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Abstract: Compression creep tests were performed on the ternary 91.84Sn-3.33Ag-4.83Bi 

(wt.%, abbreviated Sn-Ag-Bi) Pb-free alloy. The test temperatures were: −25 °C, 25 °C,  

75 °C, 125 °C, and 160 °C (± 0.5 °C). Four loads were used at the two lowest temperatures 

and five at the higher temperatures. The specimens were tested in the as-fabricated 

condition or after having been subjected to one of two air aging conditions: 24 hours at 

either 125 °C or 150 °C. The strain-time curves exhibited frequent occurrences of negative 

creep and small-scale fluctuations, particularly at the slower strain rates, that were 

indicative of dynamic recrystallization (DRX) activity. The source of tertiary creep 

behavior at faster strain rates was likely to also be DRX rather than a damage accumulation 

mechanism. Overall, the strain-time curves did not display a consistent trend that could be 

directly attributed to the aging condition. The sinh law equation satisfactorily represented 

the minimum strain rate as a function of stress and temperature so as to investigate the 

deformation rate kinetics: dε/dtmin = Asinhn (ασ) exp (−ΔH/RT). The values of α, n, and  

 ΔH were in the following ranges (±95% confidence interval): α, 0.010–0.015  

(±0.005 1/MPa); n, 2.2–3.1 (±0.5); and ΔH, 54–66 (±8 kJ/mol). The rate kinetics analysis 

indicated that short-circuit diffusion was a contributing mechanism to dislocation motion 

during creep. The rate kinetics analysis also determined that a minimum creep rate trend 

could not be developed between the as-fabricated versus aged conditions. This study showed 

that the elevated temperature aging treatments introduced multiple changes to the Sn-Ag-Bi 

microstructure that did not result in a simple loss (“softening”) of its mechanical strength. 
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1. Introduction 

Predicting the reliability of solder interconnections, whether subjected to thermal mechanical 

fatigue (TMF), mechanical shock, or vibration, is depending to a greater extent upon computation 

modeling techniques. Interestingly, the capabilities of computer facilities and equipment have grown at 

such a rapid pace over the last 10–15 years that “CPU time” is not always the bottleneck to obtain 

timely, high-fidelity predictions. Rather, the limiting factor is now having access to the time-dependent 

(creep) and time-independent (stress-strain) mechanical properties of the materials that comprise the 

joint structure and, in particular, the solder. These properties are essential towards developing a unified 

creep-plasticity (UCP) constitutive equation that predicts deformation in the computational  

model [1,2]. In the study reported here, the creep behavior was evaluated for a Pb-free solder 

comprised of tin (Sn), silver (Ag), and bismuth (Bi). Although later variants of this material  

have included Cu additions, this effort examines the commercially-available, ternary alloy,  

91.84Sn-3.33Ag-4.83Bi (wt.%, abbreviated Sn-Ag-Bi) [3].  

The Sn-Ag-Bi alloy has a number of benefits. It has a relatively low solidus temperature of 212 °C. 

The Sn-Ag-Bi alloy exhibits exceptionally high strength values when compared to the other  

Pb-free compositions or the baseline eutectic Sn-Pb alloy. The Bi addition provides for excellent 

wetting-and-spreading behavior. A multiyear study examined the physical properties of the Sn-Ag-Bi 

solder as well as its performance in printed wiring assembly (PWA) interconnections [4–10]. Those 

studies examined the shear strength of ring-and-plug solder joints as well as the pull and shear strength 

of actual printed wiring assembly interconnections. Later studies explored the mechanical properties of 

this Sn-Ag-Bi composition as well as those of similar alloy contents. Kariya and Otsuka examined the 

isothermal fatigue of this solder [11] Shin and Yu investigated the creep behavior of the Sn-3.5Ag-xBi 

alloys (×, 2.5 and 7.5 wt.%) at 100 °C [12]. The single lap shear sample (solder joint thickness,  

0.39 mm) resulted in shear stresses of 5–9 MPa. Strain rates ranged between approximately  

6 × 10−7 s−1 and 5 × 10−6 s−1, resulting in stress exponents of 5.8 (2.5Bi) and 4.4 (7.5 Bi).  

