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Abstract: A highly conductive moat or Faraday cage of through-the-wafer thickness in Si 

substrate was proposed to be effective in shielding electromagnetic interference thereby 

reducing radio frequency (RF) cross-talk in high performance mixed signal integrated 

circuits. Such a structure was realized by metallization of selected ultra-high-aspect-ratio 

macroporous regions that were electrochemically etched in p
−
 Si substrates. The 

metallization process was conducted by means of wet chemistry in an alkaline aqueous 

solution containing Ni
2+

 without reducing agent. It is found that at elevated temperature 

during immersion, Ni
2+

 was rapidly reduced and deposited into macroporous Si and a 

conformal metallization of the macropore sidewalls was obtained in a way that the entire 

porous Si framework was converted to Ni. A conductive moat was as a result incorporated 

into p
−
 Si substrate. The experimentally measured reduction of crosstalk in this structure is 

5~18 dB at frequencies up to 35 GHz. 
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1. Introduction 

One of the major challenges for single chip radio frequency integrated circuits (RFIC’s) built on Si is the RF 

crosstalk through the Si substrate. Noise from switching transient in digital circuits can be transmitted through Si 

substrate and degrades the performance of analog circuit elements. An innovative solution to the problem was 

previously proposed and studied [1-3]. Through-the-wafer porous Si (PS) was inserted into selected regions of 

Si substrates. PS is an ideal material for cross-talk isolation in mixed signal integrated circuits because of its high 

resistivity (>10
6
 -cm) [4] and its near perfect thermal expansion coefficient match to bulk Si. To further reduce 

crosstalk, a highly conductive moat was predicted by simulation to shield RF cross-talk [5]. The conductive 

moat also serves as “true ground” contacts, i.e., contact points on the chip surface with much reduced inductance 

to the true system ground. For instance, Faraday cage type of structure was demonstrated for effectively 

shielding RF interference and thus reducing cross-talk [6]. 

In the present study, we explore a novel approach for fabricating deep conductive regions within the 

industrial standard p
−
 Si substrate. This approach allows for complete metallization of vias with 250:1 aspect 

ratio. We employ a two-step process. The first step consists of selective formation of straight and parallel 

macropores with ultra-high-aspect-ratio into the Si substrate. Following that, we employ a Ni
2+

-contained 

plating bath for metallization of the pre-formed macropores at slightly elevated temperature. The method of 

forming macroporous Si into p
−
 Si has been studied by several research groups [7-10]. Macro-PS can be 

directly formed on polished p-type Si surface in organic solution containing dilute hydrofluoric (HF) acid. In the 

meantime, electroless plating of metals is widely utilized by the semiconductor manufacturing industry due to 

its simplicity, selectivity and ability of filling fine patterns [11,12]. In particular, N. Takano et al. introduced an 

aqueous nickel bath without reducing agent for Ni deposition on Si (100) aiming for fabricating fine metal dot 

arrays [13]. Farid A. Harraz et al. has studied the different Ni plating behavior from both acidic and alkaline 

fluoride media on the PS layer to make electrical contact for PS based devices [14]. Based on preceding work, 

we have developed this novel approach for RF mixed signal IC applications. Our processes are compatible with 

conventional Si  

very-large-scale integration (VLSI) technology since hydrofluoric etching and electrochemical deposition are 

widely used by the industry. 

2. Results and Discussion 

Macropore formation in Si is understood as an anisotropic process [10]. Resultant arrayed macropores are of 

about 1 µm in diameter together with frame sidewall thickness being around 0.5 µm. Macropore aspect ratio is a 

function of time and can reach 250 with a 12-h batch process. Scanning electron microscope (SEM) and 

transmission electron microscope (TEM) graphs in Figure 1 show an ultra-high-aspect-ratio Si macroporous 

structure. These pores provide channel access for Ni
2+

 chemical solution and subsequently lead to macroporous 

framework metallization. 
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Figure 1. Field emission SEM (FESEM) and TEM (the lower right) micrographs of the 

macropores with high aspect ratio formed in p
−
 Si. Anodization was conducted in a 8% 

Hydrofluoric Dimethyl Sulfoxide (HF DMSO) solution with current density of 8 mA/cm
2
 

applied in a two-electrode Teflon cell at room temperature. 

