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Abstract: This article is concerned with the theoretical analysis of the functionally graded 

magneto-electro-thermoelastic hollow sphere due to uniform surface heating. We analyze 

the transient thermoelastic problem for a functionally graded hollow sphere constructed of 

the spherical isotropic and linear magneto-electro-thermoelastic materials using a 

laminated composite mode as one of theoretical approximation in the spherically 

symmetric state. As an illustration, we carry out numerical calculations for a functionally 

graded hollow sphere constructed of piezoelectric and magnetostrictive materials and 

examine the behaviors in the transient state. The effects of the nonhomogeneity of material 

on the stresses, electric potential, and magnetic potential are investigated. 

Keywords: thermal stress; magneto-electro-thermoelastic material; functionally graded 

material; hollow sphere; transient state 

 

1. Introduction  

Functionally graded materials (FGMs) are new nonhomogeneous material systems that two or more 

different material ingredients changes continuously and gradually. The concept of FGMs is applicable to 

many industrial fields such as aerospace, nuclear energy, chemical plant, electronics and so on. On the 

other hand, it has recently been found that composites made of piezoelectric and magnetostrictive materials 

exhibit the magnetoelectric effect, which is not seen in piezoelectric or magnetostrictive materials [1]. 
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These materials are known as multiferroic composites [2]. These composites exhibit a coupling among 

magnetic, electric, and elastic fields. In the past, various problems in magneto-electro-elastic media that 

exhibit anisotropic and linear coupling among the magnetic, electric, and elastic fields were analyzed. 

Examples for the plates and beams were analyzed in the papers [3-5]. Examples for the shell type 

structures were analyzed in the papers [6-8]. Examples of functionally graded magneto-electro-elastic 

media are as follows. Wang and Ding [9] treated spherically symmetric transient responses of a 

functionally graded magneto-electro-elastic hollow sphere. Ma and Lee [10] analyzed an in-plane 

problem in functionally graded magneto-electro-elastic bimaterials. Yu and Wu [11] analyzed the 

propagation of circumferential wave in magneto-electro-elastic functionally graded cylindrical curved 

plates. Wu and Lu [12] analyzed the 3D dynamics responses of functionally graded  

magneto-electro-elastic plates. Huang et al. [13] analyzed the static problem of an anisotropic 

functionally graded magneto-electro-elastic beams subjected to arbitrary loading. Lee and Ma [14] 

analyzed the two-dimensional problem of two bonded dissimilar half-planes for functionally graded 

magnetoelectroelastic materials subjected to generalized line forces and screw dislocations.  
Examples of the thermal stress problems of electro-magneto-elastic media are as follows,  

Ganesan et al. [15] analyzed the response of a layered, multiphase magnetoelectroelastic cylinder subjected 

to an axisymmetric temperature distribution using finite element procedures. Kumaravel et al. [16] 

analyzed the response of a three-layered magnetoelectroelastic strip subjected to uniform temperature 

rise and non-uniform temperature distribution using finite element procedures. Hou et al. [17] obtained 

2D fundamental solutions of a steady point heat source in infinite and semi-infinite orthotropic  

electro-magneto-thermo-elastic planes. With regard to transient thermal stress problems of  

electro-magneto-elastic media, Wang and Niraula [18] analyzed transient thermal fracture in 

transversely isotropic electro-magneto-elastic cylinders. The exact solution of a transient analysis of 

multilayered magneto-electro-thermoelastic strip subjected to nonuniform heat supply was obtained in 

the paper [19]. The exact solution of a transient analysis of multilayered magneto-electro-thermoelastic 

hollow cylinder subjected to uniform heat supply was obtained in the paper [20]. Though a several 

transient thermal stress problems of the functionally graded hollow spheres [21,22] using a laminated 

composite model were analyzed already, theses studies don’t consider a coupling among magnetic, 

electric, and thermoelastic fields. However, to the author’s knowledge, the transient thermal stress 

problem for a functionally graded magneto-electro-thermoelastic hollow spheres under unsteady heat 

supply considering a coupling among magnetic, electric, and thermoelastic fields has not been reported.  

