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Abstract: In this work, the problem of a curved functionally graded piezoelectric (FGP) 

actuator with sandwich structure under electrical and thermal loads is investigated. The 

middle layer in the sandwich structure is functionally graded with the piezoelectric 

coefficient g31 varying continuously along the radial direction of the curved actuator. Based 

on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy 

stress function to examine the effects of material gradient and heat conduction on the 

performance of the curved actuator. It is found that the material gradient and thermal load 

have significant influence on the electroelastic fields and the mechanical response of the 

curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses 

are generated by using the sandwich actuator with functionally graded piezoelectric layer 

instead of the conventional bimorph actuator. This work is very helpful for the design and 

application of curved piezoelectric actuators under thermal environment.  

Keywords: functionally graded piezoelectric materials (FGPMs); curved actuator; sandwich 

structure; thermal effect; bimorph 

 

1. Introduction 

Due to their excellent electromechanical coupling, fast response and design flexibility, piezoelectric 

ceramics have been regarded as promising materials for constructing various devices in micromechanical 
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systems (MEMS), such as ultrasonic micromotors [1], actuators [2], micropumps and microvalves [3,4] 

and accelerometers [5], etc. Among these, piezoelectric bimorph and multimorph are commonly 

employed as fundamental elements to complement the functions of different devices. Usually, these 

structures are made of two or more layers of piezoelectric sheets and are jointed by bonding agents. 

However, such laminated piezoelectric structures suffer from high stress concentration near the 

interface due to the abrupt changes in both material composition and thermo-electro-elastic properties, 

which can cause severe deterioration of the bonding layer strength and reduce the lifetime of the 

structures. To overcome the drawbacks of laminated piezoelectric structures and meet some particular 

requirements for performance and reliability, the concept of functionally graded materials (FGMs) has 

been introduced into piezoelectric materials. This new class of materials is called functionally graded 

piezoelectric materials (FGPMs). As a result, a new type of sandwiched piezoelectric structure was 

developed with the middle layer functionally graded, i.e., the middle layer has varying composition 

and properties, which is continuously jointed with the outer layers [6]. Therefore, the entire structure 

acts like a monomorph without any bonding agent and the failure caused by the interfacial debonding 

or stress concentration presented in the traditional laminated piezoelectric structures could be avoided.  

The fabrication and property investigation of FGPMs have attracted great attention from the 

research community. Among the early investigators, Zhu and Meng [6] developed FGM actuators 

based on PNN-PZT piezoelectric ceramics by the powder mould stacking press method. Wu et al. [7] 

fabricated a ceramic bimorph actuator with a smooth gradient by doping PZT with Zinc borate and 

demonstrated that the stresses induced are relatively uniform and do not peak in the center as 

conventional bimorphs. A laminated piezoelectric bimorph actuator with a graded compositional 

distribution of PZT and Pt was fabricated by Takagi et al. [8] using powder stacking and sintering. It 

was found that larger deflection and smaller stress were developed in this structure as compared to the 

conventional bimorph. For FGPMs in practical applications, the material gradient could exist in more 

than one material coefficient and the distribution of their material properties could be arbitrary. 

However, in order to make the analysis of FGPMs mathematically tractable, simplified models have 

been used to investigate the electromechanical behavior of FGP devices. The bending behavior of 

FGM actuators was predicted by Hauke et al. [9]. In their study, they used a simple analytical model in 

which the actuator is assumed to consist of N layers with stepwise linear piezoelectric coefficient in 

different layers, but elastic and dielectric coefficients are assumed to be constant. Based on the 

Kirchhoff-love hypothesis, Kruusing [10] presented some solutions of an FGP cantilever actuator and 

he also gave a brief review of design and modeling of these kinds of actuators. Using classical 

laminate theory, the electroelastic behavior of a piezoelectric composite actuator with functionally 

graded microstructure were analyzed in [11,12]. Huang et al. [13,14] derived the analytical solutions 

for FGP beams under both mechanical and electrical loads from the two-dimensional equations of 

piezoelectricity, in which the elastic, piezoelectric and dielectric coefficients of the piezoelectric beams 

were assumed to vary along the beam thickness direction only. By using stress function approach, Shi 

and his co-workers [15-18] obtained a set of exact solutions for the FGP cantilevers with varying 

piezoelectric parameter g31 or the elastic parameter s33 under different loading conditions. 