 

2.1. Metallization of Ultra-High-Aspect-Ratio Si Macropores Using Wet Chemical Plating 

In our fluoride, containing alkaline aqueous electrolyte without reducing agent, the electron exchange is 

basically accomplished between sidewall Si atoms and solution Ni
2+

 ions although the detailed mechanism is 

more complicated [15-17]. In other words, Ni is deposited at the expense of Si through fluoridation and 

dissolution, also known as displacement reaction. The thermodynamic driving force comes from the difference 

of two electrode redox potentials that are presumably represented by the following equation [18]: 

SiF6
2−

 (aq) + 4e
−
  Si

0
 + 6F

−
 (aq)    E

0
 = −1.20 V (SHE) (1) 

Ni
2+

+2e
−
  Ni

0
    E

0
 = −0.257 V (SHE) (2) 

where E
0
 is standard electrode potential with reference to standard hydrogen electrode. It is therefore a favorable 

charge transfer process from Si electrode to Ni electrode. On top of that, ammonium fluoride keeps the solution 

in an alkaline state which results in a highly negative open circuit potential for reactive surface to kinetically 

drive the chemical deposition [19]. 

Porous sample cross-sections were examined by FESEM and elementally analyzed from framework top to 

bottom by semi-quantitative energy-dispersive X-ray spectroscopy (EDX) along longitudinal orientation in 

order to estimate Ni percentage of the resultant porous structure. As plotted in Figure 2, Ni
2+

 was rapidly 

reduced to metalize the upper portion of the macroporous skeleton by consuming Si (Si percentage decreases 

with extended process duration). Ni deposition was noticeably restricted on the lower portion of these pores due 
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to limited mass transport in such high aspect ratio geometry. Cross-sectional SEM micrographs, which were 

taken from sidewall top and bottom locations of a 1-hour long wet-treated sample, show the contrast of surface 

morphologies between where little chemical deposition of Ni had occurred and where it had significantly taken 

place (Figure 3). Furthermore, micrographs of the plated sidewalls at a depth of about 100 µm, taken from 

different samples with various degrees of treatment are shown in Figure 4 revealing gradually enhanced metallic 

Ni coverage of sidewall surface in compliance with longer duration of immersion. Ni deposits are clustered in 

submicron size. Obtained from a typical 8-hour treated sample, fairly uniform Ni coverage along the longitude 

of 200 µm deep macroporous framework is presented in Figure 5.  

Figure 2. Plots of Ni atomic percentage profile measured by EDX along the pore depth for 

different immersion times: 1 minute, 2 minutes, 5 minutes and 1 hour.  

 

 

Figure 3. FESEM micrographs of a sample after 1-hour treatment in the Ni bath: (a) Pore 

morphology at a level where no significant deposition occurred. (b) Pore morphology at a 

level where full metallization occurred. 

 

 a b 

Si Ni 
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Figure 4. FESEM cross-sectional micrographs of the plated sidewalls at a depth of about  

100 µm, taken from different samples with various degrees of treatment: (a) 1-h metallization 

stage; (b) 2-h metallization stage; (c) 8-h metallization stage; (d) Enlarged image of the 

aggregated Ni deposits. 

 

 

Figure 5. Plots of Ni atomic percentage profile measured by EDX along the pore depth for 

8 hours treatment. 
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An interesting and important observation is that the entrance to each individual macropore remains open 

throughout the entire chemical process however long it was studied, i.e., 8 hours. This is attributed to the  

self-limiting nature of the deposition process. Ni
2+

 was being deposited at the expense of Si [15]. When the 

entire porous skeleton of Si was consumed, Ni deposition ceased. Figure 6 shows the comparison of the X-ray 

diffraction (XRD) θ–2θ scan results between a macroporous substrate with 8-hour immersion and a piece of 

pure Ni foil. It is evidenced that deposited Ni takes the form of polycrystalline in fcc configuration and major 

XRD peaks represent Ni (111), (200), (220), and (311). One important observation from Figure 6 is the absence 

of major Si (004) peaks indicative of a complete displacement leading to a macroporous Ni skeleton from the 

original Si. 

Deposition behaviors of various metals including Cu, Ni, Pt, Au, etc., on blank Si substrates in fluoride (HF 

or NH4F) solutions [20] have been investigated. The main work attempted to elucidate the morphological 

evolution, deposition kinetics and fundamentals of nucleation, growth modes and the charge transfer 

mechanism [21]. We have adopted a chemical bath containing concentrated Ni
2+

 ions in aqueous fluoride 

medium to metalize the straight sidewalls of ultra-high-aspect-ratio Si macropores. Deposition behavior can be 

different from that of the conventional dilute solutions. Concentration accounts for the equilibrium electrode 

potential of Ni
2+

 reduction and deposition rate is kinetically much enhanced by the abundance of Ni
2+

