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Abstract: Isotropic linear and nonlinear fractional derivative constitutive relations are
formulated and examined in terms of many parameter generalized Kelvin models and are
analytically extended to cover general anisotropic homogeneous or non-homogeneous as
well as functionally graded viscoelastic material behavior. Equivalent integral constitutive
relations, which are computationally more powerful, are derived from fractional differential
ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and
reduced times are established. Approximate Fourier transform inversions for fractional
derivative relations are formulated and their accuracy is evaluated. The efficacy of integer
and fractional derivative constitutive relations is compared and the preferential use of either
characterization in analyzing isotropic and anisotropic real materials must be examined on
a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative
results to experimental data are formulated and evaluated.

Keywords: anisotropic non-homogeneous viscoelasticity; error analysis; fractional
derivatives; functionally graded materials; generalized Kelvin models; master relaxation
curves; material characterization; nonlinear viscoelastic properties; shift functions

1. Introduction

A vast body of literature indicates that the predominant choice in viscoelastic research, analysis
and design is for constitutive relations consisting of integral relations, which are the Green’s functions
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associated with integral order differential equations [1–5]. However, an alternative representation for
isotropic viscoelasticity in terms of fractional derivative calculus has been developed in [6–14] and
generalized [15]. This concept, which is reflected in a substantial number of publications, is based
on the premise that the derivatives in viscoelastic constitutive relations need not necessarily be of integer
order, but may be of some fractional order with similar translations to integral representations. The
mathematical foundation of fractional calculus and of the attending Laplace and Fourier transforms
is well developed and may be found in [16–23], to mention only a few. In [24] a comprehensive
historical review of linear isotropic viscoelastic characterizations based on fractional derivatives has
been presented.

Volterra [25] was the first to extend Boltzmann’s isotropic superposition principle [26] to anisotropic
viscoelasticity. Subsequently, in [27,28] anisotropic viscoelastic stress-strain relations were formulated.
The mathematical and physical foundations of anisotropic viscoelasticity firmly rest on the well
established isotropic viscoelastic concepts as shown in [29,30]. The elastic-viscoelastic integral
transform correspondence principle (analogy) was extended to anisotropic viscoelasticity and latter’s
proper mechanical modeling was formulated in [31]. In [31] it was shown that the powerful tool of
separation of variables available under proper conditions in isotropic viscoelasticity is inadmissible
in anisotropic viscoelasticity, leaving only Laplace (LT) and Fourier (FT) transforms, finite element
methods (FEM) and a limited number of analytical solutions such as asymptotic approaches capable of
producing analytical anisotropic solutions. Presently, the main applications of anisotropic viscoelasticity
are in the areas of fiber/high polymer composites, fiber reinforced concrete, filament wound vessels,
textiles and tires.

In the present paper the concept of single fractional derivative isotropic viscoelastic constitutive
relations is formalized for anisotropic viscoelasticity in terms of many parameter generalized Kelvin
models. Both differential and integral stress-strain equations and expressions for the associated complex
moduli, compliances and creep functions are derived and their applicability and usefulness are evaluated.
Viscoelastic integral stress-strain laws are always preferable to differential ones, because they are
relatively easier to handle and computationally yield more accurate results.

2. Analysis

2.1. Material Property Dependence on Temperature

Viscoelastic media, be they metals at elevated temperatures [32,33] or high polymers [34], are
well known to exhibit material properties that are extremely temperature sensitive. In general, their
coefficients of viscosity vary one order of magnitude for roughly every 20 ◦C (Figure 1), which is
described by the Arrhenius relation

η = η0 exp

(
− Qa

RΘ

)
(1)

where Qa is the activation energy, R the universal gas constant and Θ the material temperature in
degrees Kelvin.
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Figure 1. Coefficients of viscosity for metals and composites.
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Consider a Cartesian system x = {x1, x2, x3}. The linear viscoelastic constitutive relations may be
written in the form:

{σ(x, t)} =

t∫
−∞

[E(x, t, t′)]

{
∂ε(x, t′)

∂t′

}
dt′ −

t∫
−∞

[
ET (x, t, t′)

] {∂[αT (x, t′)]

∂t′

}
dt′ (2)

These relations may be then classified into categories as seen in Table 1. Consequently, the first
three cases are relatively “simple” integral relations, whereas the third one, as will be seen subsequently,
presents considerable difficulties. These issues will be analyzed in detail in the next Sections.

Table 1. Temperature influence on constitutive relations.