Since some piezoelectric devices may operate under extreme environment with high temperature, 

the thermal effect could be a significant issue in the performance prediction and design of these 

devices. Some researchers have conducted studies on the electromechanical coupling of FGPMs with 
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the consideration of thermal effect. Wang and Noda [19] developed a finite element code to study the 

functionally graded thermopiezoelectric composite structure and investigate how the functionally 

graded layer will affect the behavior of the composite structure. Based on Euler-Bernoulli theory,  

Joshi et al. [20] obtained exact solutions for the response of a laminated beam under thermal and 

electrical excitations, in which the structure consists of a substrate, an FGPM layer and an active 

piezoelectric layer. Lee [21] used a layerwise laminate theory and finite element formulation to 

examine the effect of material gradient on the response of thermo-electro-mechanical coupled 

piezoelectric bimorph actuators. Chen and Shi [22] derived exact solutions for an FGP cantilever with 

piezoelectric parameter g31 varying linearly along the thickness direction under different electrical and 

heat conduction conditions. Based on the theory of piezoelectricity, an FGP sandwich cantilever under 

electrical and thermal loads were studied in [23], in which all material parameters are assumed to vary 

in the direction of the thickness according to a power law distribution. Yang and Xiang [24] used the 

Timoshenko beam theory to investigate the static bending and dynamic response of FGP actuators 

under combined thermal-electro-mechanical loading. 

It should be pointed out that most existing studies as mentioned above are on the flat FGP devices, 

which serve well on flat engineering structures. However, the applications of such flat devices on 

curved structures require the complicated shape of bonding layer and may significantly disturb the 

interfacial stress distribution and reduce the device precision. Thus curved FGP devices are more 

acceptable for applications in complex shaped structures, such as aircraft wings and satellite dishes [25]. 

Recently, researchers have attempted to study the electromechanical coupling behavior of curved FGP 

devices. Exact solutions for curved multi-layered piezoelectric and FGP actuators were obtained by 

Shi and his coworkers [26-28] with the assumption that only piezoelectric coefficient g31 varies along 

the radial direction of the circularly curved beam. However, there is very limited work of studying the 

thermal load effect in the curved FGP actuator configuration. The bending behavior of a circularly 

curved FGP cantilever actuator under an applied electrical load and heat conduction was investigated 

in our previous work [29]. It was found that thermal effect was significant on the electroelastic field of 

the curved actuator. To the authors’ best knowledge, there is no investigation of the thermal effect on 

the performance of sandwiched FGP structures thus far. It is, therefore, the objective of the current 

study to investigate the thermal-electro-elastic fields of a curved FGP actuator with sandwich structure 

under electrical and thermal loads. By using Airy stress function, analytical solutions are derived and 

numerical results are presented to show the effects of material gradients and thermal loads on the 

stresses, displacements, electric displacements and electric potential of the curved actuator. These 

results can also demonstrate the advantages of using the sandwiched FGP actuator over the traditional 

piezoelectric bimorph actuator.  

2. Formulation of the Problem 

The curved sandwich structure envisaged in the current work is fixed at one end and consists of 

three layers, with the lower and upper layers (layer 1 and layer 3) being two dissimilar homogeneous 

piezoelectric media and the middle layer being an FGP one (layer 2) as shown in Figure 1. The 

piezoelectric parameter g31 in the middle FGP layer is assumed to vary along the radial direction while 

approaches to the corresponding values of the homogeneous piezoelectric layers at the upper and lower 
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surfaces, respectively. It is assumed that all the piezoelectric layers are poled in radial direction. For 

the analysis of this device, a polar coordinate system (r, θ) is used, and the thickness of the k th layer is 
determined by 1k k kh R R+= −  (k = 1~3), where k = 1, 2 and 3 refers to the lower layer, the FGP layer and 

the upper layer of the actuator. The actuator is subjected to an electric potential V0 between the outer 

surface of layer 3 and the inner surface of layer 1, and a thermal conduction occurs along the radial 

direction due to the temperature rise difference, i.e., To on the outer surface of layer 3 and Ti on the 

inner surface of layer 1.  