In the present article, we have analyzed the transient behavior of a functionally graded  

magneto-electro-thermoelastic hollow sphere due to uniform surface heating. We assumed that the 

magneto-electro-thermoelastic materials are polarized and magnetized in the radial direction. We 

analyze the transient thermal stress problem for a functionally graded hollow sphere constructed of the 

spherical isotropic and linear magneto-electro-thermoelastic materials using a laminated composite 

model as one of theoretical approximation. We carried out numerical calculations for a functionally 

graded hollow sphere composed of piezoelectric and magnetostrictive materials, and examined the 

effects of the nonhomogeneity of material on the stresses, electric potential, and magnetic potential. 
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2. Analysis 

We consider a functionally graded hollow sphere constructed of the spherical isotropic and linear 

magneto-electro-thermoelastic materials. We analyze the transient thermal stress problem using a 

multilayered composite hollow sphere model with a number N  of homogeneous layers. The hollow 

sphere’s inner and outer radii are designated a and b, respectively. ir  is the outer radius of the ith layer. 

Throughout this article, the indices i (=1,2,…,N) are associated with the ith layer of a composite 

hollow sphere from the inner side.  

2.1. Heat Conduction Problem 

We assumed that the multilayered hollow sphere is initially at zero temperature and its inner and 

outer surfaces are suddenly heated by surrounding media having constant temperatures Ta and Tb with 

relative heat transfer coefficients ha and hb, respectively. Then, the temperature distribution is  

one-dimensional, and the transient heat conduction equation for the ith layer is written in the 

following form: 
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The initial and thermal boundary conditions in dimensionless form are 
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In Equations (1)–(6), we introduced the following dimensionless values: 

0/),,(),,( TTTTTTT baibai = , barraRr ii /),,(),,( = , 2
0 / btκτ =  

0/κκκ riri = , 0/ λλλ riri = , bhhHH baba ),(),( =  
(7) 

where Ti is the temperature change; t is time; riλ  is the thermal conductivity in the radial direction; riκ  

is the thermal diffusivity in the radial direction; and 0T , 0λ  and 0κ  are typical values of temperature, 

thermal conductivity, and thermal diffusivity, respectively. To solve the fundamental equation (1), we 

introduced the Laplace transformation with respect to the variable τ  as follows;  

ττ τ derTprT p
ii

−∞

=
0

* ),(),(  (8) 

Performing the Laplace transformation on Equation (1) under the condition of Equation (2) gives 
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The general solution of Equation (9) is 

)()( 00
* ryBrjAT iiiii μβμβ +=   (11) 

where )(0j and )(0y  are zeroth-order spherical Bessel functions of the first and second kind, 

respectively. Furthermore, iA  and iB  are unknown constants determined from the boundary conditions. 

Substituting Equation (11) into the boundary conditions in the transformed domain from Equations (3)–(6), 

these equations are represented in matrix form as follows: 
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Making use of Cramer’s formula, the constants iA  and iB  can be determined from Equation (12). 

Then the temperature solution in the transformed domain is 
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=   (13) 

where Δ is the determinant of NN 22 ×  matrix [ kla ], and the coefficients iA  and iB  are defined as 

determinants of a matrix similar to the coefficient matrix [ kla ], in which the (2i − 1)th column or 2ith 

column is replaced with the constant vector { kc }, respectively. Using the residue theorem, we can 

accomplish the inverse Laplace transformation on Equation (13). Because the single-valued poles of 
Equation (13) correspond to 0=p  and the roots of 0=Δ , in which the residue for 0=p  gives a 

solution for the steady state. Accomplishing the inverse Laplace transformation of Equation (13), the 

solution of Equation (1) is written as follows: 
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where F ie the determinants of NN 22 ×  matrix [ kle ], and the coefficients iA ′  and iB ′  are defined as 

determinants of a matrix similar to the coefficient matrix [ kle ], in which the (2i − 1)th column or 2ith 

column is replaced with the constant vector {ck}, respectively. The nonzero elements of the coefficient 

matrices [akl] and [ekl] and the constant vector {ck} are given from the Equations (3)–(6). In  
Equation (14), )( jμΔ′  is 

j
d

d
j

μμμ
μ

=

Δ=Δ′ )(  (15) 
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and jμ  is the jth positive root of the following transcendental equation  

 0)( =Δ μ  (16) 