 species, 

because the rate determining step in high aspect ratio geometry always comes from diffusion process. It is well 

known that reduction requires electrons to be given by oxidizing Si atoms. It had been expected that upon one 

full layer deposition of Ni, displacement process would have been terminated because of no more exchange 

with the underlying Si. Our experimental results indicated more than that. Though a complete understanding 

would take further systematic electrochemical investigation, a plausible explanation can be outlined with the 

assistance of TEM microanalysis. Figure 7 displays TEM micrographs of the progressive sidewall reaction from 

a 1-hour wet chemistry treated sample. In Figure 7a, it can be seen that dark contrasted Ni were deposited into, 

instead of onto, the Si sidewall. This is in agreement with the displacement principle that Ni
2+

 is reduced by 

oxidizing and dissolving Si. Moreover, two characteristics are noticeable from the image in regard to the 

deposition process. Firstly, Si underwent an anisotropic etching in <111> direction, which could be related to 

the existence of NH4F in the chemistry. NH4F is commonly used as part of buffered oxide etching (BOE) 

chemicals and study of its etching and oxidation processes on Si (100) affirms increasingly generated Si (111) 

micro facets soon after immersion [22]. The second is that Ni deposits are not in direct contact with Si but 

enclosed within a matrix of bright contrast located at the interfacial area in between Ni deposits and underneath 

Si (Figure 7b, TEM micrograph of higher mag). Randomly spotted EDX in this bright phase, reveals 

composition of Si and O to approximately 1:1. This can probably be identified as certain types of Si suboxide. 

Formation of suboxide species at (111) micro-facets during Si etching in NH4F for a prolonged duration, was 

reported in SiH(O3) [23]. Regardless of the specific chemical formula, these suboxide species can, to a large 

extent, serve as intermediate phases or even reducing agents for Ni deposition when they experience further 

oxidation. Fluoride species which are strong oxidizing agents can further oxidize sub-oxide species for 

additional extraction of electrons to reduce Ni
2+

, and then cause dissolution of Si oxides, and eventually give rise 

to microporous Ni deposits on sidewalls. Some earlier detailed analysis of electrochemical kinetics and 

deposition chemistry in bath processes provides support to our findings [22]. Therefore transport of chemical 

species becomes possible through a microporous deposits layer to overreact with inner Si sidewall. Figure 7c 

shows the late stage of sidewall evolution in which Si was almost totally replaced by Ni deposits. 
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Figure 6. XRD spectra of pure Ni (upper) and an 8-hour wet treated sample (lower) 

 

 

Figure 7. (a) TEM micrograph of the displacement reaction, Ni deposits, Si sidewall and 

the interface with (111) Si microfacets; (b) High-mag TEM micrograph of the reaction 

interface, with brightly-contrasted phase identified by EDX as Si:O ~1; (c) TEM 

micrograph of pore sidewall showing the consumption of Si and full deposition of Ni. 
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2.2. Cross-Talk Measurement over the Test-Structure 

The preceding paragraphs have demonstrated that implementation of our wet approach enables metallization 

of ultra-high-aspect-ratio macropores inlaid in p
−
 Si substrate serving as a highly conductive shield for 

suppressing cross-talk within RF mixed-signal ICs fabricated on either of its sides. Such configuration has 

shown promising results. Cross-talk test structure based on a p
−
/p

+
 Si substrate and detailed study was described 

much more thoroughly in another of our earlier publications [5] and only a brief discussion is presented here. 

The metalized macroporous moat through p
−
 layer has a width of 50 µm and was connected to the upper ground 

planes via oxide windows and the p
+
 layer beneath. The functionality of conductive moat combined with p

+
 

substrate is regarded for noise bypass to the system ground. This metallic construction, due to a much reduced 

distance and therefore inductance to the true system ground compared with conventional ground lines that run 

on the front side of a chip, is ideal “true ground” contact of low inductance for a variety of digital as well as RF 

circuits. The main concern of our RF cross-talk issue was examined between the noise generating and noise 

detecting on-chip Al pads. In Figure 8, S21 without any isolation structures, is used as reference (Reference (M)). 

The experimentally measured reduction of crosstalk in this structure is 5~18 dB at frequencies up to 35 GHz 

(Metal moat (M)). To be highlighted, achieved RF crosstalk can be reduced to the level limited by that across 

the air gap between the measurement probes (Air (M)). The result indicates that the built porous metal moat can 

reduce the crosstalk down to the established noise floor of air in our test configuration. Its true effectiveness is 

however underestimated as an isolation structure. Our simulation result shows that the predicted RF cross-talk 

reduction using a typical metal trench can be as effective as −100 dB at 40 GHz (Metal moat (S)) [5].  