Temperature Modulus
Type of Constitutive

Relations, Equation (2)
Type of Material

T0 E(t− t,′ T0) convolution homogeneous
T0 E(x, t− t,′ T0) convolution non-homogeneous
T (x) E[x, t− t,′ T (x)] convolution non-homogeneous
T (x, t) E[x, t, t,′ T (x, t′)] non-convolution non-homogeneous

2.2. General Concepts—Isotropic Materials

In order to systematically formulate anisotropic viscoelastic fractional derivative constitutive
relations, it is necessary to first make a few general comments about isotropic relations with constant
(T0) and spatially varying (T (x)) temperatures (see Table 1). In [15] generalized isotropic fractional
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derivative (FD) Maxwell models (GFDMM) are examined, while in [1–3] integer derivative (ID)
differential and integral equations (DE and IE) for isotropic viscoelasticity in terms of generalized
Maxwell and Kelvin models (GMM and GKM). A parallel development for integer order derivative
DE and IE anisotropic viscoelastic responses has been formulated in [35]. In general, even though such
modeling representations are interrelated and, therefore, interchangeable, GMM are better suited for
numerical analyses, while GKM are more useful for achieving mathematical and physical understanding
of material behavior. The use of GKM or GMM and GFDKM or GFDMM guarantees that any additive
combination automatically satisfies thermodynamic principles.

Figure 2. Generalized Kelvin Model.
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Consider a GKM or GFDKM as shown in Figure 2. The single spring represents instantaneous elastic
responses associated with “solids” and the single dashpot represents long time behavior tending to large
or infinite displacements for long time periods. For isotropic cases, it is most useful to write separate
constitutive relations for changes in shape and in volume, since real materials behave distinctly during
these changes. Using Einstein’s Cartesian tensor notation and summation convention, all relations to
follow are formulated in terms of non-dimensionalized material parameters and state variables. The
mean stresses σ and strains ε are defined as

σ = σii/3 and ε = εii/3 (3)

with stress and strain deviators

Skl = σkl − δkl σ and Ekl = εkl − δkl ε (4)

The various elements of a GFDKM (Figure 2) have the following constitutive relations

elastic spring =⇒ Skl = 2G0E
(o)
kl (5)

each FDKM =⇒ Skl = 2 ηnD
δnE

(n)
kl︸ ︷︷ ︸

nth dashpot

+ 2GnE
(n)
kl︸ ︷︷ ︸

nth spring

(1 ≤ n ≤ N) (6)

single dashpot =⇒ Skl = 2 ηN+1D
δN+1E

(N+1)
kl (7)

where δn are distinct nonintegers and the derivatives Dδn = dδn/dtδn are defined in the Fourier
sense [36]. For δn = 1 with 1 ≤ n ≤ N+1, these fractional derivative (FD) representations immediately
reduce to the corresponding integer derivative (ID) ones. Alternatively, without changing any of the
relations to follow, the FDs can also be represented in the Riemann–Liouville format [37] as

Dδn{F (t)} =
dδnF (t)

dtδn
=

1

Γ(1− δn)

d

dt

t∫
0

F (t′)

(t− t′)δn
dt′ (0 < δn < 1) (8)

but with the limitations δn < 1 < n it is not possible to recover the corresponding integer derivatives
dn/dtn. However, the original definitions in [38–40] carried no such restrictions, requiring only that
<(δn) > 0. In the present paper, the original more permissive condition for δn will be enforced.

The total strain deviator for the GFDKM and also for the GKM is the sum of the individual
contributions, or

Ekl =
N+1∑
n=0

E
(n)
kl (9)

while this sum may be formed by successive fractional differentiations of the individual parts [3], it is
much more expeditious to apply FT to Equations (5)–(7), such that

2Ekl =

[
1

G0

+
1

ηN+1(ı ω)δN+1
+

N∑
n=1

1

ηn

1

(ı ω)δn + 1/τn

]
Skl =

Skl

GFD

(10)

where ı =
√
−1 and the double bars indicate FT. From Equation (10), the complex shear modulus then

can be defined as

1

GFD

=

N+1∏
n=1

[
An (ı ω)γn + Bn

]
G0 (ı ω)δN+1

N∏
n=1

[
(ı ω)δn + 1/τn

] = JFD (11)
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with JFD as the complex shear compliance. The complex moduli and compliances, of course, are at the
heart of the isotropic and anisotropic elastic-viscoelastic integral transform analogies [3,35].

Substitution of Equation (11) into (10) and formally carrying out the multiplications results in

2G0

N+1∑
n=0

b′n (ı ω)βn Ekl =
N+1∑
n=0

a′n (ı ω)αn Skl (12)

and upon inverting the FT yields

2G0QFD{Ekl} = PFD{Ekl} (13)

where

PFD =
r∑

n=0

a′nD
αn and QFD =

s∑
n=0

b′nD
βn (14)

It should be noted that when G0 < ∞ then the single elastic spring is present in the system.
(See [3] for other combinations and for the relations between r, s and N .) Some other observations
are noteworthy, namely that for G0 <∞ and r = s = N + 1

αN = βN =
N+1∑
n=1

δn (15)

and with the single dashpot absent, δN+1 = 0 or ηN+1 = ∞ or both. For αn = βn = n, the fractional
derivative operators PFD and QFD reduce to integer order derivative ones denoted by P and Q. On the
other hand, the fractional derivative orders αn are not necessarily equal to the corresponding βn for each
n. One of the advantages of the fractional derivative models is that for the same number N of individual
Kelvin or Maxwell bodies a third more material parameters, i.e., the δn, are available for fitting actual
creep or relaxation data, thus in principle, reducing the needed value of N for the same goodness of fit
when compared to ID characterizations.

