
Materials 2012, 5, 2465-2485; doi:10.3390/ma5122465 
 

materials 
ISSN 1996-1944 

www.mdpi.com/journal/materials 

Article 

A Novel Fractional Order Model for the Dynamic Hysteresis of 
Piezoelectrically Actuated Fast Tool Servo 

Zhiwei Zhu and Xiaoqin Zhou * 

School of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;  

E-Mail: wsjdzzw-jx@163.com 

* Author to whom correspondence should be addressed; E-Mail: xqzhou@jlu.edu.cn; 

Tel.: +086-431-856-983-68. 

Received: 22 August 2012; in revised form: 5 November 2012 / Accepted: 14 November 2012 / 

Published: 23 November 2012 

 

Abstract: The main contribution of this paper is the development of a linearized model for 

describing the dynamic hysteresis behaviors of piezoelectrically actuated fast tool servo 

(FTS). A linearized hysteresis force model is proposed and mathematically described by a 

fractional order differential equation. Combining the dynamic modeling of the FTS 

mechanism, a linearized fractional order dynamic hysteresis (LFDH) model for the 

piezoelectrically actuated FTS is established. The unique features of the LFDH model could 

be summarized as follows: (a) It could well describe the rate-dependent hysteresis due to its 

intrinsic characteristics of frequency-dependent nonlinear phase shifts and amplitude 

modulations; (b) The linearization scheme of the LFDH model would make it easier to 

implement the inverse dynamic control on piezoelectrically actuated micro-systems. To 

verify the effectiveness of the proposed model, a series of experiments are conducted. The 

toolpaths of the FTS for creating two typical micro-functional surfaces involving various 

harmonic components with different frequencies and amplitudes are scaled and employed as 

command signals for the piezoelectric actuator. The modeling errors in the steady state are 

less than ±2.5% within the full span range which is much smaller than certain 

state-of-the-art modeling methods, demonstrating the efficiency and superiority of the 

proposed model for modeling dynamic hysteresis effects. Moreover, it indicates that the 

piezoelectrically actuated micro systems would be more suitably described as a fractional 

order dynamic system. 
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1. Introduction 

Piezoelectric actuators (PEA), which possess superior advantages of high frequency response, 

nanometer displacement resolution, high stiffness and miniature size, have been extensively employed 

in micro/nano electromechanical systems, especially in fast tool servo (FTS) systems for micro/nano 

fabrications of freeform surfaces and functional structured surfaces [1–4]. However, due to the intrinsic 

friction within the material crystals of the PEA, there are always intrinsic hysteresis nonlinearities when 

voltages are employed as the excitations. The hysteresis effects of piezoelectric materials would 

significantly deteriorate the positioning performances of the cutting tool of the FTS and even lead to the 

instability of such servo systems, consequently limiting developments of FTS based micro/nano 

machining [5,6].  

To enhance positioning accuracy and compensate hysteresis nonlinearities of this sort of FTS, 

closed-loop control approaches with various control strategies have been extensively proposed [2,4,7,8]. 

Generally, in these controller design procedures, the behaviors of FTS were described by simplified 

linear second order dynamics models, ignoring hysteresis nonlinearities. However, these control 

strategies should not achieve excellent positioning performances attributing to unmodeled 

nonlinearities. Moreover, these simplified models should strongly block the developments of model 

based control or compensation strategies. Therefore, accurately modeling the dynamic behaviors of the 

FTS with respect to the hysteresis nonlinearities should be essential for both optimum determination of 

controller parameters and developments of model based compensation strategies. Moreover, due to the 

reason that the trajectory of FTS should contain a large number of harmonic components with different 

amplitudes and frequencies [9,10], the complicated rate-dependent behaviors of hysteretic effects 

should be precisely modeled. As for the hysteresis effects of piezoelectrically actuated FTS, for sake of 

completeness, Wang et al. (2008) simply applied the Preisach model to FTS [11]; Ting et al. (2011) 

designed a piezoelectrically actuated cutting system which was similar to FTS, a typical dynamic 

Preisach model was employed to form the feedforward compensator [12]. As criticized in [13], the 

process failed to describe the dynamics aspects of the PEA, hence it would not be accurate enough to 

enhance the positioning performances.  