Figure 1. Schematic of curved FGP actuator with sandwiched structure. 

 

In the absence of body forces and free charges, the equilibrium equations of the piezoelectric body 

are given by: 
( ) ( ) ( )( ) 1

0
k k kk

r rrrr

r r r
θ θθσ σ σσ

θ
∂ −∂ + + =

∂ ∂  
(1a)

( ) ( ) ( )21
0

k k k
r r

r r r
θ θθ θσ σ σ

θ
∂ ∂

+ + =
∂ ∂  

(1b)

( ) ( )
( )1 1

0
k k

k r
r

D D
D

r r r
θ

θ
∂ ∂+ + =

∂ ∂  
(1c)

where ( )k
ijσ  and ( )k

iD (i = r, θ) are stress and electric displacement components, and the superscript “k” 

represents layer k.  

The constitutive equations of the piezoelectric media under plane strain condition can be written as: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 13 31
k D k k D k k k k k k

rr rs s g D Tθθ θθ θε σ σ α= + + + (2a)
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

13 33 33
k D k k D k k k k k k

rr rr r rs s g D Tθθε σ σ α= + + +  (2b)
( ) ( ) ( ) ( ) ( )

44 15
k D k k k k

r rs g Dθ θ θε σ= +  (2c)
( ) ( ) ( ) ( ) ( )

15 11
k k k k k

rE g Dθ θ θσ ζ= − +  (2d)
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

31 33 33
k k k k k k k k k

r rr rE g g D Tθθσ σ ζ ρ= − − + −  (2e)

with ( )D k
ijs , ( )k

ijg , ( )k
ijζ , ( )k

iα and ( )kρ  being the elastic, piezoelectric, dielectric, thermal expansion and 

pyroelectric coefficients, respectively. T(k) is the temperature rise. The strain ( )k
ijε and the electric field 
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( )k
iE  can be expressed in terms of the displacement components ( ( )k

ru and ( )kuθ ) and the electric potential 
( )kΦ as: 

( )( )
( ) 1 kk
k r uu

r r
θ

θθε
θ

∂
= +

∂  
(3a)

( )
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k
k r

rr
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 (3b)
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k r
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u uu

r r r
θ θ

θε
θ

∂∂= + −
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 (3c)

( )
( ) 1 k
kE

rθ
Φ

θ
∂= −

∂
 (3d)

( )
( )

k
k

rE
r

Φ∂= −
∂

 (3e)

To consider the thermal effects, the temperature is assumed to vary in the radial direction only. 

Then the steady state heat transfer equation can be reduced to a one-dimensional equation as: 

( )
( )1 d

0
d

k
k T

r
r r r

κ ∂ = ∂ 
 (4)

with ( )kκ being the thermal conductivity coefficient. 

To determine the temperature distribution in each layer of the actuator, the thermal boundary 

conditions at the lower and upper surfaces of the actuator are applied as: 
(1) (3)

1 i 4 o( ) ; ( )T R T T R T= =  (5)

and the continuity conditions of temperature and heat flow at the interfaces between adjacent  

layers are: 

2 2 3 3

(1) (2) (2) (3)
(1) (2) (2) (3) (1) (2) (2) (3)

2 2 3 3

d d d d
( ) ( ); ( ) ( ); ;

d d d dr R r R r R r R

T T T T
T R T R T R T R r r r r

r r r r
κ κ κ κ= = = == = = = (6)

Then the temperature distribution in each layer of the curved piezoelectric structure can be obtained 

from Equations (4–6) as: 

1 1( )
i 1( ) ( ) ( )

1

1 1 1
( ) d d d

i k

i k k

k R R rk
k ki k kR R R

i

T r T C r r r R r R
r r rκ κ κ

+ +

+
=

 = + − + < < 
 
    (7)

where C is a constant described as: 
o i

32 4
(1) (2) (3)

1 2 3

1 1 1
ln ln ln

T T
C

RR R

R R Rκ κ κ

−
=

+ +
 

(8)

It is obvious that the thermal conduction will affect the electroelastic field in the curved piezoelectric 

media, as shown in Equation (2). 