The FT of the creep and relaxation functions are given by

ı ωφFD =
1

ı ωψFD
= GFD =

1

JFD
(16)

which relates the FT of the creep function ψFD directly to the expression in square bracket in
Equation (10). The FT inversion of the first two terms poses no difficulty, but the individual terms in
the summation have no tabulated transform. Consequently, their inversion can be accomplished only by
formal integration, fast Fourier transforms (FFT) [41], asymptotic expansions or some approximation.
In [15] one of these for a single β = .5 and large times are presented. In [11] the approximation
applicable for long times, i.e., small ωs,

1

1 + (ı ω)β τ
' 1− (ı ω)β τ for (ı ω)β τ � 1 and t� 1 (17)

has been used. Alternatively, a different approximate inversion scheme is suggested here for each fraction
in the sum of Equation (10) by noting the near similarity of the functions

1

(ı ω)δn + 1/τn
' 1

(ı ω + cn)µn
=⇒ F (t) =

e−cnt tµn−1

Γ(cn)
(18)
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as seen in Figure 3 with p = ı ω for corresponding Laplace transforms. While the agreement is poorest in
the range of small values of p, it must be remembered that this is the region of very long time responses
where solutions may not be required and where asymptotic expressions can be used to greater benefit.
Furthermore, while the approximation between individual terms may be less than desired, all parameters
cn and µn can be adjusted by appropriate curve fitting of creep and relaxation data so that the sums match
each other collectively with much greater accuracy than that of each individually paired term. This is in
keeping with the practical requirements of actually modeling the behavior of real materials in terms of
the entire complex modulus representations without the need to necessarily produce precise values for
each of its constituent parameters. The advantage of the Equation (18) is that the approximation on the
r. h. s. has a known inverse and an approximate analytical expression can then be obtained by inverting
Equations (10) and (16) to yield

ψFD(t) ' 1

G0︸︷︷︸
initial spring

+
tβN+1+1

ηN+1 Γ(βN+1 + 1)︸ ︷︷ ︸
final dashpot

+
N∑
n=1

[
1

ηn Γ(µn)

t∫
0

pµn−1 exp

(
− p

τn

)
dp

]
︸ ︷︷ ︸

Kelvin models

(19)

where the first two expressions are exact, but the last is approximate for ψFD(t) even though it is the
exact inverse of the r. h. s. of Equation (18). The exact expression for the Kelvin model integrals is given
in Equation (44).

Figure 3. Comparison of exact and approximate relaxation moduli Laplace transforms of
1/(pβ + 1/τ) and 1/(p+ c)µ.
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The isothermal integral fractional derivative constitutive relations are

2Ekl(t) =

t∫
0

ψFD(t− t′) ∂Skl(t
′)

∂t′
dt′ =

t∫
0

JFD(t− t′)Skl(t′) dt′ (20)

and they differ from the integer derivative ones only in the definition of the creep and relaxation
functions, i.e., by replacing ψFD with ψ in Equation (20).

Expressions similar to Equations (5) through Equation (20) can also be formulated for volumetric
constitutive relations for σ and ε resulting in

ε(t) =

t∫
0

ψVFD(t− t′) ∂σ(t′)

∂t′
dt′ +

t∫
0

ψV TFD(t− t′) ∂ [AT (t′)]

∂t′
dt′ (21)

where A is the coefficient of thermal expansion. Using Equations (3) and (4) and substituting
Equation (21) into Equation (20) produces a single set of isotropic constitutive relations between εkl

and σkl such that

2εkl(t) =

t∫
0

ψFD(t− t′) ∂[σkl(t
′)− δkl σ(t′)]

∂t′
dt′

+ 2δkl


t∫

0

ψVFD(t− t′) ∂σ(t′)

∂t′
dt′ +

t∫
0

ψV TFD(t− t′) ∂ [AT (t′)]

∂t′
dt′


(22)

As can be seen from these isotropic stress-strain relations, the normal strains are related only to normal
stresses and shear strains are expressed in terms of only a single corresponding shear stress component,
such that

εii = fii[σ11, σ22, σ33, t] or σii = Fii[ε11, ε22, ε33, t] (23)

εij = fij[σij, t] or σij = Fij[εij, t] i 6= j (24)

These isotropic constitutive relations—and in the next section their anisotropic cousins—are cast in
the form of relaxation and/or creep functions, rather than combinations of the latter and viscoelastic
Poisson’s ratios (PR). This is due to the fact viscoelastic PRs have been shown to be intrinsic functions
of time [42–44], stresses and loading conditions and not “pure” material properties such as relaxation
functions or moduli [45–48].