Although little efforts have been devoted to the modeling and compensating for hysteresis effects of 

FTS, both feedback control and inverse model based feedforward compensation (IMFC) approaches 

have been proposed for hysteresis effects of piezoelectrically actuated mechanisms, such as 

nano-positioning stages, probe tips of atomic force microscope, and so on [12,14–19]. Generally, all 

those approaches should strongly depend on accurate models of the plants. Motivated by this, extensive 

mathematical models for dynamic hysteresis of PEA have been developed. However, almost all of these 

models are established based on complex nonlinear operators. As for the aspect of controller design 

processes, these nonlinear operators would significantly limit the implementations of well-developed 

analysis and control theories of linear systems. As for another aspect of the IMFC, these complex 
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nonlinear operators will add difficulties to the calculation of model inversions and even lead to ill 

solutions [12,18,20]. In facing this dilemma, it is essential to develop a linearized model for accurately 

describing behaviors of piezoelectrically actuated FTS systems.  

In this paper, the Fractional Order Calculus (FOC) theory is introduced to develop a dynamic 

hysteresis model to describe the rate-dependent hysteresis nonlinearities of PEAs. ] Then, a linearized 

fractional order dynamic hysteresis (LFDH) model for piezoelectrically actuated FTS systems is 

proposed and discussed. A brief review of related work is presented in Section 2. In Section 3, the basic 

definitions and properties of FOC theory are introduced. The modeling process and the properties of the 

proposed HFM are further given in Section 4. Section 5 focuses on the conduction of experiments to 

verify the effectiveness of the proposed model. The main conclusions and the future work of this paper 

are drawn in Section 6. 

2. A Brief Review of Related Work 

Mrad and Hu and Hu et al. extended the classical Preisach model to describe the rate-dependent 

behaviors of hysteresis by use of an explicit weighting function with respect to the average change rate 

of the input signal [21–23]. To capacitate the Preisach model to represent the dynamic behaviors of 

controlled PEA, Yu et al. modified the weighting function to be dependent on the variation rates of input 

signal; To avoid the ill-behaviors caused by the great variations of input signal, an adjustment function 

with respect to the variation rate of input signal was introduced, which should be fitted through 

experimental data [24]. Recently, various rate-dependent Prandtl–Ishlinskii (PI) elementary operators 

have been introduced to model dynamic hysteresis effects. Ang et al. proposed a modified dynamic PI 

model, the rate-dependent hysteresis was modeled by the rate-dependent weighting values which were 

derived from the linear slope model of the hysteresis curve [25,26]. Janaideh et al. introduced a dynamic 

threshold, which was a function of input variation rates, the relationship between the threshold and the 

variation rate of input signal is in the logarithmic form to describe the essential characteristics of the 

hysteresis [27–29]. In both the generalized Preisach model and the PI model, the hysteresis loops were 

modeled by the sum of a number of elementary operators, and the rate-dependent behaviors were further 

described by modified dynamic weighting values, which were often functions of the derivation of input 

signal. The main disadvantage of these modeling methods is that they have a large number of parameters 

to be identified, which may limit their applications in real-time control.  

Besides the well-known Preisach model and PI model, neural network (NN) based methods have also 

been extensively employed to model the dynamic hysteresis effects. Dong et al. employed a feedforward 

