orbits. (v) The p-d exchange interaction between the As 4p hole
and the localized d spin is antiferromagnetic [64,65], and its amplitude is not very different from that in
II-VI-based DMSs [60,66]. (vi) As antisite defects (As ions sitting on Ga lattice site) and Mn interstitials
are common in semiconductor samples grown by low-temperature molecular beam epitaxy [27,67–70].
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Mn interstitials act as double donors. Many holes may be trapped not at Mn acceptors but at such
defects, although we may expect that one hole is donated by a Mn atom. The density of the holes and that
of the Mn ions are therefore regarded as separate sample-dependent quantities that are to be determined
experimentally.

For Ga1−xMnxAs, we set the (p-) bandwidth 2∆ = 4 eV from the band calculations [62,63], and
take IS = −0.4∆, which corresponds to N0β = −0.64 eV. Then we determine EM to be −0.3∆ so as
to yield the acceptor energy of 0.113 eV (= 0.057∆) [55]. The x dependence of the DOS is shown in
Figure 13; ⟨Sz⟩ = 0 (a) and ⟨Sz⟩ = S (b). The present model parameters lead to an impurity level at the
energy of Ea = −1.057∆ in the dilute limit (x → 0). With an increase in x, an impurity band forms,
and for x & 0.02 it merges into the host valence band. The results consistently explain the experimental
observation of impurity-band-like states [59,71] and the insulator-metal transition at x ∼ 0.03 [72,73].

Figure 13. The lower-energy part of the DOS of Ga1−xMnxAs for various values
of x: (a) ⟨Sz⟩ = 0 and (b) ⟨Sz⟩ = 0. The solid lines represent the down-spin
carrier and the dotted lines represent the up-spin carrier. The impurity level
Ea = −1.057∆ is indicated by a dot on the line x = 0. From Takahashi and
Kubo [42].
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In Figures 14 and 15, the results for x = 0.05 are presented. The lower band tail shown in the left
panel of Figure 14 is strongly affected by the change in ⟨Sz⟩. The results of species-resolved analysis
shown in Figure 14a,b reveal that the change in the band tail is mainly ascribed to the change in the local
DOS at the Mn site. This result indicates that a carrier at the band tail usually stays at Mn sites in spite
of the small x (= 0.05). The present result is in sharp contrast with the free-carrier picture, which is
the premise for the application of the RKKY model [74], but is consistent with the nearly bound hole
picture deduced on the basis of infrared optical absorption measurement [75,76]. The carrier’s spin is
tightly coupled with the localized spin. In the left panel of Figure 15, we plot the Curie temperature Tc

as a function of n. It has been reported that ferromagnetism with Tc = 110 K is realized in Ga1−xMnxAs
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with x = 0.053 when n is 30% of the nominal concentration (x) of Mn [26]. The agreement of the
present result with the experimental observation is satisfactory. The T dependence of the magnetization
is presented in the right panel of Figure 15 for various values of n. The present result is consistent
with the experimentally obtained magnetization [26]. We have also verified that the result obtained by
applying DMFT to the present model is almost the same as the present result [44].

Figure 14. The results for Ga1−xMnxAs with x = 0.05. Left panel: Low-energy
part of the DOS shown for various values of ⟨Sz⟩/S. The solid lines represent
the down-spin carrier and the dotted lines represent the up-spin carrier. The
arrow indicates the Fermi level for n = x(= 0.05). The impurity level
Ea = −1.057∆ is indicated by a dot on the horizontal line ⟨Sz⟩ = 0. Right panel:
(a) Ga-site component of the DOS, (1− x)DA

↓ (ω)∆ and −(1− x)DA
↑ (ω)∆ and

(b) Mn-site component of the DOS, xDM
↓ (ω)∆ and −xDM

↑ (ω)∆. The thick,
thin, and dotted lines represent the cases of ⟨Sz⟩/S = 1.0, 0.5, and 0.0,
respectively. From Takahashi and Kubo [42].
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Here, we briefly discuss the origin and the mechanism of the carrier-induced ferromagnetism of
(Ga,Mn)As. The results for the n dependence of Tc shown in the left panel of Figure 15 are well
explained by the DE-like mechanism described above. Although the impurity band is not separated
in the case of x ≃ 0.05, the carriers in the band tail of Ga1−xMnxAs have such a high local carrier
density at Mn sites that the carrier spins couple strongly to the fluctuating localized spins. Thus, the
hopping of carriers among Mn sites causes the ferromagnetic ordering of the localized spins through the
DE-like mechanism.