From a practical analysis point of view, the integral constitutive Equations (20) to (22) are always
preferable to those expressed as differential operators such as Equation (14) even if the derivatives are of
integer order. While the numerical evaluations of convolution integrals are CPU and memory intensive,
they are by far more accurate than numerical solutions of high order PDEs. Furthermore, the discretized
recurrence relations for such convolution integrals based on only two previous time steps developed
in [49] are computationally economical and accurate.

For distinct temperature conditions viscoelastic materials admit the presence of temperature shift
functions aT (T ), which for thermorheologically simple materials (TSM) are material property functions
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of temperature, moisture, degree of cure and aging effects [34,50,51]. An associated reduced time ξ can
then be defined as

ξ(x, t) =

t∫
0

aT (x, t′) dt′ (25)

which transforms Equation (20) to a single relation in ξ instead of t for all service temperatures called
the master relaxation or creep curve. The volumetric constitutive Equation (21) will have two additional
reduced times, one for stresses or strains and the other for thermal expansions. Thus isotropic viscoelastic
materials may have three distinct reduced times, although for convenience they are often approximated as
all equal to each other, which makes characterization in terms of deviatoric and volumetric master curves
possible. More complex nonisothermal behavior has been described in [24,52,53]. During the curing
processes the material properties are also dependent on the degree of cure as well as on temperature
and moisture content, thus further complicating the modeling of viscoelastic responses [54], but not
conceptually altering any of the above results except that the shift function, as well as other parameters,
become aT (T,M, α), ξ(T,M, α), Gn(T,M, α) and ηn(T,M, α) where α is the degree of cure and M
the moisture content, and with similar expressions for the volumetric components.

Nonlinear viscoelastic behavior necessitates that creep and relaxation functions are strain dependent,
i.e., ψ = ψ[x, ξ(x, t), I1(x, ξ), I2(x, ξ), I3(x, ξ)], where Im are the first three invariants of the strain tensor
εkl [55]. The nonlinearities introduce additional complications into the analysis and make analytical
solutions difficult if not impossible, necessitating numerical finite element formulations. While FT
cannot be successfully applied to nonlinear constitutive relations, they can be used in the generalized
linear formulation and then nonlinearities can be introduced a posteriori through proper interpretation
when the entire linear modeling has been formulated and completed.

2.3. Anisotropic Relations

For anisotropic viscoelastic materials it is no longer possible to readily separate the stresses and
strains into deviatoric and volumetric components, because volumetric stresses are now material property
dependent [35]. Material parameters associated with mechanical models, such asEijkln and ηijkln instead
of the isotropic ones En and ηn, must be identified with specific directions. Anisotropic states can then
be achieved in three separate ways:

(1) different parametric values Eijkln and ηijkln with equal numbers N in all directions
(2) same parametersEijkln and ηijkln in all directions but with distinctNijkl, thus generating different

numbers of GKM parameters in each direction
(3) combinations of (1) and (2) above

Inherent in such anisotropic behavior is the need to prescribe distinct integral and differential operator
equations with property functions which are directionally dependent and which are associated with φkl,
ψkl, Pkl, Qkl, etc. In matrix form this can be written as

{ε} = [C] {σ} + [CT] {AT} (26)
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where the compliance matrices [C] and [CT] are either a set of integral or differential operators, resulting
in FT expressions

{ε} = [C] {σ} + [CT] {AT} (27)

Consequently, the anisotropic integral constitutive relations incorporating the above features and
following the pattern of the isotropic relations of Equations (20) and (21) now read

εij(x, t) =

t∫
−∞

ψijkl(x, t, t
′)
∂σkl(x, t

′)

∂t′
dt′ +

t∫
−∞

ψijklT (x, t, t′)
∂[Akl T ](x, t′)

∂t′
dt′ (28)

with similar expressions for the fractional derivative ones obtained by changing ψijkl and ψijklT to ψFDijkl
and ψFDijklT respectively. A modification of Equation (19) incorporating anisotropic representations then
leads to

ψFDijkl(t) =̃
1

G0

+
t
βNijkl+1+1

ηNijkl+1 Γ(βNijkl+1 + 1)

+

Nijkl∑
n=1

 1

ηijkln Γ(µijkln)

t∫
0

pµijkln−1 exp

(
− p

τijkln

)
dp

 (29)

where the underscore indicates no summations on the marked indices.
Similarly, associated differential operators can be found by properly interpreting Equation (14) as