NN to model the hysteresis of the PEA, the variation rate was used to construct the expanded input 

space [30]. Zhang and Tan proposed a parallel hybrid model for the rate-dependent hysteresis, a neural 

submodel was established to simulate the static hysteresis loop, meanwhile, first-order differential 

operators with time delays based submodel were employed to describe the dynamics of the 

hysteresis [31]. However, there exist inherent defects of NN based modeling, which can be summarized 

as follows: (a) There is no universal rules to optimally determine the structure of the NN; (b) NN has the 

shortcomings of overfitting and sinking into local optima [32]; (c) The capacities of fitting and 

prediction could not be well balanced.  
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Some other novel mathematical models for dynamic hysteresis have been proposed. For instance, by 

transforming the multi-valued mapping of hysteresis into a one-to-one mapping, Deng and Tan 

proposed a nonlinear auto-regressive moving average with exogenous inputs (NARMAX) model to 

describe the dynamic hysteresis [33]. Similarly, Wong et al. formulated the modeling as a regression 

process and proposed the online updating least square support vector machines (LS-SVM) model and the 

relevance vector machine (RVM) model to capture the dynamic hysteretic behaviors [32]. Nevertheless, 

a compromise should be made between the modeling accuracy and the updating time, which meant 

that it would be challenged to apply it for high-frequency working conditions. Rakotondrabe et al. 

modeled the dynamic hysteresis to be a combination of the static Bouc-Wen model and a second-order 

linear dynamic part [34]. In [35] and [36], Gu and Zhu proposed an ellipse-based hysteresis model 

where the frequency and amplitude of the input signal was modeled by adjusting the major and minor 

axes and orientation of the ellipse. However, the model parameters were difficult to be determined to 

well describe and predict the dynamic hysteresis characteristics, and the ability of describing responses 

to the input signals with multi-frequencies would be limited. 

Fractional order calculus (FOC) theory, which is a generalization of the conventional calculus theory, 

has found a rapidly increasing application in various fields [37–39]. It has been widely believed that 

FOC can be used to describe a real process more accurately and more flexibly than classical 

methods [38–40]. A typical implementation of FOC is the description of dynamic properties of visco-elastic 

materials [41,42]. Motivated by the fractional order models for visco-elastic materials, Sunny et al. 

proposed two models to describe the resistance-strain hysteresis of a conductive polymer sample by 

combining a series of fractional/integer order functions [43]. However, both the developed models 

contained too many parameters to be identified and the existing hysteresis phenomenon was different 

from that of PEAs. Guyomar et al. described the ferroelectric hysteresis dynamics based on fractional 

order derivatives covering a wide range of frequency bandwidth [44,45]. In this method, the fractional 

order derivative term was employed to represent the viscous-like energy loss, and the derivative order 

was especially set as 0.5. Although the fixed order would present the unique characteristics of 

fractional calculus, it would significantly decrease the flexibility of the model and block the 

application of this method. Similar with the work presented by Sunny et al., the hysteresis between the 

electrical polarization and the mechanical strain was also much different from that of the PEA. 

However, all these results have demonstrated the potentials of fractional order models in modeling both 

the static and the dynamic hysteresis behaviors, and provided a fresh idea towards this topic.  

3. A Preliminary to Fractional Order Calculus 

Fractional calculus is a generalization of conventional integration and differentiation to the 
non-integer order with the fundamental operator t0D

a 
t f(t) which is defined as: 
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where t0 and t are the lower and upper limits of the operation, respectively; α is the order, R , but α 

could also be a complex number.  
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There exist several well-known definitions of FOC operations, such as Grunwald—Letnikov (G-L) 

definition and Riemann—Liouville (R-L) definition [40,42,46]. The R-L definition would be more 

suitable for analytical discussions and is given as: 
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In this paper, the G–L definition is employed to directly carry out numerical computation of fractional 

order operators, which can be given as: 
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where Г( ) is the Gamma function, h is the calculation step, n is an integer. 

As shown in Equation (1) and Equation (2), if f(t) is an analytical function of t, its fractional derivative 

0D
a 
t f(t) would be an analytical function of t and , this may increase the flexibility of FOC for 

representing the modeled objects. Meanwhile, it is more evident from the G-L definition that the weight 

of f(t − jh) is decreasing with the increase of j. It indicates that the fractional order operation possesses 

variable memories with respect to different temporal intervals. Thus, to take advantage of the memory 

effects of FOC operations, the nonlocal memory-dominant nature of hysteresis nonlinearity could be 

well described and the hysteresis system would be more suitable to be described as a fractional order 

dynamic system. 