2.2. Thermoelastic Problem  

We developed the analysis of a multilayered magneto-electro-thermoelastic hollow sphere as a 

spherically symmetric state. The displacement-strain relations are expressed in dimensionless form 

as follows: 

rrirri u ,=ε , 
r

uri
ii == φφθθ εε , 0=== iirir θφφθ γγγ  (17) 

where the comma denotes partial differentiation with respect to the variable that follows. For the 

spherical isotropic and linear magneto-electro-thermoelastic material, the constitutive relations are 

expressed in dimensionless form as follows: 

riiriiiriiirriirri HqEeTCC 111211 2 −−−+= βεεσ θθ , 

iiiiirriiii TCCC θθθφφθθ βεεσσ −++== )( 232212 riirii HqEe 22 −−   
(18) 

where 

iiriiri CC θααβ 1211 2+= , iiriiri CC θααβ 1211 2+=  (19) 

The constitutive equations for the electric and the magnetic fields in dimensionless form are 

given as  

iiriiriiiirriiri TpHdEeeD 11121 2 ++++= ηεε θθ  (20) 

 iiriiriiiirriiri TmHEdqqB 11121 2 ++++= μεε θθ  (21) 

The relation between the electric field intensity and the electric potential iφ  in dimensionless form 

is defined as 

ririE ,φ−=  (22) 

The relation between the magnetic field intensity and the magnetic potential iψ  in dimensionless 

form is defined as  

ririH ,ψ−=  (23) 

The equilibrium equation is expressed in dimensionless form as follows: 

0)(
2

, =−+ irrirrri r θθσσσ  (24) 

If the electric charge density is absent, the equations of electrostatics and magnetostatics are 

expressed in dimensionless form as follows: 
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In Equations (17)–(26), the following dimensionless values are introduced: 
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where kliσ  are the stress components; ( kliε , kliγ ) are the strain components; riu  is the displacement in 

the r direction; kiα  are the coefficients of linear thermal expansion; kliC  are the elastic stiffness 

constants; riD  is the electric displacement in the r direction; riB  is the magnetic flux density in the  

r direction; kie  are the piezoelectric coefficients; i1η  is the dielectric constant; ip1  is the pyroelectric 

constant; kiq  are the piezomagnetic coefficients; i1μ  is the magnetic permeability coefficient; id1  is 

the magnetoelectric coefficient; im1  is the pyromagnetic constant; and 0α , 0Y  and 0d  are typical 

values of the coefficient of linear thermal expansion, Young’s modulus, and piezoelectric  

modulus, respectively.  

Substituting Equations (17), (22), and (23) into Equations (18), (20), and (21) and later into 
Equations (24)–(26), the governing equations of the displacement riu , electric potential iφ , and 

magnetic potential iψ  in the dimensionless form are written as 

2
232212

1
1111 )(2,2, −− −−++ ruCCCruCuC riiiirriirrrii

1
21ˆ1 ,)(2, −−++ reee riiirrii φφ  

1
211 ,)(2, −−++ rqqq riiirrii ψψ ririiiri TrT ,)(2 1 βββ θ +−= −  

(28) 

2
2

1
211 2,)(2, −− +++ ruerueeue riirriiirrrii

1
11 ,2, −−− rriirrii φηφη  

1
1ˆ1 ,2, −−− rdd riirrii ψψ )2,( 1

1
−+−= rTTp irii  (29) 

2
2

1
211 2,)(2, −− +++ ruqruqquq riirriiirrrii

1
11 ,2, −−− rdd riirrii φφ  

1
11 ,2, −−− rriirrii ψμψμ )2,( 1

1
−+−= rTTm irii  

(30) 

If the inner and outer surfaces of the multilayered magneto-electro-thermoelastic hollow sphere are 

traction free, and the interfaces of each adjoining layer are perfectly bonded, then the boundary 

conditions of inner and outer surfaces and the conditions of continuity at the interfaces can be 

represented as follows:  
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ar = ; 01 =rrσ  

iRr = ; 1, += irrrri σσ , 1, += irri uu ; 1,,2,1 −= Ni   

1=r ; 0=rrNσ  

(31) 

The boundary conditions in the radial direction for the electric and magnetic fields are expressed as  

ar = ; 0,0 11 == rr BD  or 0,0 11 == ψφ , 

iRr = ; 1, += irri DD , 1, += irri BB , 1+= ii φφ , 1+= ii ψψ ; 1,,2,1 −= Ni  , 
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(32) 

The solutions of Equations (28)–(30) are assumed in the following form: 

rpirciri uuu += , picii φφφ += , picii ψψψ +=  (33) 

In Equation (33), the first term on the right-hand side gives the homogeneous solution and the 

second term gives the particular solution. We now consider the homogeneous solution, and introduce 

the following equation: 
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Changing a variable with the use of Equation (34), the homogeneous expression of  