For practical FGPMs, the distribution of material properties can be arbitrary, for example, the 

individual material coefficient may vary independently. However, it is difficult, if not impossible to 

get the analytical solution. Moreover, it is also found that the dependence on poling for elastic and 

dielectric coefficients is much less pronounced than that for the piezoelectric coefficient g31 [9,28,30]. 
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Therefore, to make the analysis mathematically tractable, only the piezoelectric coefficient 31g of the 

piezoelectric media is assumed to vary along the radial direction in the sandwich structure, while  

all the other material coefficients are assumed as constant. A Taylor series expansion is used to 

describe the arbitrary function g31(r) for the FGP layer in terms of the following N th-order polynomial 

function as [28]: 

2
31 0 1 2 2 3

0

( )
N

N i
N i

i

g r J J r J r J r J r R r R
=

= + + + + = < <  (9)

where iJ (i = 0…N) are material constants.  

From Equation (9), it is seen that g31(r) could be of arbitrary format. For the case that the FGP is 

exponentially graded along the radial direction, g31 can be expressed as: 
(2)
31 31 0 2 3( ) rg g r g e R r Rβ= = < <  (10)

where 0g and β  are material constant and the material gradient, which could be determined from: 

2

3 2
(1)

(1) 31
0 31 (3)

31

R

R Rg
g g

g

− 
=  

 
 (11)

and 

(3)
31
(1)

3 2 31

1
ln

g

R R g
β

 
=  −  

 (12)

with (1)
31g and (3)

31g  being the piezoelectric coefficients of the lower and upper piezoelectric layer, 

respectively. To get the analytical solutions for the curved FGP actuator, we expand the g31(r) using 

Taylor’s series expansion; 

2 3
2 3

31 0( ) 1
2! 3! !

N
Ng r g r r r r

N

β β ββ 
= + + + + + + 

 
   (13)

in which the coefficients
2 3

0 1, , , , ,
2! 3! !

N

g
N

β β ββ 
 
 

  correspond to the parameters 

( )0 1 2 3, , , , ,NJ J J J J  in Equation (9), respectively. 

For the actuator as shown in Figure 1, it is obvious that the following boundary conditions are 

satisfied automatically: 

0 / 2 0D Dθ θ θ θ π= == =  (14)

1 4 2 2 3 3

(1) (3) (1) (2) (2) (3)0, ,r r R r r R r r R r r R r r R r r Rθ θ θ θ θ θσ σ σ σ σ σ= = = = = == = = =  (15)

Besides, the following mechanical and electrical boundary conditions as well as the continuity 

conditions at the interface of any two adjacent layers should also be satisfied: 

I. Mechanical boundary conditions for stresses at the upper and lower surfaces 

1 4

(1) (3) 0rr r R rr r Rσ σ= == =  (16)

II. Electrical boundary conditions at the upper and lower surfaces 
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1 4

(1) (3)
00,r R r R VΦ Φ= == =  (17)

III. Mechanical boundary conditions for displacements at the fixed end 
2

πθ = 
 

 

(2)
0

(2) (2)
0 0

,
2

, 0; , 0; 0
2 2

r

r

u R
u R u Rθ

π
π π

θ

 ∂       = = =    ∂   
   (18)

where R0 is taken as the average radius of the actuator, i.e., 1 4
0 2

R R
R

+= . 

IV. Continuity conditions for electric displacements 

2 2 3 3

(1) (2) (2) (3),r r R r r R r r R r r RD D D D= = = == =  (19)

V. Continuity conditions for stresses 

2 2 3 3

(1) (2) (2) (3),rr r R rr r R rr r R rr r Rσ σ σ σ= = = == =  (20)

VI. Continuity conditions for displacements 

2 2 3 3

(1) (2) (2) (3),r r R r r R r r R r r Ru u u u= = = == =  (21)

2 2 3 3

(1) (2) (2) (3),r R r R r R r Ru u u uθ θ θ θ= = = == =  (22)

VII. Continuity conditions for electric potential  

2 2 3 3

(1) (2) (2) (3),r R r R r R r RΦ Φ Φ Φ= = = == =  (23)