On the other hand, both fractional differentiation and integration are linear operations, which satisfy: 

0 0 0
[ ( ) ( )] ( ) ( )t t t t t tD af t bg t a D f t b D g t        (3)

where a and b are constants, g(t) is another analytical function of t. 

For zero initial conditions, the Laplace transform of both G-L and R-L definitions can be written 

as [40,47]: 

0[ ( )] [ ( )] ( )tL D f t s L f t s F s     (4)

A typical fractional order dynamic system can be described by a fractional differential equation of the 

following form [47]: 
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Taking Laplace transform of the two sides in Equation (5), the fractional-order linear time-invariant 

(LTI) system can also be represented by the following transfer function: 
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where 
00 tD D  , an and bm are constants, n and m are arbitrary real numbers. 

In the fractional order linear and time-invariant (LTI) system as shown in Equation (6), the 

Matignon’s stability theorem is usually employed as the stability criterion, which says [40,48]: 
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The fractional transfer function G(s) = X(s)/U(s) is stable if and only if the following condition is 

satisfied in σ-plane:  

arg( ) , , ( ) 0
2

q C U
       (7)

where 0 < q < 1, denotes the fractional commensurate order; σ: = sq. When σ = 0 is a single root of 

U(s), the system could not be stable. 

4. Fractional Order Hysteresis Model of the FTS 

4.1. Dynamic Model of the FTS Mechanism 

Figure 1a illustrates the mechanical structure of a typical piezoelectrically actuated FTS, the flexure 

based mechanical body of the FTS is actuated by a PEA and supported by a group of parallel and 

symmetric flexure hinges. From the dynamics point of view, the FTS mechanism can be equivalent as a 

damped mass-spring system as shown in Figure 1b [49,50]. We assume that the PEA and the tool block 

did not separate during rapid expansions and retractions of the PEA considering the pre-loading 

effects, and the displacement of the PEA is equivalent to that of the mechanism.  

Based on Newton’s second law of motion, the differential equation of motions for the FTS can be 

expressed as [49,51]: 

s pzt fh pzt fh pzt( ) ( ) ( ) ( ) ( ) ( )m x t c c x t k k x t F t       (8)

pzt 33 pzt pzt( ) ( )F t nd k u t  (9)

where kfh and kpzt are the equivalent stiffness of the flexure-based mechanism and the PEA, respectively; 

cfh and cpzt are the equivalent damping coefficients of the flexure-based mechanism and the PEA, 

respectively; ms is the equivalent mass of the mechanism; Fpzt(t) is the driving force of the PEA (see 

Figure 1); n is the number of layers in the PEA; d33 is the piezoelectric constant; upzt(t) is the voltage 

applied to the PEA; x(t) denotes the output of the FTS mechanism. 

Figure 1. The schematic diagram of FTS structure and its equivalent dynamic model:  

(a) The schematic diagram of FTS structure; (b) The equivalent dynamics model. 

 
(a) (b) 
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From an electrical circuit point of view, the capacitance–resistance parallel connected equivalent 

circuit could be employed to represent the PEA under dynamic working conditions [52], and the 

electrically driven circuit can be illustrated in Figure 2. The relationship between the actual voltage 

upzt(t) applied to the PEA and the control signal uc(t) can be expressed as follows: 

pzt pzt
2 pzt Amp 33 c

1

( ) ( )
[ ] ( ) ( )

du t u t
R C u t K nd u t

dt R
    (10)

where R1 and C are the equivalent resistance and capacitance of the PEA, R2 is the equivalent resistance 

of the amplifier, KAmp is the nominal amplification factor of the power amplifier.  