The objective of the present study was to obtain a more complete compilation of the time-dependent 

deformation behavior of bulk Sn-Ag-Bi solder in order to support the development of a computational 

model for predicting the TMF of both electronic and structural solder joints. The effects of isothermal 

aging were also evaluated in this work. The methodologies used in the present study were similar to 

those used to evaluate the creep properties of the 95.5Sn-3.9Ag-0.6Cu solder (Sn-Ag-Cu) that is 

described in [13,14]. References [15–17] are excellent resources for the reader interested in obtaining 

more detailed information on the mechanical properties of these and other Pb-free solders. 
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2. Experimental Procedure 

2.1. Test Samples  

The ternary alloy that was examined in this study had the composition, 91.84Sn-3.33Ag-4.83Bi 

(wt.%, abbreviated Sn-Ag-Bi). The compression test methodology was used for the creep tests. The 

test samples were created by first casting the material into cylinders. A density determination was 

made of each specimen to assure that significant voids were not present in the material. Then, the 

samples were machined to the nominal dimensions of 10 mm diameter and 19 mm length; the machining 

step also established parallelism between the end faces. These dimensions conformed to the “short length” 

ratio of 2.0 per the ASTM E9-89A specification [18]. A more detailed description of the sample 

fabrication equipment and procedures is available in [19]. The specimens were tested in the as-fabricated 

(as-cast) condition, that is, after casting and the machining operations. Additional samples were exposed 

to one of two aging temperature for 24 hours in air: 125 °C or 150 °C prior to the creep test. 

2.2. Creep Testing  

Creep tests were performed on a servo-hydraulic frame using constant load control. The test 

temperatures were: −25 °C, 25 °C, 75 °C, 125 °C, and 160 °C (± 0.5 °C). The load values were chosen 

to provide nominal stresses in the range of 20%–80% of the estimated yield stress at that temperature  

(σy, T). Four loads were evaluated at the temperatures of −25 °C and 25 °C while five loads were used 

at the three higher temperatures. The added loads were of lower values to capture subtle behaviors that 

could potentially take place under high temperatures and relatively slow strain rates. Duplicate 

specimens were tested under all stress and temperature combinations. 

The duration of the creep tests was limited by either maximum strain reached by the sample, or a 

maximum time duration for the test. The strain limit was approximately 0.12. The resulting strain 

range is representative of that experienced by solder in joints that are undergoing TMF. In the event 

that the sample did not reach the strain limit, the test was halted after 1.73 × 105 s (approximately  

two days). The reader is directed to [11] for additional details regarding the analyses that determined 

the values of true stress (σ), true strain (ε), and minimum strain rate (dε/dtmin). A visual assessment of 

the curves was used to determine the presence of one, two, or three stages of creep. This method was 

determined to be as efficient as attempting to do it with a numerical scheme. Error terms that 

accompany the stresses and strain rates represent plus-or-minus one standard deviation over the time 

duration in which those respective data were collected and averaged together. Although standard 

convention would require the stress and strain rate values to be expressed as negative numbers 

(compression), they are reported here as positive values. 

The deformation rate kinetics were determined from the minimum strain rate, dε/dtmin, as a function 

of stress and temperature and expressed using the “sinh” law Equation (1): 

dε/dtmin = A sinhp (ασ) exp ΔH/RT). (1)

The parameters in Equation (1) are: A, a constant (s−1); p, the sinh term exponent; α, the stress 

coefficient (MPa−1); σ, the applied stress (MPa); ΔH, the apparent activation energy; R, the universal 

gas constant (8.314 kJ/mol-K); and T, the temperature (K). The sinh law approach was preferred 
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because it can represent a wider range of applied stresses and thus, avoid “power-law breakdown” that 

can occur when dε/dtmin is expressed using a power-law stress dependency. The parameters A, p, and  

ΔH were determined by a multivariable, linear regression analysis that was performed on the logarithm 

of Equation (1) that is represented by Equation (2) below: 

ln(dε/dtmin) = ln(A) + pln[sinh (ασ)] − ΔH/RT (2)

The parameter, ln(dε/dtmin), was the dependent variable while ln[sinh (ασ)] and 1/T were the 

independent variables. The regression analysis was performed for different values of the stress 

coefficient, α. The optimum value of α was determined to within ±0.005 by maximizing the square of 

the correlation coefficient, R2. The error terms on the sinh law parameters were expressed as the ± 95% 

confidence interval. 