VIII. Mechanical boundary conditions at the free end ( )0θ =  

4 4 4

1 1 1

d 0, d 0, d 0
R R R

rR R R
r r r rθθ θ θθσ σ σ= = =    (24)

3. Solution of the Problem 

To find the solutions of Equations (1–3), an Airy stress function is introduced. For the considered 

plane problem of a curved beam with material coefficients only varying continuously along the radial 

direction, when only electric voltage is applied between the upper and lower surfaces of the beam with 

heat conduction through the thickness direction, both Airy stress function Ψ and electric potential Φ in 

each layer can be assumed as a function of r. Correspondingly, the stress components are expressed as:  
( ) 2 ( )

( ) ( ) ( )
2

1 d d
; ; 0

d d

k k
k k k

rr rr r rθθ θ
ψ ψσ σ σ= = =  (25)

and the electric field can be easily obtained from Equations (1–3) as: 
( )( )

( ) ( ) ( ) ( ) 5d
0; ; 0;

d

kk
k k k k

r r

C
E E D D

r rθ θ
Φ= = − = =  (26)

in which ( )
5

kC (k = 1~3) are constants to be determined. To ensure that the displacements can be 

obtained by integrating the strain fields, the following compatibility equations must be satisfied: 
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2 2 2
( ) ( ) ( )

2 2 2 2

2 1 1 1 1k k k
rr rr r r r r r r r rθθ θε ε ε

θ θ θ
     ∂ ∂ ∂ ∂ ∂ ∂+ + − = +     ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 (27)

Substituting Equations (2,7,9,25,26) into Equation (27), we have: 

( )
( ) 2 ( ) ( ) ( ) ( )( ) 3 ( )4 ( )

( ) ( ) ( ) ( )33 33 3311
11 54 3 2 2 3 3 ( ) 2

d ddd
2 0 ( 1,3)

d d d d

D k k D k k kD k kk
D k k k k

rk

s s gs C
s C k

r r r r r r r r r θ
ψ ψψψ α α

κ
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and 

( )
( ) 2 ( ) ( ) ( ) ( )( ) 3 ( )4 ( )

( ) ( ) 3 ( ) ( ) ( )33 33 3311
11 5 54 3 2 2 3 3 ( ) 2

2

d ddd
2 ( 1) 0

d d d d
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r r r r r r r r r θ
ψ ψψψ α α

κ
−

=
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(k = 2) 
(28b)

By solving Equations (28a) and (28b), we can obtain the Airy stress functions as follows: 
( ) ( )( ) ( ) ( ) ( ) 2 ( ) 1 ( ) 1 ( ) 2

1 2 3 4( ) ln
k kk k k k k s k s kr G r C C r C r C r H r rψ − + += − + + + + + , (k = 1, 3) (29a)
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where 
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( )( )
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112 1
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k D k k

C
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s s

θα α
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−
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( )
( ) 33

( )
11

D k
k

D k

s
s

s
=  (30)

and ( )k
iC (k=1~3 and i=1~5) are unknown constants to be determined from boundary conditions. 

However, ( )
1

kC  do not need to be considered, since these coefficients in the Airy stress functions 

obviously have no influence on the electroelastic fields of the curved actuator. For the material 

properties considered in the current study, it is also seen from Equation (30) that (1) (2) (3)s s s s= = =  and 
(1) (2) (3)H H H H= = = . 

Substituting Equations (29a) and (29b) into Equation (25), the stress components in each layer can 

be determined as: 
( )

( ) ( ) 1 ( ) 1 ( )
2 3 42 ( 1) ( 1) (2ln 1)

k
k k s k s k

rr

G
C s r C s r C H r

r
σ − − −= − + + − + + + + +  (31a)

( ) ( ) 1 ( ) 1 ( )
2 3 42 ( 1) ( 1) (3 2ln )k k s k s kC s s r C s s r C H rθθσ − − −= − − + + + + + , (k = 1, 3) (31b)

and 
'( )

( ) ( ) 1 ( ) 1 ( ) ( ) 2
2 3 4 5
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2 ( 1) ( 1) (2ln 1)

k
k k s k s k k
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f rG
C s r C s r C C H r

r r
σ − − −= − + + − + + + + + +  (32a)