Since Zener originally proposed the DE interaction for (La,Ca)MnO3, where 3d holes hop among the
magnetic ions located at the regular lattice sites [54], it might be understood that the DE mechanism is
only relevant to the hopping of 3d holes in (Ga,Mn)As [77]. The DE mechanism for ferromagnetism, in
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fact, works quite generally. The only condition required for the mechanism is very strong spin coupling
between carrier spins and localized spins. If this is satisfied, carriers may have any character and the
localized spins can be arranged randomly. In the case of III-V-based DMSs, carriers are considered to
have 4p character [60,61] and the strength of the p-d exchange interaction is not very different from that
in II-VI-based DMSs [66]. The Coulomb interaction between the carrier (hole) and a Mn2+ ion (acceptor
center), however, promotes the formation of a magnetic impurity band, and strong spin coupling is
realized in the magnetic impurity band and/or in the band tail. Therefore, the DE mechanism induces
ferromagnetism. We call this mechanism the DE-like mechanism to avoid confusion with the argument
assuming d holes [77]. Note that no Mn3+ (d4 configuration) states have been experimentally detected
in (Ga,Mn)As [55,57,60,64,78]. All these experimental observations suggest that the fixed valence state
Mn2+ (S = 5/2) is realized in (Ga,Mn)As.

Figure 15. The results for Ga1−xMnxAs with x = 0.05. Left panel: Curie
temperature Tc as a function of n. Right panel: Magnetization as a function of
the temperature T for various values of n. From Takahashi and Kubo [42] and
Takahashi et al. [44].
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Although the exchange interaction between p holes and d spins has been experimentally proved to
be antiferromagnetic [60,64,65], in the early stage of research, the ferromagnetic exchange interaction
was reported on the basis of polarized magnetoreflection measurement [79]. When an impurity band
exists, the optically observed band edge is not necessarily the band edge of the impurity band. The
present result for x = 0.005 is shown in Figure 16. When x = 0.5%, the impurity band is separate
from the host band, as shown in Figure 16(a). The optical absorption spectrum corresponds to the k = 0

component of the DOS. Therefore, the optical absorption spectrum takes negligible values in the impurity
band, because the impurity band is constituted from the wide range of k space. The optical band edge,
ωp, lies almost at the bottom of the host band. Thus, although a negative IS is assumed, the optical
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band edge with up (down) spin shifts to the low (high)-energy side with increasing ⟨Sz⟩, as shown in
Figure 16(b). Hence, the direction of the shift in the optical band edge is opposite to the direction
obtained by the VCA. Note that ferromagnetic spin coupling is realized near the bottom of the host band
edge. In magnetoreflection measurement, not the shift of the impurity band edge but the shift of the host
band edge was detected. A simple calculation based on the present approach with N0β = −0.64 eV
predicts that the magnetoreflection measurement will deduce the apparent value of N0β to be +1.3 eV,
which is consistent with the experimental observation [79].

Figure 16. The result for Ga1−xMnxAs with x = 0.005: (a) low-energy part of
the DOS D(ω), (b) optical absorption band A(ω) in arbitrary units (arb. units).
The solid lines represent the down-spin carrier and the dotted lines represent the
up-spin carrier. Note that the energy of the bottom of the model band is ω = −∆.
Along the upper horizontal axis of (a), energies for ∆ =2 eV are graduated in
eV, where the origin of the energy, 0.0 eV, is taken at ω = −∆. The impurity
level Ea = −1.057∆ (or −0.113 eV) is indicated by a dot on the line ⟨Sz⟩ = 0.
From Takahashi [43].
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The difference between the characters of a hole in a II-VI-based DMS and a hole in a III-VI-based
DMS is illustrated in Figure 17. The hole in a II-VI-based DMS can move freely over many sites while
undergoing exchange interactions with the d spin on Mn sites. On the contrary, the hole in a III-V-based
DMS moves while hopping from a Mn site to another Mn site because the attractive Coulomb potential
makes it favorable for the hole to remain at Mn sites.
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Figure 17. An illustration of the difference between the characters of a hole in
a II-VI-based DMS and in a III-VI-based DMS.

4. Summary and Concluding Comments

Throughout this review article, we considered a simple model with fewer physical parameters [80].
The advantage of this approach is that the basic physics of systems can be explained in a simple way,
regardless of the strong material dependence, although realistic electronic-structure calculations such as
first-principles calculations based on density functional theory [16,17,81,82] or numerical methods such
as the quantum Monte Carlo method [83,84] may give more realistic results.