3. Results and Discussion 

3.1. Strain-Time Curves  

The strain-time curves were analyzed according to sample condition and test temperature. These 

curves provide critical insight into microstructure changes that are not always readily visible in 

metallographic cross section, but nonetheless, have a significant role in the mechanical response of the 

material. The descriptions will be somewhat more detailed for the as-fabricated condition in order to 

establish the baseline behavior. That narrative will be followed by an analysis of results obtained from 

the aged samples. It is noted that the elastic strain was not subtracted from the total strain. Although 

the absence of this step precluded a quantitative comparison from being made between creep strains, 

qualitative comparisons could still be developed from the curves. Also, this omission did not interfere 

with an interpretation of the strain rate behavior. Lastly, the term “stress,” when alone, refers to the 

true stress. Nominal stress will be explicitly labeled as such in the discussion. 

Shown in Figure 1a are the duplicate curves for the Sn-Ag-Bi samples tested in the as-fabricated 

condition; temperature of −25 °C; and stresses of 13.4 MPa. While one of the curves exhibited a small 

positive strain rate (2.2 × 10−10 s−1), the other curve showed negative creep (open circles). Negative 

creep could indicate of the simultaneous occurrence of mechano-chemical phenomenon in the material 

as suggested by Li [20]. The discussion in [20] refers to amorphous metals and specifically, 

microstructural disorder-to-order processes that occur in such materials leading to negative creep. The 

occurrence of such a mechano-chemical phenomenon in Sn-Ag-Bi, or similar consequence of DRX 

due to its associated changes to grain structure and defect density, are certainly possible, but would be 

only a hypothesis until validated by microstructural analysis.. Negative creep was also observed for 

both samples tested at −25 °C and the nominal stress of 26.6 MPa. This behavior is shown in Figure 1b 

and was more distinct in one sample than in the other sample. The stress of 39.8 MPa produced 

positive strain rates (3.1 × 10−9 s−1 and 5.0 × 10−9 s−1) as did also the stress of 52.8 MPa (4.0 × 10−9 s−1 

and 4.2 × 10−9 s−1) as indicated in Figure 1c. The remainder of the strain-time curves representing the 

as-fabricated condition—regardless of stress or temperature—exhibited positive strain rates.  
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The curves obtained at true stresses of 10.5 MPa, 10.7 MPa, 15.8 MPa, and 16.2 MPa (125 °C) are 

shown in Figure 4b. When averaged together, the curves indicated an increase of strain rate with stress; 

but, individually, that trend was not entirely monotonic. This behavior suggests that there are 

significant microstructural differences in the starting Sn-Ag-Bi material because their effects persisted 

through the relatively long duration of the creep tests rather than impact only at the early stages  

of deformation.  

Figure 4c shows the plots obtained at 21.8 MPa and 22.4 MPa (125 °C). These tests were of 

relatively short durations (10,000 s = 2.7 hours) as the samples quickly reached the maximum strain. 

The curves exhibited a slight degree of tertiary behavior over, what was largely, secondary creep. 

Again, despite duplicate test conditions, the minimum strain rates were very different between  

the samples.  

The strain-time curves were examined that originated from (as-fabricated) samples tested at 160 °C. 