( ) ( ) 1 ( ) 1 ( ) ( ) ''
2 3 4 5 22 ( 1) ( 1) ( ) (3 2ln )k k s k s k kC s s r C s s r C C f r H rθθσ − − −= − − + + + + + + , (k = 2) (32b)

where '
2 ( )f r  and ''

2 ( )f r are the first and second derivatives of 2 ( )f r . From Equations (2,3,31,32), the 

displacements and electric potential for the layer k can be determined as:  
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( ) ( ) ( ) ( ) ( )
13 2 3 4
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in which  
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 
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   (35)

and ( )
6

kC and ( )k
jD  (j, k=1~3) are unknown constants to be determined from boundary conditions given 

in Section 2.  

Substituting the electric displacements, stresses, electric potentials and displacement fields in 

Equations (31–34) into the boundary conditions (16–24) in the previous Section, the unknown 

constants can be obtained after lengthy derivations as follows: 
(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)
5 5 5 5 1 1 1 1 2 2 2 2 3 3 3 3, , ,C C C C D D D D D D D D D D D D= = = = = = = = = = = =  (36)

1Y P X−= (37)
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(38)

where ' ' ' ' ' '', , , , , , , , , , , ,i i i i i i i i i i i j kA A B B Q Q E E F F F T L and kM (i = 1~3, j = 1~9, k = 1~10) are given in  

Appendix A. 
Besides, 6kC and kD (k = 1~3) could also be determined as: 
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In summary, the electroelastic fields in each individual layer of the curved FGP actuator with the 

consideration of thermal effect are determined.  

4. Results and Discussion 

As mentioned before, all the material properties except the piezoelectric coefficient g31 are assumed 

as constants in the current work. The elastic, piezoelectric (except g31), dielectric constants, thermal 

expansion and pyroelectric coefficients for the different layers of the sandwiched piezoelectric actuator 

are taken as those for the PZT-4 [28,31] in the numerical calculation, and the typical value of thermal 

conductivity is taken as 1 12.1Wm Kκ − −= . All these material constants are listed in Table 1. It should be 

mentioned that the derived solutions in the previous section are applicable for any arbitrary format of 

g31 with Taylor series expansion. For case study of the actuator configuration in Figure 1, the middle 

FGM layer is assumed as exponentially graded along the radial direction as shown in Equation (10), 

and the coefficients of Taylor expansion of g31 can be determined from its values at the boundaries of 

the FGM layer. The upper layer of the sandwich structure is taken as PZT-4 and its piezoelectric 
constant is (3) 3 2 1

31 3 31( ) 17.8 10 m Cg R g − −= = − × , while the piezoelectric constant for the lower layer is 

assumed as (1) 3 2 1
31 2 31( ) 9.35 10 m Cg R g − −= = − × . The geometry of the curved FGP actuator with sandwich 

structure is fixed with R1 = 15.5 mm, R2 = 16.0 mm, R3 = 17.0 mm and R4 = 17.5 mm. 



Materials 2011, 4              

 

 

2162

Table 1. Material Constants of PZT-4 (g-type constitutive relations). 

Elastic constant 

( )12 2 110 m N− −

 

Piezoelectric 

constant 

( )3 2 110 m C− −  

Dielectric 

constant 

( )6 110 mF−

Thermal 

expansion 

( )6 110 K− −  

Pyroelectric 

constant 

( )3 1 110 NC K− −  

Thermal 

conductivity 

( )1 1Wm K− −  

11
Ds  13

Ds  33
Ds  44

Ds  33g  15g  11ζ  33ζ  θα rα ρ  κ
7.95 −3.03 7.91 17.91 23.91 40.36 76.87 99.65 2.89 1.29 5.56 2.1 

For different values of N (5, 10, 15, 20 and 30 for example) in the Taylor series expansion of the 
exponential format g31, the distribution of radial stress rrσ and hoop stress θθσ along the radial direction 

of the actuator is plotted in Figure 2 when the actuator is subjected to an electric potential V0 = 100 V 

and the temperature rise at the upper surface of layer 3 and the lower surface of layer 1 is To = 10 °C 

and Ti = 0 °C, respectively. From these two figures, it is clearly illustrated that the curves are almost 

identical for N = 20 and 30. Therefore, it can be concluded that convergence is obtained when using 

the Taylor series up to 20 terms to expand the piezoelectric coefficient g31(r) in the current case study. 