P̂ij(x, t) =

rij∑
n=0

âijn(x, t) Dαijn

Q̂ijkl(x, t) =

sijkl∑
n=0

b̂ijkln(x, t) Dβijkln

Q̂ijklT (x, t) =

s′ijkl∑
n=0

b̂ijklTn(x, t) Dγijkln

(30)

where the symbol ̂ is generic and refers to either integer or fractional derivative representations and
for integer derivative characterization αijkln = βijkln = δijkln = n. The anisotropic DE constitutive
relations then become

P̂ij{σij} = Q̂ijkl{εkl} − Q̂ijklT{AklT} (31)

Temperature shift functions and reduced times must similarly be directionally identified as

ξijkl(x, t) =

t∫
0

aT ijkl[x, s, T (x, s),M(x, s), α(x, s)] ds (32)

ξijklT (x, t) =

t∫
0

aT ijklT [x, s, T (x, s),M(x, s), αcure(x, s)] ds (33)

While in isotropic viscoelasticity there are only two ψs, one ψT , two ξs and one ξT , anisotropic
viscoelasticity requires due to symmetry a maximum of 21 ψijkl and ξijkl each and six ψijklT and ξijklT .
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The possible presence of even two or three reduced times in isotropic viscoelasticity, much less 27
for anisotropic responses, makes any solution by analytical means totally unmanageable. For effective
analytical anisotropic viscoelastic formulations, it is, therefore, necessary to introduce only a single shift
function and a single reduced time. This is analogous to what is done in isotropic viscoelasticity where
the shift functions for changes in volume and shape and the one for thermal expansions are all equated
to each other. Then

aT = aT ijkl = aT ijklT (34)

and
ξ(x, t) = ξijkl = ξijklT (35)

This simplifies the constitutive relations to

εij(x, ξ) =

ξ∫
−∞

ψ̂ijkl(x, T0,M0, ξ − ξ′)
∂σkl(x, ξ

′)

∂ξ′
dξ′

+

ξ∫
−∞

ψ̂ijklT (x, T0,M0, ξ − ξ′)
∂[AklT ](x, ξ′)

∂ξ′
dξ′

(36)

where T0 and M0 are the reference temperature and the moisture content respectively [35,49,54–56].
It should be noted that the shift function aT and ψ̂ itself and consequently the reduced time ξ may
change their functional definitions drastically from one temperature and moisture region to another as
the material undergoes phase changes, as is for instance the case during cure processes where the material
property functions become additionally dependent on the degree of cure α [54], i.e., ψ̂(x, T,M, α, ξ−ξ′)
or ψ̂(x, T,M, α, ξ, ξ′).

Nonlinear responses may again be introduced into the characterization in the same manner as in the
isotropic case, i.e.,

ψijkl = ψijkl [x, t, T (x, t),M(x, t), α(x, t), I1(x, t), I2(x, t), I3(x, t)] (37)

Similar functional expressions can be generated for ψijklT , φijkl and φijklT . Such nonlinear
representations, of course, turn the material property parameters µijkln, ηijkln and τijkln of Equations (19)
and (29) into functions of the variables contained in the preceding square bracket defining ψ. Specific
isotropic examples have been formulated in [57] and extended to anisotropic viscoelasticity in [55].

Practical computational questions need to be raised about the FD characterization involving creep or
relaxation functions. Neither the approximate Equations (19) and (29) nor the corresponding exact ones
can be directly analytically integrated except by (asymptotic) series expansions for each µijkln, thereby
increasing computational times for FEM solutions. It must be remembered that this solution process is
inherently costly since these integrals or series must be repeatedly evaluated at every node point and at
each time step in every direction.

One must, therefore, turn to an alternative but equally valid characterization for both isotropic and
anisotropic viscoelastic materials in terms of compliances rather than creep functions. For anisotropic
materials, Equation (16) can be rewritten as

ı ωφFDijkl =
1

ı ωψFDijkl

= GFD
ijkl =

1

JFDijkl

(38)
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The constitutive Equation (28) in terms of compliances are

ε̂ij(x, ξ) =

ξ∫
−∞

Ĵijkl(x, ξ − ξ′)
∂σkl(x, ξ

′)

∂ξ′
dξ′ +

ξ∫
−∞

ĴijklT (x, ξ − ξ′) ∂ [AklT (x, ξ′)]

∂ξ′
dξ′ (39)

with similar relations in the ξ space replacing Equations (14) and including both isotropic and anisotropic
ID and FD representations. The inverse of the FD compliance JFDijkl for time dependent properties in the
ξ space defined by Equations (10) and (18) is

JFDijkl (x, ξ) =̃
δ(ξ)

G0ijkl(x, ξ)
+

ξ
βNijkl+1

ηNijkl+1(x, ξ) Γ(βNijkl+1)

+

Nijkl∑
n=1

 ξ(−1+µijkln)