Figure 2. Equivalent driving circuit of the piezoelectric actuators (PEA). 
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4.2. Hysteresis Model of the FTS 

Generally, actuating forces generated by PEA would well follow the governing law in Equation (9) 

when hysteresis effects are ignored. To describe the hysteresis nonlinearity between actual voltages 

applied to the PEA and the corresponding displacements of the PEA, a hysteresis force model (HFM) is 

proposed and mathematically described by a linear fractional order differential equation. From the view 

of excitations applied to the PEA, the HFM can be given as: 

H 33 pzt pzt pzt( ) [ ( ) ( )]

0 1, 0,

F t nd k u t D u t    


     
 (11)

From Equation (9), Equation (11) can be further rewritten as: 

H pzt pzt( ) ( ) ( )

0 1, 0,

F t F t D F t    


     
 (12)

where FH(t) denotes the hysteresis force, κ and χ are constant gains, η and λ are differential orders of the 

excitation voltage and the driving force, respectively. 

From Equation (11) and (12), the relationship between the excitation voltage and the actual driving 

force yields: 



Materials 2012, 5 2472 

 

 

pzt pzt 33 pzt pzt pzt( ) ( ) [ ( ) ( )]F t D F t nd k u t D u t         (13)

Taking Laplace transform of two sides in Equation (13) yields: 
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where Fpzt(s) and Upzt(s) denote the Laplace transform of Fpzt(t) and upzt(t), respectively; s denotes the 

Laplace operator. 

Taking Laplace transform of two sides in Equation (8) and Equation (10), and combining Equation (14) 

yields the transfer function of the piezoelectrically actuated FTS involving its dynamic hysteresis effects: 
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where τ= R1R2C/(R1  R2), 2ξwn = (cpzt  cfh)/ms, ω
2 
n = (kpzt  kfh)/ms, KM = KAmpnd33R1/[ms(R1  R2)],  

KP = nd33kpzt and Θ = nd33kpzt. 

4.3. Properties of the Hysteresis Force Model 

During the FTS assisted turning process, the FTS is used to translate the cutting tool in and out of the 

workpiece several times per one revolution according to the geometrical characteristics of the desired 

workpiece surfaces [9,53–55]. Consequently, the tool trajectories can be decomposed into a sum of 

harmonics of the spindle rotation from the view of Fourier series expansion. Thus, the voltage applied to 

the PEA can be written as: 
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Where 1j   , u0 is the constant item; ω0 is the frequency of the spindle rotation; φk and ζk are the 

phase shift and Fourier expansion coefficient, respectively. 

Following the HFM given in Equation (11), the response of the HFM would be: 
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As seen in Equation (17), the hysteresis force comprises three items, namely the original signal, the 

attenuation term and the modulation item. As for a given harmonic component with a specified 

frequency, the superposition process can be illustrated in Figure 3, where ζHF 
k  and θk denote the 

amplitude and phase shift after superposition.  

It should be noticed that Cruz-Hernández and Hayward proposed a hysteresis control method based 

on phase shift method, they regarded the static hysteresis as the nonlinear phase lag which varied with 

the magnitude of a specified period signal [56]. Meanwhile, as discussed in Section 2, the dynamic 

hysteresis effects were often emphasized by variation rate dependent weighting values, However, from 

the diagrammatized results shown in Figure 3, the response of the HFM can be characterized by a 

nonlinear phase-shift and the nonlinear amplitude modulation, both depending on the frequency of the 

harmonic function, the gains and the differential order. Attributing to the unique frequency-dependent 
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effects, the dynamic hysteresis behaviors of PEAs could be better described by the proposed fractional 

order dynamic model. 

To give more visible results of the frequency dependent effects of the HFM, a typical triangle signal 

involving harmonic components with various frequencies is employed to generate the hysteresis force 

where Kp = Θ = 1. Figure 4a gives the employed triangle signal, and Figure 4b shows the relationship 

between the generated hysteresis force and the input signal. As is evident from the results shown in 

Figure 4, the nonlinear hysteresis loop is well generated. Furthermore, it can be deduced that various 

sorts of hysteresis loops would be well generated by choosing different parameters. 