The duplicate strain-time responses are shown in Figure 5a for the nominal stresses of 0.5 MPa,  

2.0 MPa, and 4.0 MPa. The lowest stress resulted in only primary creep. The other samples exhibited 

both primary and secondary stages except for the sample tested at 3.9 MPa, which also exhibited a 

small degree of tertiary creep. When averaged together, the curves demonstrated the expected increase 

of strain rate with increasing stress. But, a monotonic trend was not observed when considering all of 

the individual samples. The latter behavior was also observed at the higher stresses, the creep curves of 

which are shown in Figure 5b. Interestingly, those curves exhibited either primary creep, only, or a 

mixture of primary and a small degree of secondary creep. The absence of tertiary creep in Figure 5b, 

is further evidence that this behavior does not likely originate from a large-scale damage process.  

In summary, the strain-time curves were examined for the Sn-Ag-Bi solder when tested in the  

as-fabricated condition. Tests performed at −25 °C and 25 °C and lower stresses exhibited fluctuations 

indicative of DRX activity. The overall trend was primary creep. The DRX behavior was not observed 

at the higher stresses. The DRX fluctuations were recorded in only one other condition at higher 

temperatures: 75 °C, 4.0 MPa. At 75 °C, primary creep dominated the curves at stresses less than  

18 MPa. At the higher stresses, primary, secondary and tertiary stage contributed to the deformation. 

The creep curves obtained at 125 °C and 160 °C were comprised of largely primary and secondary 

stages. Only a slight contribution was observed of the tertiary stage, and that occurred at the 125 °C 

test temperature. The lack of correlation between the presence of the tertiary stage versus strain rate, 

which determines the extent of strain deformation in the material, suggest that the source of the tertiary 

behavior is DRX and its related effects rather than microvoid coalescence and crack damage processes.  
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a mixture of primary-plus-secondary stages. At the highest stresses, the strain-time curves 

exhibited largely the tertiary creep behavior.  

(c) The tertiary creep stage contributed very little to the strain-time curves at 125 °C and was 

absent from those obtained at 160 °C, despite the rapid strain rates and large creep strains. 

(d) The tertiary strain-time behavior was not consistent with a traditional damage accumulation 

process. Rather, it originated from DRX or was an effect of DRX (e.g., grain size change). 

However, other mechanisms, such as precipitation hardening/softening, cannot be completely 

ruled out. 

(e) Overall, the strain-time curves did not display a consistent trend that could be attributed to the 

aging condition.. This behavior is not unexpected because the elevated temperatures provide an 

opportunity for microstructural phenomenon such as DRX or precipitation hardening/softening 

to take place simultaneously with the deformation. 

(f) The individual, minimum strain rate data corroborated the above observations. Further use is 

made of the strain rate data in the following section that discusses deformation rate kinetics. 

3.2. Deformation Rate Kinetics  

The creep deformation rate kinetics were calculated from the minimum strain rate, stress, and 

temperature as expressed in equation (1). The equations for each of the three aging conditions are 

shown below: 

As-fabricated: 

dε/dtmin = 3.225 × 105 sinh3.1 ± 0.4 (0.015σ) exp (−66 ± 7/RT) (3)

Aged: 125 °C, 24 hours: 

dε/dtmin = 3.150 × 103 sinh2.2 ± 0.5 (0.010σ) exp (−54 ± 7/RT) (4)

Aged: 150 °C, 24 hours: 

dε/dtmin = 4.803 × 103 sinh2.2 ± 0.5 (0.010σ) exp (−56 ± 8/RT) (5)

The confidence intervals on the coefficient, A, were ±20, ±20, and ±30, respectively. These values 

are very small, relative to the mean values in the equations, because the regression analyses delivered 

the logarithms of the mean and standard errors, which were then converted to their nominal values. 

Lastly, the respective R2 values are 0.906, 0.865, and 0.840. These values indicate that the sinh law 

expression provided a satisfactory fit to the respective experimental data sets.  

Observations are made with respect to the values of stress coefficient, α, (in the sinh argument); the 

sinh term exponent, n; and the apparent activation energy, ΔH. The value of α is relatively small, 

which tends to de-amplify the effect of stress on the minimum strain rate. A similar effect can be 

attributed to n, that is, a smaller value of n causes the minimum strain rate to be less sensitive to stress. 