ηijkln(x, ξ) Γ(µijkln)
exp

− ξ∫
0

dξ′

τ ′ijkln(x, ξ′)


(40)

where 1/τ ′ijkln = cijkln and the τ ′ijkln do not necessarily represent actual relaxation times. For time
independent nonhomogeneous anisotropic properties, the compliances reduce to

JFDijkl (x, ξ) =̃
δ(ξ)

G0ijkl(x)
+

ξ
βNijkl+1

ηNijkl+1(x) Γ(βNijkl+1)

+

Nijkl∑
n=1

{
ξ(−1+µijkln)

ηijkln(x) Γ(µijkln)
exp

(
− ξ

τ ′ijkln(x)

)} (41)

The constitutive Equation (39) are considerably more tractable for analytical and computational
analyses based on either isotropic or anisotropic materials, since they involve single time integrals,
rather than the double ones needed for the ψ or φ relations. The use of moduli or compliances in
the FD relations offers minimal computational penalties as it entails almost identical computational
time and labor, except for the extra ξµ−1 in the series terms, when compared to the integer derivative
characterization.

The integer derivative constitutive Equation (18) are recoverable from Equations (19) and (20) by
setting βNijkl+1 = µijkln = 1 for 1 ≤ n ≤ Nijkl.

3. Discussion

Three of the important problem areas associated with viscoelastic constitutive relations and
stress-deformation analyses are:

(a) Performing “simple” experiments for which analytic solution can be formulated and evaluated
(b) Curve fitting of actual creep and/or relaxation data by least square or other methods in order to

determine modulus, creep function or compliance parameters
(c) Inversion of FT or LT expressions for moduli, stresses and deformations

Curve fitting of moduli, etc. expressions can be carried out in either the real time space t or with FT
in the frequency domain ω [1–3]. Values of the parameters Nijkl are selected a priori in order to achieve
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a preassigned accuracy of fit. For the ID representation there are only two sets of other parameters to be
determined for each n (1 ≤ n ≤ Nijkl), namely ηijkln and τijkln, while for the FD relations a third set
µijkln or βijkln must be added.

It can be readily seen from Equations (10), (19) and (41) that these expressions contain nonlinear
functional dependencies on τs, βs and µs. (Changing the ηs to their inverses results in their linear
contributions and, consequently, they present no computational problems.) For isotropic ID constitutive
relations, Schapery [58] has suggested that an approximation be applied to the τn by setting each equal
to 102n and then leaving only the 1/ηn to be determined by the fit. The same scheme is extended
here to anisotropic ID relations. Experience shows that by proper selection of Nijkl any reasonable
accuracy of fit can be attained, but for assumed τ values the Ns may be roughly twice as large as
those corresponding to the correct τ evaluations, i.e., twice as many Prony series [59] terms. Under the
Schapery approximation, the τs loose their physical meaning as relaxation times, but the modulus and/or
creep functions maintain their accurate representations and physical meaning in toto, while the separate
parameters do not. This represents no loss of generality in the physical definitions or actual evaluations
by curve fit of experimental data of the entire modulus expressions [60–63].

Similarly, if one extends this idea to anisotropic FD relations, then approximate values can be
generated for the exponents by setting 0 < δn ' |n ± ãn| and 0 < µn ' |n± b̃n| and where ãn
and b̃n > 0 can be adjusted for a “best” fit of the experimental data. This greatly simplifies the procedure
for determining 1/ηn if additionally the same Schapery approximation is applied to the relaxation times,
i.e., τn = τ ′n = O(102n).

The ID representations lead to integrable analytical expressions for ψ and φ and even though their
values of the Ns may possibly be up to two to three times as large as the comparable ones for the FDs,
the general computational time is considerably shorter. However, as was shown in the previous section,
in order to avoid the second time integral needed for the ψijkl inversions in the FD forms, one must use
the compliance form of the constitutive relations as shown in Equations (39). This still necessitates FT
inversions to determine compliances as time functions. Such FT inversions can be accomplished by

1. exact procedures, such as table look up or analytical evaluation of the ω FT inversion integrals
2. numerical procedures, such as FFT [41]
3. approximate procedures, such as those devised in [58], given by Equation (45) and limited to

quasi-static problems where inertia and body forces are negligible
4. exact for k =∞, but approximate for k <∞ LT inversions due to Post [64] as

f(x, t) = lim
k→∞

[
(−1)k

k!
pk+1 ∂

kf(x, p)