Figure 3. Calculation process in the complex plane. 
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Figure 4. Characteristics of the HFM: (a) The input signal; (b) The relationship between the 

input and the response. 
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5. Experiment Results and Discussion 

5.1. Experiment Setup 

The authors of this paper carefully designed a short stroke FTS for ultra-precision diamond turning in 

Reference [57], the photographic of the designed FTS is presented in Figure 5. It consists of four main 

parts, namely: the base, the PEA, the tool holder and the flexure hinges. Under working conditions, the 

tool holder is actuated by the PEA and guided by a group of parallel and symmetric flexure hinges, 

which are designed as circular notch-type hinges. In the design process, the position and dimension 

parameters of the flexure hinges were determined by a multi-objective optimum approach to achieve 

comprehensive optimum performances. 

Figure 6 illustrates the test and measurement equipment of the experiment part. As shown in Figure 6, a 

Pentium computer equipped with a data-acquisition card is used to generate the control signal for the 

PEA. The generated signal is converted through the data-acquisition card from ADLINK sampled at 5 kHz 

and then amplified by an amplifier module PI E-617 with a nominal amplification factor 10 ± 0.1. The 

amplified signal is then implemented on a piezoelectric stack actuator (Polytec PI, Inc., Karlsruhe, 

Germany), which measures 7 mm × 7 mm × 18 mm. Capacity transducer based sensing methodology, 

which is frequently employed for trajectory tracking of FTS, is chosen for dynamic position 

measurements. The resolution of the high precision capacitive sensor is 0.0077% of the full stroke and 

its working bandwidth is up to 35 kHz, with an effective measurement range of 200 μm. The measured 

signal is converted to a digital signal by the data-acquisition card sampled at 10 kHz, and then gathered 

and stored in the computer for further analysis. To reduce external disturbances, all the experiments are 

carried out on a vibration-isolated air-bearing platform. The measurement noise of the testing system is 

32 nm rms. 

Figure 5. Photographic of the FTS mechanism. 

 

Notes: 1. The base; 2. The piezoelectric actuator; 3. The tool holder; 4. The flexure hinges. 
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Figure 6. Schematic of the experimental system. 

 

Notes: 1. The FTS mechanism; 2. The capacitive transducer; 3. The computer equipped with the 
data-acquisition card; 4. The data-acquisition card from ADLINK; 5. The power amplifier module  
PI E-617. 

5.2. Parameter Estimation of the Model 

Two typical micro-functional surfaces, namely sinusoidal array surface [10,58] and sinusoidal grid 

surface [1,53], are employed as the desired surfaces to validate the hysteresis model of the FTS. 

Considering the surface characteristics and the tool geometry, spiral toolpaths are determined, which 

will be detailed in our future work. As the main purpose of this paper is to verify the efficiency of the 

LFDH model, the generated toolpath signals are scaled and then directly utilized as control signals to 

actuate the FTS.  

As shown in Equation (17), there exists an attenuation term in the hysteresis force if the excitation is 

not a pure harmonic function with zero-mean, which may lead to tendency errors in the model results. To 

compensate for tendency errors, a linear compensator is added which is defined as: 

( )t t     (18)

A least square based error function is used to estimate the model parameters, and defined as: 

2
E M

0

[ ( ) ( )]
m

T

m m
t

E R t R t


   (19)

where RE(tm) is the measured displacement of the FTS from experiment at the time tm, and RM(tm) is the 

corresponding output of the proposed model. 

Consequently, the parameter estimation procedure can be formalized as a constrained multi-dimensional 

optimization problem. To solve this problem, similar evolutionary optimization scheme as shown in 

Reference [59] is established to minimize the error function. The particle swarm optimization (PSO) 

based searching tool in [59] is replaced by an improved differential evolution (DE) algorithm, where a 

self-adaptive scheme of the control parameters of DE is employed to enhance the searching capacity of 

classical DE [60]. More details of the parameter estimation process would be given in our future work. 