Comparing the three equations above, the minimum strain rate was most sensitive to stress when  

Sn-Ag-Bi was tested in the as-fabricated condition. The reduced stress sensitivities that were observed 

for the samples of the two aged conditions, were identical to one-another.  

It is possible to draw a correlation between the value of n and possible deformation mechanisms 

because the product of ασ is less than 0.8 so that the sinh law representation can be approximated by 
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the common power law expression, σn. Given this similarity, it is possible to exploit the following 

established correlations between n and specific deformation mechanisms: 

 n = 1, diffusion mechanisms (Coble or Nabarro-Herring creep); 

 n > 3, dislocation mechanisms (glide, climb, or climb-assisted glide).  

Besides supporting their own respective deformation processes, diffusion, dislocation or both 

mechanisms in combination, can be rate-controlling for the grain boundary sliding deformation process. 

Lee and Stone demonstrated that the value of n can be in the range of 1 < n < 2.5 for grain boundary 

sliding in Pb-Sn alloy [21]. However, the value is highly dependent on grain size as well as other 

microstructural features and can significantly exceed this range in other materials [22].  

Based on these two limiting mechanisms indicated by n, it appears that Sn-Ag-Bi creep is controlled 

by dislocation activity (glide or climb) when in the as-fabricated condition. This trend would also 

corroborate with the higher value of α, which indicates a greater effect by stress that is expected when 

dislocation activity is present. However, the magnitude of n is near the lower limit considered 

indicative of dislocation activity, implying that a diffusion-based mechanism may have a contributing 

role in the creep behavior. After either aging treatment, the still lower value of n implies that a 

diffusion mechanism has an increased role in creep behavior of Sn-Ag-Bi. A microstructure analysis 

would be required to confirm the process actually responsible for the creep deformation (e.g., simple 

dislocation motion or the more complex grain boundary sliding) 

The third parameter in the sinh law Equations (3–5) is the apparent activation energy, ΔH. Per the 

95% confidence interval, ΔH was statistically the same between all three sample conditions. The 

values are indicative of a short-circuit diffusion process rather than bulk diffusion (which would have 

ΔH values of 90–110 kJ/mol for these materials). Given that the values of n, above indicated the 

likelihood that diffusion contributed to the creep of Sn-Ag-Bi, the ΔH values would certainly support 

that observation. The diffusion-based mechanism would support a Coble creep process, which is based 

on grain boundaries providing the short-circuit path, as opposed to Nabarro-Herring creep, which is 

controlled by bulk diffusion. 

A comparison was made between the experimental creep data and the sinh law predictions. The 

discussion is categorized according to sample condition. Shown in Figure 15 is a plot of the natural 

logarithm of the minimum strain rate (dε/dtmin) as a function of the natural logarithm of the applied 

stress, σ, for the as-fabricated condition. The symbols are the experimental data. The solid lines are the 

predicted trends generated according to Equation 3. The accompanying dashed lines represent the 95% 

confidence intervals. The sinh law slightly under-predicted the strain rates at −25 °C. This discrepancy 

was not unexpected, given the relatively small strains and strain rates experienced by the Sn-Ag-Bi 

alloy at this temperature.  

On the other hand, the sinh law model significantly over-predicted the strain rates observed at  

25 °C. Although negative creep was not observed in these samples, moderate fluctuations, which are 

indicative of cyclic DRX, were superimposed on the strain-time curves at all but the highest nominal 

stress. It was concluded that the grain growth stage of DRX, which increases grain size, was 

responsible for the lower-than-expected experimental strain rate. 
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As was the case in Figures 15 and 16, the sinh law model over-predicted the strain rates at 25 °C 

compared to the experimental data. The “knee” in the test data is very prominent; the best fit occurred 

at the highest stresses where the data were within the 95% confidence interval.  