∂pk

]
p=k/t

(42)

where k are positive integers. Note that when the transform integrals exist, the relationship between LTs
and FTs is given by

f(x, p) =

∞∫
0

f(x, t) exp(−p t) dt = f(x, ω)
∣∣∣
p=ı ω

=

∞∫
0

f(x, t) exp(−ı ω t) dt

︸ ︷︷ ︸
= half interval FT

∣∣∣∣∣∣∣∣∣∣
p=ı ω

(43)
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Table look up and/or formal inversions through integration are, of course, the approaches of choice.
Unfortunately, these work only for limited classes of LT and FT functions. In principle FFT always work
but, as has been shown in [65] they are computationally intensive even on supercomputers because in
order to obtain accurate FT inversion values one must sweep some 13 or more decades of ω, thus making
the process computationally very costly. Finally, the approximate inversion scheme of Schapery based
on producing inversions by multiplying the FT by ı ω and then setting ı ω = p = .5/t in the transform
leads to simple procedures. Recalling that at the reference temperature ξ = t, the exact and approximate
inverses of the r. h. s. of Equation (18) are given by

exact F1n(ξ) =
ξµn−1 exp(−ξ/τ ′n)

Γ(µn)
(44)

approximate F2n(ξ) ' p

(p+ 1/τ ′n)µn

∣∣∣∣∣
p=.5/ξ

(45)

These functions together with the absolute error F1n(ξ) − F2n(ξ) are displayed in Figure 4 . (The
relative error cannot be shown because the exact solution tends to zero for larger values of ξ.) It is seen
that the approximate inverse, while simple, is not very accurate. Equation (44) and (45) deal with only a
single term of the Equation (40) representing the FD anisotropic compliances JFDijkl (ξ). The cumulative
effect of such errors makes the Schapery approximate inversion scheme unacceptable in this instance.

Figure 4. Fractional derivative inverse.
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Accuracy limitations of Schapery’s approximate inversion method when applied to dynamic isotropic
viscoelastic problems has been previously pointed out in [66–68], among others. Although the method
has found favor with much justification in quasi-static viscoelastic problems, this appears to be the first
time that Schapery’s approximate inversion of a non-Prony series complex compliance itself is seen to
also yield undesirable time functions.
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In [69] the simple quasi-elastic and more involved self-consistent approximations for evaluating
convolution integrals are compared. The reference’s conclusion is that the self-consistent method is
more accurate, but yields more complicated results. The quasi-elastic method simply stated is

σij(ξ) =

ξ∫
0

Eijkl(ξ − ξ′) εkl(ξ′) dξ′ ' Eijkl(ξ) εkl(ξ) (46)

still requires knowledge of the inverses of Eijkl and εkl, but avoids the need for costly convolution
integral evaluations. However, it is applicable only intermittently over relatively short time intervals and
unfortunately, it is adequate only for simple classes of functions, such as single power laws, and cannot
begin to cope with the complicated set of functions describing real material relaxation moduli [70].
The self-consistent approach leads to complicated results, even when tested against relatively simple
functions, and is of limited practical use for real materials with the usual series expansions for their
viscoelastic moduli.

More accurate, but also considerably more cumbersome, approximate inversion schemes are
available [71]. Other pertinent works on approximate integral transform inversions may be found
in [72–75].

Another possibility is the expansion of the complex moduli or compliances for both ID and FD
characterizations in terms of a Lorenz series [3], such that

J ijkl(ω) =
∞∑
n=0

[
Aijkln
(ı ω)n

+ Bijkln (ı ω)n
]

(47)

where the Aijkln and Bijkln coefficients are determined by curve fitting experimental data. Even when
truncated, the first sum gives excellent results for short times, ω � 1, and the second one does the same
for long times when ω � 1. However, both sums must be used in the entire space 0 < t < ∞, except
as noted in the relatively narrow bands at either time end, making this approach very cumbersome when
combined with FEM for isotropic or anisotropic viscoelasticity.

The selection between FD and ID characterization then comes down to a choice between (a) fitting
and using more complicated FD stress-strain laws with fewer individual terms but three parameters per
term, and (b) simpler ID ones with two parameters per term but needing more terms in their series.
In the final analysis, the ease with which the ID Prony series parameters can be generated from real
material data in either the t or ω domains outweighs any advantages the FD representations may offer
with its relatively shorter sums. A case in point is the work by [76] comparing the performance of a
single ID Kelvin body with a 3- and 4-parameter FD model, showing marked improvements in accuracy
of fit for FD models over ID ones for rubber and acrylic materials. However, as seen in Figure 6, more
complex real materials such as composites require ID characterizations with values for each Nijkl of
approximately 30, i.e., about 61 Prony series parameters. For the corresponding ID and FD models in
this example, the Nijkl are 29 and 10 with maximum errors of fit of 0.056 % and 10.15 % respectively.
The Nijkl for FD representations can, of course, be increased but this defeats the primary purpose of
their use. In the final analysis, the choice between ID and FD characterization has to be examined on
a case by case basis for specific problem solutions, particularly those involving highly computationally
intensive finite element approaches.
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Figure 5. Comparison of ID and FT modeling of 1/(p+ c)µ.
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Figure 6. Laplace transform modulus.
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The requirement for relatively large Nijkl values for both ID and FD representations make the FD
characterizations less attractive and modeling with the relatively simpler ID integral constitutive relations
is less computationally intensive. Furthermore, for large scale engineering problems requiring upward
of 10,000 FEA nodes, integral transforms are prohibitive and real time or reduced time ξ integrations
need to be undertaken.