Equations (28)–(30) are 
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By eliminating ciΦ  and ciΨ  between Eqs. (35)-(37), we can obtain an ordinary differential equation 

about rciu : 
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2

3 =+++ rciircii uDbuDDb  (40) 

The solution of Equation (40) can be expressed as follows when 0/41 31 >− ii bb . 
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From Equations (36), (37) and (41), we can obtain an ordinary differential equation about ciΨ : 
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Using Equation (39), the solution of Equation (42) is 
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From Equations (36), (41) and (43), we can obtain an ordinary differential equation about ciΦ : 
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Using Equation (39), the solution of Equation (44) is 
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In Equations (41), (43) and (45), Cki ( 7,,2,1 =k ) are unknown constants. We have the  

following relation. 

0571 =++− iqiieiii CCC ββα  (47) 

The homogeneous solutions when 0/41 31 ≤− ii bb  are omitted here for brevity. 

It is difficult to obtain the particular solutions using the temperature solution of Equation (14). In 

order to obtain the particular solutions, series expansions of Bessel functions given in Equation (14) 

are used. Equation (14) can be written in the following way:  



Materials 2011, 4                            

 

 

2144


∞

=

−+=
0

122 ])()([),(
n

n
in

n
ini rbrarT τττ  (48) 

where 

n
i

in F

A
a 0)( δτ

′
=

)!12(

)()1(

)(

)exp(2 2

1

2

+
−

⋅
Δ′

−
+

∞

= n
A

n
ji

n

j jj

j
i

μβ
μμ

τμ
, 

n
i

in F

B
b 0)( δτ

′
=

)!2(

)()1(

)(

)exp(2 121

1

2

n
B

n
ji

n

j jj

j
i

−+∞

=

−
⋅

Δ′
−

+
μβ

μμ
τμ

 

(49) 

Here, n0δ  is the Kronecker delta. The particular solutions rpiu , ipφ , and piψ  are obtained as the 

function system like Equation (48). Then, the stress components, electric displacement, and magnetic 

flux density can be evaluated from Equations (41), (43) and (45). Details of the solutions are omitted 

from here for brevity. The unknown constants in the homogeneous solutions are determined so as to 

satisfy the boundary conditions in (31) and (32). 

3. Numerical Results 

To illustrate the foregoing analysis, we consider the functionally graded hollow sphere composed of 

piezoelectric and magnetostrictive materials. The piezoelectric material is made up of BaTiO3, and the 

magnetostrictive material is made up of CoFe2O4. Numerical parameters of heat conduction and shape 

are presented as follows: 

0.1== ba HH , 0=aT , 1=bT , 10,2=N , 

7.0=a , NaRR ii /)1(1 −=− − , mb 01.0=  
(50) 

The first layer is pure piezoelectric material and the Nth layer is pure magnetostrictive material. It is 

assumed that the volume fractions of the piezoelectric phase Vp and the magnetostrictive phase Vm for 

other layers are given by the relations  
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(51) 

The value of pV  in ith layer is obtained by calculating the value of pV  in Equation (34) at the centre 

point of each layer defined by 2/)( 1 ii RRr += − . To estimate the material properties of FGM, we 

apply the simplest linear law of mixture. The material constants considered for BaTiO3 and CoFe2O4 
are shown in the paper [20]. The typical values of material parameters such as 0κ , 0λ , 0α , 0Y , and 0d , 

used to normalize the numerical data, based on those of BaTiO3 are as follows:  

rκκ =0 , rλλ =0 , θαα =0 , GPaY 1160 = , NCd /1078 12
0

−×−=  (52) 

In the numerical calculations, the boundary conditions at the surfaces for the electric and magnetic 

fields are expressed as 
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ar = ; 0,0 11 == rr BD , 

1=r ; 0,0 == NN ψφ  
(53) 

Figures 1–5 show the numerical results for 1=M  and 10=N . The variations of temperature 
change and displacement 

ru  along the radial direction are shown in Figures1 and 2, respectively. From 

Figures 1 and 2, it is clear that the temperature and displacement increase with time and have the 
largest values in the steady state. The variations of normal stresses rrσ  and θθσ  along the radial 

direction are shown in Figures 3a and 3b, respectively. Figure 3a reveals that the maximum tensile 
stress of rrσ  occurs in the transient state and the maximum compressive stress of rrσ  occurs in the 

steady state. From Figure 3b, it is clear that the maximum tensile stress occurs near the outer surface. 
The variations of electric potential φ  and magnetic potential ψ  along the radial direction are shown 

in Figures 4 and 5, respectively. Figure 4 reveals that the absolute value of the electric potential 

increases with time, and attains its maximum value in the steady state. The electric potential is almost 

zero in the tenth layer, i.e. the pure magnetostrictive layer. From Figure 5, it is clear that the absolute 

value of the magnetic potential increases with time and attains its maximum value in the steady state. 