Unlike the previous two samples conditions, the lack of correlation between the sinh law fit and 

empirical data persisted through the higher test temperatures. At 75 °C, a “knee” in the empirical data 

resulted in the latter having a lower-than-predicted minimum strain rate at 9.0 MPa and 18.0 MPa 

nominal stresses. At 125 °C and 160 °C test temperatures, the best fit between the test results and sinh 

law predictions occurred at the mid-range stresses. The sinh law slightly over-predicted the strain rate 

at the lowest stresses. But, more so, the sinh law under-predicted the strain rates at the highest stresses. 

This trend was similar to the earlier observations that the Sn-Ag-Bi alloy was susceptible to a 

breakdown event when creep tested under the higher stress values. Although the breakdown was 

observed under all three sample conditions, it was most pronounced in samples that were aged at 150 °C.  

Recall that the plots in Figures 7–9, 11, and 14 compared experimental, minimum strain rate values 

between the three sample conditions according to each of the test temperatures. A similar comparison 

was made of the predictions provided by the sinh law Equations (3–5) in Figure 18. In this case, the 

trend lines were combined on a single plot that included test temperature and sample condition 

dependencies. (The confidence intervals were left off the plots for clarity.) The following observations 

were made from Figure 18:  

(a) The slope of the as-fabricated condition is steeper than those of the aging treatments, indicating 

a greater sensitivity of minimum strain rate to stress. The slopes were nearly identical between 

the two aging conditions. There are two scenarios to explain this trend. The first scenario is that 

the aging treatments add obstacles to the motion of existing dislocations. Such a case would 

prevail if the aging treatments caused solute precipitation. The second scenario would have the 

aging treatments annihilate dislocations. Thus, the deformation rate would be limited after the 

aging treatment until there could be an increase in the dislocation density. Certainly, it is 

possible that both scenarios contributed to the observed trend.  

(b) It was not possible to develop a consistent trend of minimum strain rates between as-fabricated 

versus aged sample conditions because the traces crossed over one-another at different stresses, 

depending upon the temperature. Over the range of stresses used in this study, that 

inconsistency occurred to the least extent at −25 °C and 160 °C. In those instances, the  

as-fabricated condition was predicted to have a lower strain rate than are predicted for the two 

aging conditions.  

(c) Comparing the two aging conditions, samples annealed at 150 °C (24 hours) caused a lower, 

minimum strain rate than was observed for samples aged at 125 °C. This result further supports 

the inference made above with respect to Figures 15–17: The aging treatments cause changes to 

the Sn-Ag-Bi microstructure other simply decreasing its strength due to recovery and/or static 

recrystallization mechanisms. Alternative processes include the DRX concept described in this 

analysis as well as the roles of solute precipitation and changes to the dislocation density 

(dynamic recovery).  
  



M

 

th

a

th

p

c

th

a

s

s

2

p

a

m

im

te

le

4

Materials 20

Figure

as pred

It is instr

hree sample

and over-pre

hat other m

possibilities 

creep deform

Secondly

he higher te

as-fabricated

slightly bett

samples age

25 °C, show

predictions, 

and highest 

Third, th

microstructu

mproved th

erms of sec

essened the

4. Conclusio

1. Com

abbre

125 

loads

cond

150 °

012, 5  

e 18. Natur

dicted by th

ructive to su

e condition

edicted the s

microstructur

such as dyn

mation. 

y, the correl

est temperat

d condition

ter in the la

ed at 150 °C

wing a “knee

but largely

stresses..  

he data sug

ure using th

he reproduci

condary cre

e predictabil

ons 

mpression cr

eviated Sn-

°C, and 16

s at the thr

dition or aft

°C. All agin

 

ral logarithm

he sinh law e

ummarize th

s, the sinh 

strain rate a

ral processe

namic recov

lation betwe

tures of 75 

n as well as

atter case f

C. In the latt

e” in the dat

y so at the m

ggest that 

he 125 °C, 

ibility of st

eep strain ra

lity of the cr

reep tests w

-Ag-Bi) Pb

0 °C (±0.5 

ree remaini

er being sub

ng treatmen

 