It should be further noted that while the area of highest percentage relative error is in the long time
domain (small p values), the continuing mismatch between the actual and FD relaxation moduli spans
over three initial time decades which are of primary interest. Because of the hereditary nature of the
constitutive relation time integrals, these early time errors propagate throughout the entire time regime
and adversely influence stress and displacement evaluations at all times.
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Figure 6 represents comparisons for only one direction with normalized relaxation moduli and is
typical of what is seen in other directions for anisotropic viscoelastic materials, except for adjustments
in the fully relaxed modulus values and in the time scales.

In Figure 7 the approximate Kelvin model function of Equation (18) is displayed for a number of
δ ≤ 1 values. As can be readily seen these terms are sensitive to the exponent over the entire range of
Laplace transform variable p and therefore correspondingly over the entire time range −∞ ≤ t ≤ ∞.
Figure 8 exhibits the exact curve

(
pδ + 1

)−1 and its approximate representation by (p+ 1)−µ for specific,
but representative, values of δ = 0.75 and µ = 0.88. The approximate representation mimics the
exact one quite well with an error of of less than 0.1 over the entire time range. It must, of course, be
remembered that experimental data for viscoelastic material properties is customarily in a comparable
scatter range.

Figure 7. The influence of δ.
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Figure 9 depicts the time functions associated with an ID and an approximate FD (δ = 0.88) single
Kelvin mode for τ = 1. It is readily seen that agreement between the two models is excellent, i.e., error
∼= 0, except in the neighborhood of the origin t = 0. This is due to the fact that for a single Kelvin model

lim
t→0

{
exp

(
− t
τ

)}
→ 1 and lim

t→0

{
exp(−t/c) tµ−1

Γ(µ)

}
→∞ 0 < µ < 1 (48)

For materials characterized by a sum of approximate FD models,

lim
t→0

{
N∑
n=1

Jn
exp(−t/cn) tµn−1

Γ(µn)

}
= lim

t→0

{
N∑
n=1

Jn Fn(t)

}
→ ∞ 0 < µn < 1 (49)

the singularity still cannot be removed even through proper choices of the Jn, cn and µn are made to
minimize the error of fit for

∑N
n=1 JnFn(t) elsewhere at 0 < t ≤ ∞, since no value of Jn 6= 0 can

correct or ameliorate the discrepancy at the time origin when for any one n µn < 1.
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Figure 8. Exact and approximate FD.
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Figure 9. Comparison of ID and approximate FD.
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On the other hand, if the Riemann–Liouville condition of <(δn) > 0 is enforced and µn > 1, then

lim
t→0
{Jn Fn(t)} → 0 1 < n < N (50)

For the Prony series representations in both real time t-space and reduced time ξ space, the constitutive
relations can be transformed into ordinary instead convolution integrals, i.e.,

ξ(x,t)∫
−∞

exp

(
−ξ(x, t)− ξ

′(x, t′)

τ0n

)
f̂ [ξ′(x, t′)] dξ′ →

exp

(
−ξ(x, t)

τ0n

)ξ(x,t)∫
−∞

exp

(
ξ′(x, t′)

τ0n

)
f̂ [ξ′(x, t′)] dξ′

(51)
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so as to avoid CPU intensive computations [77]. Unfortunately, no such transformations have been
derived for FD constitutive relations.

It is worthy to note that from a practical point of view either FD or ID are use to characterize the same
material behavior and are obtained from the same experimental stress, strain and time data by fitting
either or both appropriate analytical expressions to the latter. The accuracy of these fits depends on the
number of terms used in each truncated series and on the scatter of the experimental data.

The least square fits used to determine parameters for the truncated FD and ID series lead to nonlinear
transcendental relations in the first instance and to linear algebraic ones for the Prony series [60–63].
Comparisons of the goodness of fit for the two approaches can only be made only in a case by case
approach for a specific material and a given set of experimental data.

4. Conclusions

While sufficiently accurate approximate procedures have been formulated to reasonably characterize
real anisotropic materials with generalized integral and differential viscoelastic fractional derivative
constitutive relations, their use with or without approximate characterization protocols requires
functional complexity. Although integer derivative representations require possibly twice or three times
as many terms in the expressions defining viscoelastic moduli, the relative simplicity of the resulting
Prony series leads to computationally efficient anisotropic viscoelastic constitutive relations in real time
as well as in FT frequency domains. In both fractional and integer derivative use, characterizations by
integral rather than differential constitutive laws remain operationally preferred models because of their
higher computational accuracies.
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