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Abstract: This work investigates transient heat conduction in a functionally graded plate 

(FGM plate) subjected to gradual cooling/heating at its boundaries. The thermal properties 

of the FGM are assumed to be continuous and piecewise differentiable functions of  

the coordinate in the plate thickness direction. A linear ramp function describes the 

cooling/heating rates at the plate boundaries. A multi-layered material model and Laplace 

transform are employed to obtain the transformed temperatures at the interfaces between 

the layers. An asymptotic analysis and an integration technique are then used to obtain a 

closed form asymptotic solution of the temperature field in the FGM plate for short times. 

The thermal stress intensity factor (TSIF) for an edge crack in the FGM plate calculated 

based on the asymptotic temperature solution shows that the asymptotic solution can 

capture the peak TSIFs under the finite cooling rate conditions. 

Keywords: functionally graded material; heat conduction; cooling rate; temperature; 

asymptotic solution 

 

1. Introduction 

Functionally graded materials (FGMs) represent a new concept of tailoring materials with 

microstructural and properties gradients to achieve optimized performance. For high-performance 

structural applications, FGMs are often multi-phased composite materials with the volume fractions of 

their constituents varying gradually in pre-determined profiles. Thermal loads on FGM structures in 

high temperature applications induce severe thermal stresses which may lead to failure of the structural 

components. One of the original objectives of introducing FGMs is to employ the material property 
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gradients to alter the temperature distribution, thereby possibly reducing thermal stresses in thermal 

structures. The optimal design and thermal stress analyses of FGMs to improve their high temperature 

and thermal fracture resistance often rely on the transient temperature solution for a long FGM plate 

with arbitrarily graded material properties in the thickness direction and analytical expressions of the 

temperature solution are desirable. The temperature field is typically one-dimensional (1-D) in the 

thickness direction in many structural applications. Obata and Noda [1] obtained a perturbation 

solution of 1-D heat conduction in an FGM plate. Ishiguro et al. [2] analyzed the 1-D temperature 

distribution in an FGM strip using a multi-layered material model. Tanigawa et al. [3] modeled an 

FGM plate by a laminated composite with homogeneous layers and obtained the solution of the 1-D 

temperature field. A layered material model was also used by Jin and Paulino [4] to obtain an 

approximate short time solution of temperature field in an FGM strip. In general, the studies based on 

the multi-layered model involved complicated series form solutions and the series converge very 

slowly at short times. On the other hand, the temperature solution at short times is particularly useful 

because thermal stresses and thermal stress intensity factors may reach their peak values in a very short 

period of time and these peak values govern the thermal stress failure of materials. Jin [5] obtained a 

simple closed form short time asymptotic solution of temperature field in an FGM strip with 

continuous and piecewise differentiable material properties under sudden cooling boundary conditions. 

This paper extends the method in [5] to investigate 1-D heat conduction in an FGM plate with 

continuous and piecewise differentiable properties subjected to finite cooling/heating rates at the plate 

boundaries. The rates of temperature variation at the plate surfaces are described by a linear ramp 

function. A multi-layered material model is first used. The Laplace transform with its asymptotic 

properties and an integration technique are then employed to obtain a closed form, short time solution 

of temperature distribution. Finally, the thermal stress intensity factor for an edge crack in the FGM 

plate is calculated using the asymptotic temperature solution.  

2. Basic Equations 

Consider an FGM plate of thickness b as shown in Figure 1. The material properties of the FGM are 

graded in the thickness direction (x – direction). Initially the temperature of the plate is a constant T0 

which can be assumed to be zero without loss of generality. The temperature then gradually changes to 

−Ta and −Tb at the surfaces x = 0 and x = b of the plate, respectively. We use a linear ramp function to 

describe the variations of the boundary temperatures. The initial and boundary conditions for the heat 

conduction problem are thus 
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where T = T(x, t) is the temperature, t is time, and ta and tb are two temporal parameters describing the 

rates of temperature variation (cooling/heating rates) at the plate surfaces. The one-dimensional heat 

conduction in the plate is governed by the following basic equation 
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where k(x) is the thermal conductivity, ρ(x) the mass density, and c(x) the specific heat.  

Figure 1. An FGM plate subjected to a thermal shock and a multi-layered material model. 