The magnetic potential is almost constant in the first layer, i.e. the pure piezoelectric layer.  

Figure 1. Variation of the temperature change ( 1=M , 10=N ). 

 

Figure 2. Variation of the displacement ru  ( 1=M , 10=N ) 
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Figure 3. Variation of the thermal stresses ( 1=M , 10=N ): (a) normal stress rrσ ;  
(b) normal stress θθσ . 

  

Figure 4. Variation of the electric potential ( 1=M , 10=N ). 

 
 

Figure 5. Variation of the magnetic potential ( 1=M , 10=N ). 

 

(a) (b) 
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In order to assess the effect of the nonhomogeneous parameter M  on the stresses, electric potential, 

and magnetic potential, the numerical results for N = 10 are shown in Figures 6–8. 4=M  shows a 

piezoelectric material rich, and 25.0=M  shows a magnetostrictive material rich. The variations of 
stresses rrσ  and θθσ  are shown in Figures 6a and 6b, respectively. From Figure 6a, it is clear that the 

maximum compressive stress of rrσ  decreases when the parameter M increases in the steady state. 

From Figure 6b, it is clear that the maximum tensile stress of θθσ  decreases when the parameter M 

decreases in the steady state. The variations of electric potential and magnetic potential are shown in 

Figures 7 and 8, respectively. From Figures 7 and 8, the absolute value of the electric potential in the 

inner surface is maximum when the parameter 1=M  in the steady state, while that of the magnetic 

potential is maximum when the parameter 25.0=M  in the steady state. 

Figure 6. Variation of the thermal stresses ( 10=N ): (a) normal stress rrσ ; (b) normal 

stress θθσ . 

 
 

Figure 7. Variation of the electric potential ( 10=N ). 

 
 

(a) (b) 
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Figure 8. Variation of the magnetic potential ( 10=N ). 

 
 

In order to assess the effect of relaxation of stress values in functionally graded  

magneto-electro-thermoelastic hollow sphere, the numerical results for the two-layered hollow sphere 
are shown in Figure 9. Figures 9a, 9b, 9c and 9d show the variations of stresses rrσ , θθσ , electric 

potential and magnetic potential, respectively. From Figures 3 and 9, the effect of relaxation of stress 

distributions for the functionally graded hollow sphere can be clearly seen compared with the  

two-layered hollow sphere. From Figures 4, 5 and 9, it is clear that the maximum absolute values of 

the electric potential and magnetic potential for functionally graded hollow sphere are grater than those 

for the two-layered hollow sphere.  

Figure 9. Numerical results for the two-layered hollow sphere ( 2=N ): (a) normal stress 

rrσ ; (b) normal stress θθσ ; (c) electric potential; (d) magnetic potential. 

(a) (b) 
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Figure 9. Cont. 

(c) (d) 

 

4. Conclusions  

In this study, we analyzed the transient thermal stress problem for the functionally graded  

magneto-electro-thermoelastic hollow sphere due to uniform surface heating using a laminated 

composite mode by solving the governing equations of the displacement, electric potential and 

magnetic potential. As an illustration, we carried out numerical calculations for a functionally graded 

hollow sphere composed of piezoelectric BaTiO3 and magnetostrictive CoFe2O4, and examined the 

behaviors in the transient state for temperature change, displacement, stress, electric potential and 

magnetic potential distributions. We investigated the effects of the nonhomogeneity of material on the 

stresses, electric potential, and magnetic potential. Furthermore, the effect of relaxation of stress values 

in functionally graded magneto-electro-thermoelastic hollow sphere was investigated. We conclude that 

we can evaluate not only the thermoelastic response of the functionally graded magneto-electro-

thermoelastic hollow sphere, but also the electric and magnetic fields of functionally graded  

magneto-electro-thermoelastic hollow sphere quantitatively in a transient state. 
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