Taking different values of N is equivalent to the change of material gradient for the FGP layer, 

therefore, the discrepancy among the curves with different N indicates the stress distribution is 

significantly affected by the material gradient. It is seen from Figure 2(b) that the hoop stress will be 

continuous at the interfaces when N = 20 and 30, unlike an abrupt change for a smaller N, indicating 

the discontinuity of hoop stresses at the interfaces of dissimilar media can be eliminated by using 

graded material, which may prevent the possible failure of the structures at the interfaces. In addition, 
non-zero stresses ( ),rr θθσ σ  are always observed in this sandwich actuator with thermal conduction. 

These internal stresses should be considered in the design of curved FGP actuator with sandwich 

structure. The distribution of electric displacement Dr and electric potential Φ along the radial 

direction are shown in Figure 3 with different N. It is observed that the material gradient has relatively 

large influence on the electric displacement but no significant influence on electric potential 

distribution as Φ is almost identical for different values of N. 

Figure 2. The distribution of stresses along radial direction for the curved FGP actuator 

when V0 = 100 V and To = 10 °C (a) radial stress; (b) hoop stress. 
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Figure 3. The distribution of (a) electric displacement Dr and (b) electric potential Φ along 

the radial direction of the curved FGP actuator when V0 = 100 V. 

 

In the following, N is taken as 20 to represent a convergent Taylor series expansion for the 

exponentially graded FGP layer. Therefore, the middle layer of the sandwich structure is continuously 

jointed with the lower and the upper layer. The effect of thermal loading on the distribution of radial 

and hoop stresses of this curved sandwich actuator are plotted in Figure 4 for different temperatures 

To = (0 °C, 2 °C, 5 °C, 10 °C), while the temperature on the inner surface of layer 1 is kept constant. It 

is clearly indicated that the thermal loading has a significant effect on the stress distribution in the 

curved actuator. With the increase of the temperature, the magnitude of the stresses decreases. Under 

the same loading condition, the distribution of the electric field in the actuator is presented in Figure 5. 

It is seen that the thermal conduction significantly changes the distribution of electric field as expected, 

i.e., the electric field increases with the increase of the thermal loading. The influence of thermal 
loading can also be observed from the distribution of radial displacement ru  and hoop displacement 

uθ along the circumferential direction of the curved actuator as shown in Figure 6. The significant 

effect of thermal loading on the electroelastic fields of the curved FGP actuator observed from these 

figures indicate that it is necessary to consider the thermal effect in the design and optimization of the 

curved FGP sandwich actuator. 

The current FGP actuator with sandwich structure can be easily reduced to a conventional 

piezoelectric bimorph by setting the lower layers 1 and 2 as the same material different from the upper 
layer 3 with 3 2 1

31 9.35 10 m Cg − −= − × , while the upper layer 3 is assumed to have the piezoelectric 

coefficient as 3 2 1
31 17.8 10 m Cg − −= − × . It will be interesting to compare the stresses and displacements of 

the current FGP actuator with sandwich structure to those of a conventional piezoelectric bimorph 

actuator under the same thermal and electrical loadings.  
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Figure 4. The distribution of stresses along the radial direction for the curved FGP actuator 

with different To when V0 = 100 V (a) radial stress; (b) hoop stress. 

Figure 5. The distribution of the electric field along the radial direction of the curved FGP 

actuator when V0=100 V. 

 

Figure 6. The variation of displacements with the angle θ in the middle of the actuator 

when V0 = 100 V (a) radial displacement; (b) hoop displacement. 



