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Abstract:



In the classical theory of thermoelectricity, the performance integrals for a fully self-compatible material depend on the dimensionless figure of merit [image: there is no content]. Usually these integrals are evaluated for constraints [image: there is no content] const. and [image: there is no content] const., respectively. In this paper we discuss the question from a mathematical point of view whether there is an optimal temperature characteristics of the figure of merit. We solve this isoperimetric variational problem for the best envelope of a family of curves [image: there is no content].
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1. Introduction


The compatibility approach [1,2,3] focuses on calculating the relative current density u which is defined as the ratio of electric and thermal fluxes, u=−j2κ∇T·[image: there is no content]. Note that [image: there is no content] and [image: there is no content] are vectors. The advantage of using the relative current density [image: there is no content] is that the complex thermoelectric (TE) problem can be reduced to a one-dimensional heat flow problem. In particular, this approach can be used as a mathematical basis to analyze the local performance of TE material [4,5].



The total performance (efficiency η and coefficient of performance [image: there is no content], respectively) of a thermogenerator (TEG) or Peltier cooler (TEC) element is obtained by summing up all local contributions in an integral sense as originally proposed by Harman and Honig [6], see also [4,7]:


TEG(Ts≤T≤Ta): ln(1−η)=∫TaTsηr(u,T)TdT=∫TaTs1Tuαz(1−uαz)uαz+1[image: there is no content]dT



(1a)






TEG(Ta≤T≤Ts):ln1+1[image: there is no content]=∫TaTs1T[image: there is no content]r(u,T)dT=∫TaTs1Tuαz(1−uαz)uαz+1[image: there is no content]dT



(1b)




where we identify one kernel for integrals of both generator and cooler. The model is based on an ideal single element device (prismatic TE element of length L and fixed boundary temperatures) without parasitic losses, for more information see [4,5]. Then, the device figure of merit is equal to the traditional material’s figure of merit, [image: there is no content], with the Seebeck coefficient (α), electrical resistivity (ρ), and thermal conductivity (κ).



The Integrals (1) can be optimized with respect to the relative current u. An optimized u represents an optimal ratio between heat flux and electrical current density and hence a maximum performance value given in self-compatible elements by the compatibility factors [image: there is no content] of a TEG, but [image: there is no content] of a TEC, firstly introduced by Snyder [1,2]. Thus global maximization is traced back to local optimization [8].



If we assume the ability to achieve full self-compatibility (considering the case of infinite staging) we can apply [image: there is no content] and [image: there is no content] to the Integrals (1), respectively, so that they take their maximal values with the optimal reduced efficiency ηr,opt=[image: there is no content]r,opt=1+zT−11+zT+1 for both TEG and TEC [9,10]. Then, fully self-compatible performance parameters [image: there is no content] and [image: there is no content]sc are given by


TEG(Ts≤T≤Ta):ln(1−[image: there is no content])=∫TaTsηr,optTdT=∫TaTs1T1+zT−11+zT+1dT



(2a)






TEG(Ta≤T≤Ts):ln1+1[image: there is no content]sc=∫TaTs1T[image: there is no content]r,optdT=∫TaTs1T1+zT+11+zT−1dT



(2b)




where we identify expressions being monotone with zT in the integrands. For the notation used we refer to [4,5].



We expressly emphasize that the Integrals (2) do not have extremal properties concerning the zT value. Usually they are evaluated analytically for constraints [image: there is no content]const. or zT=[image: there is no content]= const., for details see the appendix of [8]. In particular the latter case is easy to handle. We obtain with constant values ηr,opt=[image: there is no content]r,opt=1+[image: there is no content]−11+[image: there is no content]+1 for the Integrals (2)


ηsc([image: there is no content])=1−TsTaηr,optforTEG,and[image: there is no content]sc([image: there is no content])=TsTa1/[image: there is no content]r,opt−1−1forTEC



(3)







The question of how to get the best performance can only be answered if we put the constant [image: there is no content] in relation to the TE material characterized by an experimental [image: there is no content]. A proof for the relations


[image: there is no content]<ηsc([image: there is no content])and[image: there is no content]sc<[image: there is no content]sc([image: there is no content])



(4)




is given in [4], if [image: there is no content] is calculated as the average over temperature of a monotonically increasing function [image: there is no content],


[image: there is no content]=1Ts−Ta∫TaTsz(T)TdT



(5)







Then we get


TEG:1−exp−∫TsTa1T1+z(T)T−11+z(T)T+1dT≤1−TsTa1+[image: there is no content]−11+[image: there is no content]+1