First, applying the dynamical CPA to the s-f model, we showed the numerical results for FMSs such
as EuO and EuS. The results for the DOS and the energy of the bottom of the band were given for various
exchange energies and temperatures. Not only the dependence of the band edge on the temperature but
also the magnitude of the redshift can be explained satisfactorily. We pointed out that the electron-spin
polarization cannot reach 100% due to the quantum effect coming from the finiteness of the magnitude of
the f spin [34]. We also add that the temperature dependence of the electrical resistivity of a degenerate
FMS can be consistently explained except around Tc [35]; the dynamical CPA becomes inefficient when
the short-range order of f spins develops near Tc [85–88] .

Next, we considered a simple model for carriers in the A1−xMnxB-type DMS. The model includes
not only the exchange interaction but also the nonmagnetic local potential at the magnetic Mn ion site.
Based on the results obtained by applying the dynamical CPA to the simple model, we discussed the
carrier states of three typical cases: cases with strong and moderate exchange interactions in the absence
of nonmagnetic potentials, and the case with strong attractive nonmagnetic potentials in addition to
moderate exchange interaction. We showed that the mechanism of carrier-induced ferromagnetism
changes from the RKKY-type mechanism to the DE-like mechanism with the increase in the amplitude
of the exchange interaction. Furthermore, the DE-like mechanism can be operative when an attractive
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potential assists in the production of an impurity band even though the exchange interaction is not
particularly strong.

Carrier states in II-VI-based DMSs are well described by the present model with moderate exchange
interaction. The results obtained by applying the dynamical CPA to the model explain the anomalous x
dependence (i.e., bowing) of the energy gap of wide-band-gap II-VI-based DMSs [38], the apparent
enhancement of the p-d exchange interaction, and the asymmetric splitting of exciton states in
Cd1−xMnxS [39,40]; these effects cannot be explained by the VCA.

In the case of III-VI-based DMSs such as Ga1−xMnxAs and In1−xMnxAs, Coulomb attractive
potentials assist the formation of the impurity band and/or band tail and promote the DE-like mechanism
although the exchange interaction is not sufficiently strong. Setting the parameters so as to yield an
experimentally observed impurity level, we calculated the DOS for various x and magnetizations, as
well as the dependence of Tc on n. The results for the local DOS suggest that the exchange coupling
between a carrier and localized spins at Mn sites is very strong [41,42]. Thus, we conclude that the
carrier-induced ferromagnetism of Ga1−xMnxAs is ascribed to a DE-like mechanism realized in the
magnetic impurity band/or in the band tail. The present results also reveal the difference between the
optical band edges in II-VI-based DMSs and in III-V-based DMSs [43].

However, we have to point out that the many-body effect [89] and clustering effect [90] are not
considered in our CPA. With the increase in Mn fraction x, the effects of the direct antiferromagnetic
(AF) superexchange interaction between neighboring Mn impurities become important [90]. It should
also be considered that the effect of the Coulomb attractive potential EM becomes less important as the
carrier density increases [45]. As noted in Section 3.7, in real samples of (Ga,Mn)As, Mn ions do not
always substitute for Ga cations. Some fraction of Mn may reside in the interstitial lattice sites and act
as double donors [68]; many holes may be trapped at such defects, reducing the concentration of holes.
Furthermore, As antisites may induce a so-called disordered local moment configuration, where only
part of the randomly distributed Mn atoms are ferromagnetically aligned while the rest of the Mn atoms
have magnetic moments oriented antiparallel to each other [69]. These effects are beyond the scope of
our simple model and approach.

Recently, Gd-doped EuO has been highlighted for potential use in spintronics devices owing to its
with high Tc [5,6,8]. The mechanism of the enhancement of Tc of Gd-doped EuO is a controversial
problem. This problem can be treated by applying the dynamical CPA to a simple model adapted for
Eu1−xGdxO. The metal-insulator transition in Eu-rich EuO is still under discussion [15]. The model for
Eu1−yVyO, where V denotes a vacancy of an O ion, is the same as that for A1−xMnxB-type DMSs, and
can act as a substitute for EuVyO1−y, which is the most realistic model of Eu-rich EuO. An extension of
the dynamical CPA to these problems is now in progress and will be published separately.
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Appendix

Dynamical CPA–Locator Formalism

In the Appendix, we briefly outline an alternative but equivalent condition of the CPA, which is an
extension of the CPA using the locator formalism [32]. Assuming that the spin-dependent effective
medium surrounds an arbitrary site n, we consider the transfer of the carrier with spin µ between site n
and the effective medium (i.e., Σ↑ and Σ↓) by the site-renormalized interactor Jµ. Then, the propagator
GA (GM) associated with the real potential of uA

n (uM
n ) embedded at site n in the medium is defined by

GA =
1

ω − uA
n −

∑
µ Jµa

†
nµanµ

(50a)

GM =
1

ω − uM
n −

∑
µ Jµa

†
nµanµ

(50b)