Materials 2011, 4              

 

 

2165

Figure 7 shows the distribution of radial and hoop stresses of the bimorph actuator along the radial 

direction for different thermal loading conditions. It is observed that the thermal effect on the stress 

field of the bimorph is also prominent. A sudden change of variation trend of the radial stress with r 

occurs at the interface of the bimorph, while the hoop stress is discontinuous at the same interface. The 

variation of the radial and hoop stress of the FGP actuator with sandwich structure is also provided for 

comparison when To = 10 °C. It is clearly indicated that the magnitude of both stresses reduces 

drastically compared with those of the bimorph actuator. The curves obtained are smoothly changing 

along the radial direction of the actuator and no sharp peaks are observed at the interface for the FGP 

actuator. The distribution of the displacement fields in the middle of both piezoelectric bimorph and 

FGP sandwich actuator is depicted in Figure 8 for comparison. It is observed that the FGP sandwich 

actuator provides relative larger displacements compared to piezoelectric bimorph actuator for the 

same loading conditions. Tabular results are also provided to supplement the graphic presentation for 

stress and displacement distribution as shown in Table 2. For example, the radial stress at r = 17 mm 

(i.e., the interface of the bimorph) for both the bimorph and FGP actuators under different thermal 

loads are quantitatively shown in this table. It is seen that, by using the FGP sandwich actuator, the 

magnitude of the radial stress in the bimorph actuator has decreased significantly as illustrated by 

percentage. Also larger displacement at the free end of the FGP sandwich actuator is always observed 

compared to that of the bimorph actuator under different thermal loads. Moreover, with the decrease of 

the temperature rise To, the difference of the free end displacements of these two type actuators 

increases. Based on these graphical displays and tabular data, the advantages of using FGP sandwich 

actuator over bimorph actuator are clearly demonstrated. Therefore, it is concluded that FGPMs are 

very important for the design and optimization of an actuator by generating less internal stresses while 

providing larger deflections for actuation. In addition, the thermal conduction has a significant effect 

on the electroelastic fields of the piezoelectric structure, which should also be considered for the 

design purpose of curved FGP actuator.  

Figure 7. Comparison of the distribution of stresses along the radial direction for bimorph 

and FGP sandwich actuator when V0 = 100 V (a) radial stress; (b) hoop stress. 
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Figure 8. Comparison of the variation of displacements with θ for bimorph and FGP 

sandwich actuator when V0 = 100 V (a) radial displacement; (b) hoop displacement. 

Table 2. Comparison of radial stress and free end displacements of the bimorph and FGP 

sandwich actuators under different thermal loads when V0 = 100 V. 

Thermal 

loads To  

(°C) 

17 mmrr r
σ

=
(KPa) Difference 

(%) 

0ru θ = 
 

(μm) 
Difference 

(%) 

0
uθ θ = 

 (μm) Difference 

(%) 
Bimorph FGP Bimorph FGP Bimorph FGP 

0 4.983 0.184 −96.307 −0.731 −0.877 +19.973 −0.565 −0.673 +19.115 

2 4.462 0.207 −95.361 −1.410 −1.540 +9.220 −1.014 −1.110 +9.467 

5 3.680 0.243 −93.397 −2.429 −2.534 +4.323 −1.687 −1.764 +4.564 

10 2.377 0.302 −87.295 −4.128 −4.191 +1.526 −2.808 −2.855 +1.674 

5. Conclusions 

In this work, a theoretical analysis of a curved functionally graded piezoelectric actuator with 

sandwich structure under electrical and thermal loads is conducted. The piezoelectric coefficient g31 of 

the FGP layer is assumed to vary exponentially along the radial direction. By using Airy stress 

function, the electroelastic fields of the actuator are obtained analytically. Simulation results are 

presented to show the influence of material gradient and thermal conduction on the curved actuator 

configuration. It is found that the material gradient has a significant influence on the stresses and 

electric displacement, but not on the electric potential. However, thermal conduction has a significant 

effect on all the electroelastic fields of the curved FGP actuator with sandwich structure. By comparing 

the FGP sandwich actuator with piezoelectric bimorph, it is clearly indicated that much smaller 

internal stresses with no compromise of deflections could be achieved by the FGP sandwich actuator. 

This work is expected to provide helpful guidelines for the design and optimization of curved 

piezoelectric actuator with the consideration of thermal effect. 
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Appendix A 

The parameters in the matrix of Equation (38) are given below: 

'
1( 1) ; ( 1)s s

k k k kA s R A s R− −
+= − + = − +  (A1)
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( ) ( ) ' ( ) ( )
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