(6)






TEG:exp∫TaTs1T1+z(T)T+11+z(T)T−1dT−1−1≤TsTa1+[image: there is no content]+11+[image: there is no content]−1−1−1



(7)







Equality holds if z(T)T= const. If z(T)T is decreasing, however, the above inequalities in general do not hold. Hence, we look for an optimal [image: there is no content] where [image: there is no content]>ηsc([image: there is no content]) and [image: there is no content]sc>[image: there is no content]sc([image: there is no content]), respectively, and [image: there is no content], [image: there is no content]sc will be maximal. Since the integrals cannot be optimized for arbitrary zT we consider a constraint optimization problem including Condition (5). The solution enlightens the role of the constraint zT=const. which is often used in practice.




2. Linear Functions k(T) = z(T)T


Before turning to the general problem, let us examine linear functions [image: there is no content].



We define straight lines [image: there is no content] by the formula


k(T)=2[image: there is no content]1+ξξ+(1−ξ)T−TsTa−Tswithξ=kska



(8)




and boundary values


ks=ξ2[image: there is no content]1+ξ,ka=2[image: there is no content]1+ξ











The goal is to estimate the optimal [image: there is no content] which gives maximum performances [image: there is no content] and [image: there is no content]sc, respectively. Exemplarily, Figure 1 shows the results for [image: there is no content]=0.6 and [image: there is no content]=1 for both TEG and TEC. Having found [image: there is no content], the optimal function kopt(T)=k(T,[image: there is no content]) can be derived, see Figure 2. Note that [image: there is no content] is decreasing with temperature for TEG (leading to a small performance increase of about 4% for [image: there is no content]=0.6), but the maximal coefficient of performance of a TEC is very close to [image: there is no content] const. when considering straight lines [image: there is no content].


Figure 1. Relative performance increase R as function of the parameter ξ: left: [image: there is no content]=[image: there is no content]/ηsc([image: there is no content])−1 for TEG (Ta=600K,Ts=300K) for [image: there is no content]=1 (solid curve, optimal efficiency [image: there is no content] at [image: there is no content]=4.2) and [image: there is no content]=0.6 (dashed curve, [image: there is no content] at [image: there is no content]=11.9, curve slowly decreasing for ξ>[image: there is no content] as long as [image: there is no content]>0.5); right: R[image: there is no content]=[image: there is no content]sc/[image: there is no content]sc([image: there is no content])−1 for TEC (Ta=270K,Ts=300K) for [image: there is no content]=1 (solid) and [image: there is no content]=0.6 (dashed), optimal coefficient of performance [image: there is no content]sc,opt=1.0002[image: there is no content]sc([image: there is no content]) at [image: there is no content]=1.055 for both curves.



[image: Materials 05 00528 g001]





Figure 2. Optimal straight line kopt(T)=k(T,[image: there is no content]) plotted with the optimal parameter [image: there is no content] derived from Figure 1: left (TEG): [image: there is no content]=4.2 for [image: there is no content]=1 (purple) and [image: there is no content]=11.9 for [image: there is no content]=0.6 (blue); right (TEC): [image: there is no content]≈1 (from [image: there is no content]=1.054 for [image: there is no content]=0.1 to [image: there is no content]=1.062 for [image: there is no content]=10, with [image: there is no content]=1.055 for [image: there is no content]=0.6 and [image: there is no content]=1).



[image: Materials 05 00528 g002]






More generally, one can prove for straight lines: For both a TEG and TEC, the performance increases if we cross the function [image: there is no content] const. from increasing straight lines to decreasing straight lines. For TEG the existence of a maximal performance value in the class of straight lines depends on [image: there is no content] and on the quotient [image: there is no content]. There is a maximum in efficiency if [image: there is no content] is large enough and [image: there is no content] is not too large. Otherwise, the performance [image: there is no content] increases the stronger [image: there is no content] is falling. We see this effect in our example, see left subfigure of Figure 1: For [image: there is no content]=1 (solid curve) a clear maximum of η appears at [image: there is no content]=4.2. For a smaller [image: there is no content]=0.6 the maximum is not so manifest (dashed curve). This [image: there is no content] is only a little bit larger than the critical value [image: there is no content]=0.5 for [image: there is no content], where a maximal performance value no longer exists. For [image: there is no content]<0.5 the dashed curve in Figure 1, left side, would be monotonically increasing for all [image: there is no content].