m of the mi

equations fo

he observat

law equatio

at 25 °C. Th

es—most lik

very and so

een the emp

°C, 125 °C

s for sampl

for these te

er case, the 

ta. The 125

middle stres

a measure 

24 hour ag

train-time cu

ate, this agi

reep behavi

were perform

b-free solde

°C). Four l

ing temper

bjected to o

nts were perf

nimum stra

or each of th

ions compil

ons consiste

his discrepan

kely DRX m

olute precipi

pirical data

, and 160 °C

les that had

st temperat

samples tes

°C and 160

sses. Otherw

of stabiliz

ging treatm

urves at a g

ing conditio

ior using the

med on the

er. The test

loads were 

ratures. The

one of two a

formed in a

 

ain rate as a

he three sam

led from Fi

ently under-

ncy further 

mechanisms

itation—we

a and the si

C. The fit w

d been aged

tures. Howe

sted at 75 °C

0 °C data w

wise, the co

zation can 

ment. Althou

given set of

on initiated 

e sinh law r

 ternary all

t temperatu

used at the

e specimens

aging condi

air. 

a function o

mple condit

 

igures 15–1

-predicted t

substantiate

s, but certai

ere occurrin

nh law equ

was deemed

d at 125 °C

ever, the co

C behaved m

ere better c

orrelation de

be introdu

ugh the 150

f test param

other micr

representatio

loy 91.84Sn

ures were: −

e two lowes

s were test

itions: 24 h

  

f that of the

ions. 

7. First of a

the strain ra

es the earlie

inly not exc

g simultane

uations was 

d to be very 

C for 24 ho

orrelation d

more like th

orrelated to

eteriorated 

ced into th

0 °C aging

meters, it is 

ostructural 

on. 

n-3.33Ag-4

−25 °C, 25

st temperatu

ted in the 

hours at eith

 217

e stress 

all, across a

ate at −25 °

er summatio

cluding othe

eously durin

improved 

good for th

ours, perhap

decreased fo

hose tested 

o the sinh law

at the lowe

he Sn-Ag-B

 temperatur

clear that, i

changes th

.83Bi (wt.%

5 °C, 75 °C

ures and fiv

as-fabricate

her 125 °C o

 

72

all 

C 

on 

er 

ng 

at 

he 

ps 

or 

at 

w 

est 

Bi 

re 

in 

at 

%, 

C, 

ve 

ed 

or 



Materials 2012, 5            

 

 

2173

2. The strain-time curves provided evidence by means of negative creep and small-scale 

fluctuations, the latter suggesting that DRX was active during creep. The evidence was most 

obvious at the slower strain rates. 

3. The tertiary strain-time behavior, which was observed usually at faster strain rates, was not the 

consequence of a traditional damage accumulation process. Rather, it was proposed that it 

originated from DRX. However, it is recognized that other mechanism such as precipitation 

hardening/softening have not been completely ruled out in the absence of a microstructural analysis. 

4. Overall, the strain-time curves did not display a consistent trend that could be attributed to the 

aging condition.  

5. The sinh law equation, dε/dtmin= Asinhn (ασ) exp (−ΔH/RT), was used to analyze the creep rate 

kinetics. The values of α, n, and ΔH had these ranges across sample aging conditions: α, 

(0.010–0.015) ± 0.005 MPa−1; n, (2.2–3.1) ± 0.5; and ΔH, (54–66) ± 8 kJ/mol. The rate kinetics 

parameters indicated that short-circuit diffusion was a contributing mechanism to that of 

dislocation motion in the creep of this alloy. 

6. The sinh law representations did not show a consistent trend of between minimum creep rate 

between the as-fabricated versus aged conditions. However, there is evidence that the 125 °C, 

24 hour aging treatment provided a slightly greater degree of stabilization to the minimum 

creep rate behavior of the Sn-Ag-Bi alloy.  

7. Discrepancies between the sinh law prediction and empirical test data were observed at the 

lowest temperatures, −25 °C and 25 °C, which were likely due to the effects of DRX. A 

breakdown event was observed at the highest temperatures and highest stresses. 
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