The experimental data in the time interval [0,0.25] seconds in Case 2 is employed for the parameter 

estimation. Since the sampling rate for gathering data is set as 10 kHz, the calculation step in Equation (2) 

defaults to be 0.0001 s. The model parameters is then obtained and given in Table 1. 
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The stability of the LFHM highly depends on the differential orders, we employed the Matignon’s 

stability theorem to investigate the stability of the identified LFHM. As for the model, the denominator 

can be obtained as: 
3.811 3 2.811 2 1.8110.00289 0.000418 9.219 1.337 481282.557 6( ) 9779.6s sD s ss s      (20)

The least common divisor of these differential orders is q = 0.001. The pole position plot is obtained 

as shown in Figure 7, and from the zoomed plot, it is immediately found that all the poles are located in 

the stable area, which means that the system is stable. 

Table 1. Model parameters. 

Parameters Value 

KM 1.71e + 8
ζ 0.031 
ωn 1.28e + 4
τ 4.18 e − 4
η 0.756 
λ 0.811 

Kp 0.192 
Θ 5.923 
χ 6.897 
ρ −0.140 
δ 0.072 

Figure 7. Pole positions with zoomed area: (a) pole positions; (b) zoomed plot. 
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5.3. Validation of the Hysteresis Model 

5.3.1. Case 1 

In this case, a sinusoidal profile of z(x,y) = 0.004sin(2x)  0.004 mm is employed as shown in 

Figure 8a. The power spectral density (PSD) of the toolpath after subtracting its mean value is illustrated 
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in Figure 8b, where w0 denotes the frequency of the spindle rotation. As shown in Figure 8b, the toolpath 

mainly consists of eight harmonic components with different frequencies. 

Figure 9a shows the command voltage applied to the PEA, the resultant responses of the FTS and the 

model are illustrated in Figure 9b, the modeling error is further given in Figure 9c. As shown in Figure 9b, 

there exists a constant motion shift of the FTS with zero input, it is about 0.35 μm. Fortunately, the 

motion shift is also well described by the proposed model. From the results shown in Figure 9c, the 

maximum modeling error is less than 0.2 μm, and the relative error in the steady state is less than ±2.5% 

of the full span range. 

Figure 8. The sinusoidal surface and the PSD analysis of its tool path: (a) Schematic of the 

sinusoidal surface and its tool path; (b) PSD analysis of the tool path. 
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Figure 9. Modeling results (In Figure 9b, the red line and blue line denote the output of the 

model and the FTS, respectively.): (a) The control voltage; (b) Responses of the FTS and the 

proposed model; (c) The modeling error. 

 
(a) 

  

0 0.5 1 1.5 2 2.5
-2

0

2

4

6

8

10

Time / s 

C
om

m
an

d 
V

ol
ta

ge
 / 

V



Materials 2012, 5 2478 

 

 

Figure 9. Cont. 

 
(b) 

 
(c) 

5.3.2. Case 2 

In this case, a sinusoidal grid surface of z(x,y) = 0.002sin(2x)  0.002cos(2x) mm is employed. The 

surface is shown in Figure 10a, the PSD of the toolpath after subtracting its mean value is illustrated in 

Figure 10b. Comparing with the PSD results shown in Figure 8b, this toolpath consists of more harmonic 

components and covers a much wider range of frequencies.  

Figure 11a shows the command voltage applied to the PEA, it is clear that it not only involves 

harmonic components with various frequencies but also involves amplitude variations in the control 

voltage. The resultant responses of the FTS and the model are illustrated in Figure 11b, the modeling 

error is further given in Figure 11c. As shown in Figure 11b, response generated by the proposed model 

agrees well with the actual response measured from the FTS mechanism. From the results shown in 

Figure 9c, the maximum modeling error is less than 0.25 μm, and the peak-to-peak value of the modeling 

error in the steady state is about 0.3 μm, which is less than ±2.5% of the full span range. 