For a TEC we have a different situation. There is always a maximal coefficient of performance [image: there is no content]sc,opt in the class of straight lines [image: there is no content] for some [image: there is no content]>1 (decreasing k) independent of [image: there is no content] and [image: there is no content]. In general, however, this optimal value [image: there is no content]>1 is very close to [image: there is no content] and in our Figure 1 (right subfigure) it seems that this might be 1. Actually, the maximal value of [image: there is no content]sc,opt is attained at [image: there is no content]=1.055 and exceeds [image: there is no content]sc([image: there is no content]) by only [image: there is no content]. From these results, the optimal figure of merit [image: there is no content](T)=k(T,[image: there is no content])/T can be calculated, see Figure 2 and Figure 3. The large effect for TEG (left) is obviously due to the fact that the temperature range of ΔT=300K for TEG is ten times larger than for TEC.


Figure 3. Optimal figure of merit [image: there is no content]; left TEG, right TEC (for boundary temperatures and colours see the legends of Figure 1 and Figure 2).



[image: Materials 05 00528 g003]








In the next section we derive a condition for the optimal profile [image: there is no content]. It turns out that this optimal function is not a straight line, but the situation is similar to the case of straight lines described above. The optimal function is decreasing again, and there is the same qualitative connection between [image: there is no content] and the existence of an optimal profile. Especially for a TEC, the restriction to straight lines will be a good approximation of the solution.




3. Isoperimetric Variational Problem


In this section we solve the two isoperimetric variational problems


TEG(Ts≤T≤Ta):∫TsTa1T1+zT−11+zT+1dT⟶Max



(9a)






TEG(Ta≤T≤Ts):∫TaTs1T1+zT+11+zT−1dT⟶Min



(9b)




with Constraint (5). The corresponding Lagrange functions (with Euler multiplicator λ) are


L(T,z,λ)=1T1+zT−11+zT+1+λT2−T1zT



(10a)




and


L(T,z,λ)=1T1+zT+11+zT−1+λT2−T1zT,



(10b)




respectively, where T1:=min{Ts,Ta} and T2:=max{Ts,Ta}. Hence, Euler’s equation reduces to [image: there is no content] together with Condition (5). Differentiating Equation (10a) and Equation (10b) we obtain the following necessary relation for the optimal profile [image: there is no content] to Problem (9),(5).



Theorem 1. 

Let [image: there is no content] or [image: there is no content] be an optimal function that maximizes the Integral (9a) or minimizes the Integral (9b), respectively, under Restriction (5). Then it fulfills the Equations


TEG:T1+zmax(T)T1+zmax(T)T+12=μ



(11a)






TEC:T1+zmin(T)T1+zmin(T)T−12=μ



(11b)




where μ=μ([image: there is no content]) is a real constant depending on [image: there is no content] by means of


1T2−T1∫T1T2zmax/min(T)TdT=[image: there is no content]



(12)









In order to calculate the optimal solution [image: there is no content] we have to solve the System (11), (12). Substituting x:=1+z(T)T, Equations (11) simplify to


x(x+1)2=μ/Tandx(x−1)2=μ/T



(13)




Since [image: there is no content] we look for solutions [image: there is no content] of Equations (13). From the graph of the polynomials [image: there is no content] and [image: there is no content] (see Figure 4) we find that for fixed [image: there is no content] the first Equation of (13) has exactly one real solution [image: there is no content] if [image: there is no content]. This implies the restriction [image: there is no content]. The second Equation of (13) has exactly one real solution [image: there is no content] for all [image: there is no content].


Figure 4. Graph of polynomials [image: there is no content] and [image: there is no content], see Equation (13).



[image: Materials 05 00528 g004]








Then, resubstituting x by [image: there is no content] for fixed μ with [image: there is no content], we obtain a unique positive solution of Equation (11a)


[image: there is no content](T)=zμ(T)T=−1+19−2+21/32+27μT+334μT+27μ2T21/3+2+27μT+334μT+27μ2T21/321/32



(14)




An analogue formula holds for the unique nonnegative solution of Equation (11b). To calculate the Representation (14) an algebra tool (e.g., Mathematica) can be helpful.



It remains to determine the constant μ. We have to choose it in a way that [image: there is no content] from Equation (14) fulfills Condition (12). The question whether we can find such a μ is answered by the following theorem:



Theorem 2. 