 

3. A Multi-Layered Material Model and the Discrete Temperature Solution 

Following Reference [5], this work employs a multi-layered material model, the asymptotic property 

of Laplace transform and an integration technique to solve the heat conduction problem described by 

Equations (1–3). The plate is first divided into N + 1 layers in the thickness direction, as shown in  

Figure 1. The coordinates of the interfaces between the layers are denoted by xn (n = 1, 2, …, N) and the 

two boundaries of the plate are x0 = 0 and xN+1 = b. When N becomes large, each layer may 

approximately be regarded as a homogeneous layer with constant properties kn (thermal conductivity), 

ρn (density), cn (specific heat), and κn = kn/(ρncn) (thermal diffusivity). Let Tn denote the temperatures 

at x = xn (n = 0, 1, 2, …, N+1). The temperature within the nth layer under the initial condition, 

Equation (1), has the form [6,7] 
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where x* and τ are the nondimensional local coordinate and time defined by 
2
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respectively, and βnl is a constant given by 
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The unknown interface temperatures Tn(τ) (n = 1, 2, ..., N) are determined from the heat flux 

continuity conditions across the interfaces.  
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Substitution of Equation (4) into Equation (7) yields a system of Volterra integral equations for 

Tn(τ). The corresponding Laplace transformed equations have the form: 
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where )(sTn  is the Laplace transform of Tn(τ). In Equation (8), the nonzero coefficients amn(s) have 

the same expressions as those for sudden cooling conditions (ta → 0, tb → 0) in Reference [5], and 

bm(s) have the forms: 
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where τa and τb are nondimensional temporal parameters defined by 
2
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and Gn(s) are given by 
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Equation (8) generally does not permit closed form solutions. For large values of s, however, the 

Laplace transformed interface temperatures may be obtained as follows 
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where )0(
nL and )0(

nP  are the constants given in Reference [5]. By using the inverse Laplace transform, 

we can obtain the interface temperatures Tn(τ) for short times as follows (τ << 1): 
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where erfc( ) is the complementary error function. We note that the temporal parameters τa and τb 

should also be small, i.e., the cooling/heating rates are finite but still relatively high. 

4. A Closed Form Short Time Solution 

In order to obtain a closed form temperature solution for an FGM with continuous and piecewise 

differential thermal properties from the interface temperatures Equations (13–15), we let the layer 

thicknesses go to zero and the number of layers go to infinite, i.e., xn+1 – xn → 0 (n = 0, 1, 2, …, N) and 
N → ∞ . The limits of )0(

nL  and )0(
nP  in Equations (14) and (15) can be found as follows [5]: 
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Substituting the equations above into Equations (13–15), we obtain a closed form solution of the 

temperature field for short times in the FGM plate with continuous and piecewise differentiable 

properties as follows: 
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where ),()1( τxT  and ),()2( τxT  are given by 
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respectively. In Equations (18) and (19), Ω1(x) and Ω2(x) are defined by 
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When τa and τb approach zero, ),()1( τxT  and ),()2( τxT  reduce to 
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which are the same as those under the sudden cooling conditions [5]. 

Equations (17–20) represent an asymptotic solution of temperature for short times. To gain an 

understanding of the applicability region in which the asymptotic solution is valid, the asymptotic 

solution is applied to a homogeneous plate with Tb = 0 in the boundary condition Equation (2b) by 

taking k(x) = k0, c(x) = c0, ρ(x) = ρ0 and κ(x) = κ0 in Equations (17–20). The complete solution of 

temperature in this case is 
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Figure 2a shows the normalized temperature (where ΔT = − Ta) versus nondimensional coordinate 

(x/b) at various nondimensional time τ. The temporal parameter τa is 0.001. The asymptotic solution 

almost coincides with the complete solution in the entire plate for nondimensional times up to τ = 0.05. 

Those solutions are also in good agreement in the region of x/b < 0.8 for times up to τ = 0.10. For 

times up to τ = 0.15, the solutions agree well with each other in the region of x/b < 0.6. The asymptotic 

solution approximately satisfies the boundary condition at x = b for τ < 0.05. Figure 2b and Figure 2c 

show similar results when the parameter τa is increased to 0.05 and 0.1, respectively. It appears that τa 

or the rate of boundary temperature variation does not significantly influence the applicability region 

of the short time solution. It is expected that the short time solution for an FGM plate will also be 

approximately valid for nondimensional times up to τ = 0.10 if the material property gradation is not 

extremely steep.  

Figure 2. Temperature field: asymptotic and complete solutions for a homogeneous plate. 