The results obtained in Cases 1 and 2 demonstrate that the proposed LFHM is efficient for modeling 

dynamic hysteresis nonlinearities, and the piezoelectric actuated FTS would be more suitable to be 

described as a fractional order dynamic system. 
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5.4. Comparison with Certain State-of-the-Art Modeling Methods 

To verify the efficiency of the proposed LFDH model, the corresponding modeling errors were 

compared with errors of certain state-of-the-art modeling methods, including a generalized rate-dependent 

PI model (GPI) [29], a dynamic Preisach model (DPM) [23], the discrete ARMA-based dynamic 

hysteresis model (DARMA) [61], the conventional Bouc-Wen (BW) model and Non-symmetrical 

Bouc-Wen (NSBW) model [62], etc.. The comparison results are shown in Table 2. As for the GPI, the 

excitation is a harmonic signal with constant frequency and variable amplitude, while several separate 

experiments with harmonic excitations of different frequencies were conducted in [23], and the 

modeling error presented in Table 2 was at 800 Hz. As for the DARMA, the online estimation method 

based on trapezoid algorithm was employed to get a better identification of model parameters. The 

DARMA.a denotes the excitation signal with variable amplitude at 200 Hz, and the DARMA.b denotes 

a hybrid signal, which was a superposition of four sinusoidal signals with different frequencies, 

amplitudes and phase delays. As for the NSBW.a and BW.a, the excitation signal was a sinusoidal 

signal with a specified frequency and decreasing amplitude, while NSBW.b and BW.b denote a sort of 

non-periodic excitation signals. From the comparison results shown in Table 2, it is evident that the 

LFDH could describe the dynamic hysteresis behaviors more accurately, and it is of more excellent 

performance than these modeling methods. 

Table 2. Comparison results of modeling error. 

Model Error
LFDH ±2.5%
GPI ±5.7%

DPM 6.4% 
DARMA.a ±2.5%
DARMA.b ±5.6%
NSBW.a ±2.54%
NSBW.b ±2.76%

BW.a ±3.58%
BW.b ±3.96%

Figure 10. The sinusoidal grid surface and the PSD analysis of its tool path: (a) Schematic 

of the sinusoidal grid surface and its tool path; (b) PSD analysis of the tool path. 
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Figure 11. Modeling results (In Figure 11b, the red line and blue line denote the output of 

the model and the FTS, respectively.): (a) The control voltage; (b) Responses of the FTS and 

the proposed model; (c) Modeling errors. 
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6. Conclusion 

In this paper, a linearized mathematical model is proposed to describe dynamic hysteresis 

nonlinearities of a piezoelectrically actuated FTS. It features the following. 

 Fractional order calculus (FOC) theory is introduced to establish a model for dynamic 

hysteresis nonlinearities, a fictitious hysteresis force is introduced and mathematically described by a 

fractional order differential equation. The hysteresis force model (HFM) can be characterized by 

nonlinear phase-shifts and nonlinear modulations of amplitudes, both mainly depending on input 

frequencies and differential orders. By choosing proper model parameters, the dynamic hysteresis 

effects could be well described. 

 Combining the linear dynamics model of the FTS mechanism and the HFM, a linearized 

fractional order dynamic hysteresis (LFDH) model is proposed for the piezoelectrically actuated FTS 

system. The linearization feature of the LFDH model could make easier to implement the inverse 

dynamic control, and give an excellent playground for the well-developed linear control theories. 

Besides, certain accurate model assisted state-of-the-art control or compensation strategies for nonlinear 

systems would also be potential for implementing on the FTS systems. 

 To verify the efficiency of the LFDH model, the toolpath signals for creating two typical 

micro-functional surfaces, which cover a wide range of frequencies, are scaled and utilized as command 

signals for a piezoelectrically actuated FTS. By means of an evolutional scheme, the parameters of the 

model are estimated. The modeling errors in the steady state are all less than ±2.5% of the full span range, 

which is much smaller than the modeling errors of certain state-of-the-art modeling methods. The results 

demonstrate that the proposed linear model is of more excellent performance for modeling dynamic 

hysteresis nonlinearities, and the piezoelectrically actuated micro-systems would be more suitable to be 

described as a fractional order dynamic system. 

The following works need to be carried out in the future to further develop the proposed LFDH model: 

 A more efficient parameter estimation method should be constructed to determine the best 

parameters of the LFDH model. 

 The inverse model based hysteresis compensation approach should be further implemented 

with FTS to enhance the positioning accuracy of the cutting tool. 
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