Figure 8. Measurement and simulation of S21 magnitude for the test structures with metal 

via isolation: Reference indicates there is no isolation structure. Air crosstalk is measured 

by microprobes suspended in air at Al pad separation distance of 800 µm. (M) indicates 

measurement result and (S) indicates simulation result. 
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For Si integrated circuit technology, it is the conventional belief that porous structures are undesirable from 

the point of view of long term reliability, although emerging technology such as low-k dielectrics has shown 

otherwise. On the other hand, the ability to transform a porous semiconductor structure into a porous metal 

structure as shown in this report has great potential in applications including sensors and other  

bio-medical devices. 

3. Experimental Section 

Experimental procedures were performed directly over the p
−
 Si substrates to seek the possibility and 

effectiveness in fabrication of a highly conductive region within the substrate. 

3.1. Preparation of Macroporous Si  

The p
−
 Si (100) substrate with resistivity ~10 Ω-cm was precut into 2 cm × 2 cm pieces. A two-electrode 

Teflon cell was used with the center 1 cm × 1 cm area of the samples exposed to the electrolyte containing 8% 

HF, 8% H2O, and 84% DMSO (Dimethyl Sulfoxide). Anodization of Si was carried out at a constant current 

density 8 mA/cm
2
 and at room temperature. After the electrochemical process, ethanol and pentane were used 

for the post-etching treatment [24]. 

3.2. Metallization of Ultra-high-aspect-ratio Si Macropores Using Wet Chemical Plating 

p
−
 Si substrate with freshly etched arrays of macropores was immersed in an aqueous solution at 60 °C for 

wet metallization. The chemical bath (Table 1) contains a high concentration of NiSO4 (1.0 M) in an alkaline 

state [25]. The pH value was maintained at 8.0 using a buffered solution containing NH4OH and (NH4)2SO4. 

Minute amount of wetting agent was added to provide adequate wetting of sample surface and avoid blistering 

due to gas bubbles. Instead of using a reducing agent, NH4F was added to promote the chemical deposition. 

This is a common method when working with semiconductor surfaces [20]. In addition, complexing agent was 

excluded since NH4OH already bears good complexing ability with Ni
2+

 ions [14]. Both pH value and working 

temperature were carefully monitored and maintained. Samples were immersed for 1 minute, 2 minutes, and  

5 minutes, 1 hour and 8 hours. Cross-sectional samples were prepared and examined by X-ray diffractometer 

(XRD, Simons), field emission scanning electron microscope (FESEM, JOEL) and transmission electron 

microscope (TEM, Philips), equipped with energy dispersive X-ray spectrometers (EDX, Oxford). Samples for 

TEM observation were manually sectioned and further thinned by ion milling to approximately 100 nm thick. 

Table 1. Ni plating bath compositions and operating conditions. 

Major Chemicals Moles per Liter (M) 

NiSO4 6H2O 1 

(NH4)2SO4 0.5 

Reducing/Complexing agents 0 

Wetting agent 10 mg in 50 mL bath 

Conditions 

pH = 8.0 adjusted by Ammonia Temperature = 60 °C 
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3.3. Cross-Talk Measurement over the Test-Structure 

As a result, we made use of this approach to incorporate the resultant moat into the p
−
 part of the Si substrate 

in our test circuit structure for cross-talk isolation [5]. Two port S-parameters were measured using a HP8722ES 

network analyzer up to 40 GHz. Parameter S21 without any isolation structure is used as reference. Cross-talk 

through the air is measured as a second reference by microprobes suspended in air.  

4. Conclusions 

In conclusion, we have used a method of wet Ni
2+

 chemistry to metalize the inlaid region of p
−
 Si with  

pre-etched arrays of ultra-high-aspect-ratio macropores for building a highly conductive moat structure in Si 

substrate for cross-talk reduction in a single RF mixed-signal IC chip. Ni deposition takes place based on the 

mechanism of electron exchange between Si and Ni
2+

. Such a reaction is initiated as transport-limited and ended 

in a mode with Si being replaced by Ni deposits on sidewalls of macroporous skeleton. In other words, the 

approach converts macroporous Si to a structure composed of Ni. It helps to realize a highly conductive region 

in Si substrate and offer potential applications in mixed-signal integrated circuits. The experimentally measured 

reduction of crosstalk in the engineered substrate structure is 5~18 dB at frequencies up to 35 GHz. 
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