When we set the coherent potential Σµ at site n in the effective medium, the reference propagator,

P =
1

ω −
∑

µ Σµa
†
nµanµ −

∑
µ Jµa

†
nµanµ

(51)

is equivalent to the Green function for the effective medium. Thus, the diagonal matrix element of P is
equal to Fµ defined by Equation (15):

Fµ(ω) = ⟨nµ|P |nµ⟩ = 1

ω − Σµ − Jµ
(52)

Equation (52) gives the relationship between Jµ and Fµ; Lµ ≡ 1/(ω−Σµ) is called a locator. Hereafter,
for the sake of simplicity, the site-diagonal elements in the Wannier representation ⟨nµ|GA|nν⟩ are
written as GA

µν (µ, ν =↑, or ↓).
Then, the spin-diagonal element of GA is given by

FA
µ (ω) = GA

µµ =
1

ω − EA − Jµ
(53)

and the spin-off-diagonal elements are GA
↑↓ = GA

↓↑ = 0.
In order to obtain the explicit expression for the site-diagonal elements of GM , we rewrite Equation

(50b) as

GM(ω − uM
n −

∑
µ

Jµa
†
nµanµ) = 1 (54)
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Equation (54) is written in the spin-matrix-element expression as

GM
↑↑(ω − EM + ISz − J↑) +GM

↑↓(IS+) = 1 (55a)

GM
↑↑(IS−) +GM

↑↓(ω − EM − ISz − J↓) = 0 (55b)

Equation (55) is the simultaneous equations concerning GM
↑↑ and GM

↑↓ , which can be solved after a
somewhat complicated calculation using the commutation relationships between the components of S
(but with no further approximations). The resulting expressions are

GM
↑↑ =

ω − EM − I(Sz + 1)− J↓
[ω − (EM − ISz)− J↑][ω − EM − I(Sz + 1)− J↓]− I2[S(S + 1)− S2

z − Sz]
(56a)

GM
↓↓ =

ω − EM + I(Sz − 1)− J↑
[ω − (EM + ISz)− J↓][ω − EM + I(Sz − 1)− J↑]− I2[S(S + 1)− S2

z + Sz]
(56b)

GM
↑↓ =

1

[ω − (EM − ISz)− J↑][ω − EM − I(Sz + 1)− J↓]− I2[S(S + 1)− S2
z − Sz]

(−IS−)

(56c)

GM
↓↑ =

1

[ω − (EM + ISz)− J↓][ω − EM + I(Sz − 1)− J↑]− I2[S(S + 1)− S2
z + Sz]

(−IS+)

(56d)

Note that the site-diagonal elements of GM involve spin operators. Thus, FM
µ (ω) is defined as the

thermal average of the spin-diagonal element GM
µµ by

FM
µ (ω) = ⟨GM

µµ⟩ =
S∑

Sz=−S

GM
µµ(Sz)exp(λSz)/

S∑
Sz=−S

exp(λSz) (57)

where λ (≡ h/kBT ) is determined so as to reproduce a given value of ⟨Sz⟩ [see Equation (24)]. Note
that the spin-off-diagonal elements ⟨GM

↑↓⟩ = ⟨GM
↓↑⟩ = 0, because GM

↑↓ (GM
↓↑) includes S− (S+) in its final

form. Finally, the CPA condition in the locator formula is given by

Fµ(ω) = (1− x)FA
µ (ω) + xFM

µ (ω) (58)

When Fµ is given, Jµ is calculated by Equations (29) and (52) [i.e., Jµ = (∆2/4)Fµ for the model band
defined by Equation (27)]. Then, FA

µ and FM
µ are calculated by Equations (53) and (57), respectively,

and consequently, Fµ is again obtained by Equation (58). Therefore, Fµ and Jµ are determined
self-consistently.

The advantage of the locator formula of the CPA is that it is straightforward to determine the
species-resolved DOS, i.e., the DOS associated with each type of ion in the alloy. The local DOS at
the A (M) site is obtained by

DA
µ (ω) = − 1

π
ImFA

µ (ω) (59a)

DM
µ (ω) = − 1

π
ImFM

µ (ω) (59b)

In actual calculations, we first determined Fµ and Σµ by the t-matrix formula of the CPA, then calculated
Jµ, and finally calculated DA

µ (ω) and DM
µ (ω). We verified the relations∫ ∞

−∞
DA

µ (ω)dω =

∫ ∞

−∞
DM

µ (ω)dω = 1 (60)
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and

Dµ(ω) = (1− x)DA
µ (ω) + xDM

µ (ω) (61)

which are a consequence of the CPA condition in the locator formula, Equation (58).
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