(a) τa = 0.001; (b) τa = 0.05; (c) τa = 0.1. 

(a) (b) 

(c) 

5. Effects of Cooling Rate on the Thermal Stress Intensity Factor for an Edge Crack in an  

FGM Plate 

This section uses the asymptotic temperature solution Equations (17–20) to calculate the thermal 

stress intensity factor (TSIF) for an edge crack in an elastically homogeneous but thermally graded 

FGM plate (see Figure 1) and demonstrates that the short time temperature solution can capture the 
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peak TSIF. The integral equation method is employed and the singular integral equation of the crack 

problem is given as follows: 
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with v(x,0) being the crack surface displacement in the y direction , K(r, s) is a known kernel [4], r and 

s are the nondimensional coordinates given by 
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in which E is Young’s modulus, ν Poisson’s ratio, α = α(x) the coefficient of thermal expansion, and 

θ(x, t) = T(x, t) – T0 the temperature variation. 

According to the singular integral equation theory [8], the solution of Equaion (23) has the 

following form 
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where F(r) is a continuous and bounded function. Once the solution of Equation (23) is obtained, the 

TSIF at the crack tip can be computed from  
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where KI denotes the TSIF, K* the nondimensional TSIF, and α0 = α(0). In Equation (28) F(1) is a 

function of time τ. 

We use a TiC/SiC graded system to examine the effects of cooling rate on the TSIF. The FGM is a 

two-phase composite material with graded volume fractions of its constituent phases. The volume 

fraction of SiC is assumed to follow a simple power function 
pbxxV )/()( =  (29) 

where p is the exponent determining the volume fraction profile. The material properties of the FGM 

are calculated using conventional micromechanics models [4] and the properties of TiC and SiC are 

given in Table 1. 
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Table 1. Material properties of TiC and SiC. 

Materials 
Young’s 
modulus 

(GPa) 

Poisson’s 
ratio 

CTE 
(10−6/K) 

Thermal 
conductivity 

(W/m-K) 

Mass  
density 
(g/cm3) 

Specific 
heat 

(J/g-K) 
TiC 400 0.2 7.0 20 4.9 0.7 
SiC 400 0.2 4.0 60 3.2 1.0 

Figure 3 shows the normalized TSIF versus nondimensional time for various values of the cooling 

rate parameter τa. The crack length is a/b = 0.1 and the material gradation profile index is p = 0.2. The 

TSIF under the sudden cooling condition (τa = 0, and hence infinite cooling rate) is also included. For 

a given cooling rate (Ta/τa), the TSIF initially increases with time, rapidly reaches the peak value and 

then decreases with time. The peak TSIF decreases significantly with a decrease in the cooling rate 

(increasing τa). Moreover, the time at which the TSIF reaches its peak increases with a decrease in the 

cooling rate.  

Figure 3. Normalized TSIF versus nondimensional time for a TiC/SiC FGM (a/b = 0.1,  

p = 0.2). 
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Figure 4 shows the normalized TSIF versus nondimensional time with an increased material 

gradation profile index of p = 0.5. The crack length is still a/b = 0.1. Again, the peak TSIF decrease 

significantly with a decrease in the cooling rate. Comparing the results in Figures 3 and 4, one can find 

that the peak TSIF is reduced by a decrease in the material gradation index p. Clearly, the peak TSIF 

occurs at nondimensional times less than 0.1, which indicates that the asymptotic temperature solution 

can be used to capture the peak TSIF. 
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Figure 4. Normalized TSIF versus nondimensional time for a TiC/SiC FGM (a/b = 0.1,  

p = 0.5). 
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5. Concluding Remarks 

A closed form, short time solution of heat conduction in an FGM plate with continuous and 

piecewise differentiable material properties is obtained using a multi-layered material model, the 

asymptotic property of Laplace transform, and an integration technique. The rates of temperature 

variations at the surfaces of the plate are taken into account and are described by a linear ramp 

function. Application of the asymptotic solution to a homogeneous plate indicates that the asymptotic 

solution agrees well with the complete solution for nondimensional times up to about τ = 0.10. It is 

found that the rates of temperature variation at the plate surfaces have an insignificant effect on the 

applicability region of the short time solution. The significance of the solution lies in the fact that the 

TSIF induced by the thermal shock reaches its peak value in a very short period of time as seen in 

Section 4. Thus, the solution may be used to evaluate the peak values of TSIF and the critical thermal 

shocks that cause crack propagation. 
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