	(i) 

	
In case of a TEG there is a constant [image: there is no content] such that the following holds: If [image: there is no content]≥[image: there is no content] there exists a unique [image: there is no content] such that the function [image: there is no content] defined by Equation (14) fulfills Equation (11a) as well as Condition (12). Hence, [image: there is no content]. The corresponding [image: there is no content] is nonnegative on the interval [image: there is no content], strictly monotonically decreasing and convex. If 0<[image: there is no content]<[image: there is no content] there is no constant μ such that the corresponding solution [image: there is no content] of Equation (11a) is nonnegative for every [image: there is no content] and fulfills Equation (12). In this case there is no optimal profile.




	(ii) 

	
In case of a TEC for every [image: there is no content]>0 there exist a unique [image: there is no content] and a unique function [image: there is no content] which solve Equations (11b) and (12). The corresponding [image: there is no content] is nonnegative, strictly monotonically decreasing and convex.











Proof. 


	(i)

	
Let [image: there is no content] be the (unique) solution of Equation (11a) for fixed [image: there is no content] given by Equation (14). We rewrite Equation (11a) by


1+[image: there is no content](T)1+[image: there is no content](T)+12=μT



(15)




and observe that the right hand side is strictly monotonically decreasing w.r.t. T for every fixed [image: there is no content]. Hence, [image: there is no content] is a strictly decreasing function as well. This yields the nonnegativity of [image: there is no content](T) if [image: there is no content](T2)≥0 which is fulfilled if


μT2=1+[image: there is no content](T2)1+[image: there is no content](T2)+12≥4.








Therefore, we have the condition [image: there is no content] for the nonnegativity of [image: there is no content](T) for all [image: there is no content]. We define now


av(μ):=1T2−T1∫T1T2[image: there is no content](T)dT








and [image: there is no content]:=av(μ¯). By the same argument as above we obtain from Equation (15) [image: there is no content] if [image: there is no content] for every fixed T. Consequently, [image: there is no content] if [image: there is no content], i.e., [image: there is no content] is strictly monotonically increasing. Moreover, [image: there is no content] is a continuous function of μ. This implies for every [image: there is no content]≥[image: there is no content] the existence of a unique value [image: there is no content] such that av(μ*)=[image: there is no content], hence Equation (12). For [image: there is no content]<[image: there is no content] there is no [image: there is no content] such that av(μ)=[image: there is no content]. Therefore there is no nonnegative function [image: there is no content] which fulfills Equation (11a) and (12), which means that there is no extremal solution for the variational Problem (9a) with Constraint (5).




	(ii)

	
By the discussion above it is obvious that in the case of a TEC there is a unique and nonnegative solution [image: there is no content] of Equation (11b) for every fixed [image: there is no content]. The representation


1+[image: there is no content](T)1+[image: there is no content](T)−12=μT








of Equation (11b) yields that [image: there is no content] is strictly monotonically decreasing with respect to T and, moreover, that [image: there is no content](T) increases for fixed T if μ increases. This implies the strict monotonicity of [image: there is no content]. Furthermore, as illustrated in Figure 4, if μ decreases to zero then [image: there is no content] decreases to zero (since [image: there is no content]), hence [image: there is no content]. Consequently, for every [image: there is no content]>0 there is a unique [image: there is no content] such that the solution zmin(T)T:=[image: there is no content](T) of Equation (11b) fulfills the condition av(μ*)=[image: there is no content], i.e., it is the optimal solution of Equations (9b) and (5).






The proof of convexity of the optimal functions [image: there is no content] is given in the appendix. ☐





Remark 1. 


	1.

	
The observations in Section 2 on linear functions reflect the general result. Certain monotonically decreasing straight lines yield a better performance than the increasing ones. Moreover, as discussed in Section 2, also in the case of linear functions [image: there is no content] there is a critical value [image: there is no content]>0 of [image: there is no content] for TEG, where we have no optimal linear function below of it. For a TEC such a critical [image: there is no content] does not occur. There we have an optimal performance in the class of linear function for every [image: there is no content]>0.




	2.

	
It is obvious that also [image: there is no content] will be strictly monotonically decreasing since kopt(T)=[image: there is no content](T)T has this property. Even more, [image: there is no content] will be a convex function. This can be justified by the following calculation using strict convexity of kopt(T)=[image: there is no content](T)T:


0<kopt″(T)=[image: there is no content](T)T″=zopt′(T)T+[image: there is no content](T)′=2zopt′(T)+zopt″(T)T








Since [image: there is no content] for all T this can only be fulfilled if [image: there is no content] which means convexity.











In order to calculate the optimal TEG or TEC profile for given [image: there is no content], we now have to determine the constant μ such that the solution [image: there is no content] of Equation (11) satisfies Condition (12). Since we cannot evaluate the integral of a function like Equation (14) explicitly, we have to use numerical methods to solve the equation av(μ)=[image: there is no content] for μ. Due to the strict monotonicity of [image: there is no content], a standard numerical solver will work.



Now we compare the best linear functions from Section 2 with the optimal profile corresponding to Theorem 2. Again we choose [image: there is no content]=1 and [image: there is no content]=0.6 for a TEG and a TEC, respectively. We start with a TEG with [image: there is no content] and [image: there is no content] like in Section 2.



We compare the corresponding values of the efficiency [image: there is no content] for the three cases that k(T)=[image: there is no content] is a constant, k(T)=k(T,[image: there is no content]) is the best linear function of Section 2 and [image: there is no content] is the global maximum of the variational Problem (9a),(5), see Table 1:



Table 1. Self-compatible efficiency of a TEG with [image: there is no content] and [image: there is no content].







	
TEG

	
[image: there is no content]=1

	
[image: there is no content]=0.6




	
[image: there is no content]

	
[image: there is no content]/ηsc([image: there is no content])

	
[image: there is no content]

	
[image: there is no content]/ηsc([image: there is no content])






	
constant function k(T)=[image: there is no content]

	
0.112126

	
1.00000

	
0.077873

	
1.00000




	
linear function k(T)=k(T,[image: there is no content])

	
0.114786

	
1.02372

	
0.080752

	
1.03697




	
optimal function [image: there is no content]

	
0.114855

	
1.02434

	
0.080829

	
1.03796












Both from the above table and Figure 5 we see that the best straight line is a good approximation for the optimal profile. The optimal function [image: there is no content], due to Theorem 2, yields only a minimal increase in performance compared with the best linear function. This effect becomes even more apparent in the case of TEC which will be considered now (see Figure 6). Like in Section 2 we choose again Ta=270K and Ts=300K.


Figure 5. Optimal functions [image: there is no content] (red) compared with the best straight line k(T,[image: there is no content]) (blue) from Figure 2 plotted with the optimal parameter [image: there is no content] derived from Figure 1. left: [image: there is no content]=4.2 for [image: there is no content]=1; right: [image: there is no content]=11.9 for [image: there is no content]=0.6.



[image: Materials 05 00528 g005]





Figure 6. Optimal monotonic functions [image: there is no content] (red) compared with the best straight line k(T,[image: there is no content]) (blue) from Figure 2 plotted with the optimal parameter [image: there is no content]=1.055 derived from Figure 1. left: [image: there is no content]=1; right: [image: there is no content]=0.6. Please note the scaling of the y-axis.



[image: Materials 05 00528 g006]










We observe that there is almost no difference between the best linear function and the optimal profile [image: there is no content] which can be distinguished only thanks to the different scaling of the axes. Moreover, the scaling should not hide the fact that both functions nearly coincide with the constant [image: there is no content]. Again we compare the maximal values of the coefficient of performance [image: there is no content]sc for the three cases that k(T)=[image: there is no content] is a constant, k(T)=k(T,[image: there is no content]) is the best linear function of Section 2 and [image: there is no content] is the global minimum of the variational Problem (9b),(5), respectively (Table 2):



Table 2. Self-compatible coeff. of performance of a TEC with [image: there is no content] and [image: there is no content].







	
TEC

	
[image: there is no content]=1

	
[image: there is no content]=0.6




	
[image: there is no content]sc

	
[image: there is no content]sc/[image: there is no content]sc([image: there is no content])

	
[image: there is no content]sc

	
[image: there is no content]sc/[image: there is no content]sc([image: there is no content])






	
constant function k(T)=[image: there is no content]

	
1.17929125

	
1.0000000

	
0.68419337

	
1.0000000




	
linear function k(T)=k(T,[image: there is no content])

	
1.17955485

	
1.0002235

	
0.68438545

	
1.0002803




	
optimal function [image: there is no content]

	
1.17955497

	
1.0002236

	
0.68438554

	
1.0002804












Here we see that for a TEC the constant function k(T)=z(T)T=[image: there is no content] is a good choice, since there is only an insignificant increase of [image: there is no content]sc for the optimal function [image: there is no content].




4. Discussion and Conclusions


The material’s figure of merit z gathers as a primary parameter the different transport coefficients of thermoelectrics, leading to an efficient classification of the various TE materials. The dimensionless zT in turn appears in a variety of thermodynamic expressions [11]. At a first glance the presence of the temperature in the expression of the dimensionless figure of merit may be strange since T is not a material property, but an intensive parameter which partly defines the working conditions. Nevertheless, one should notice that, in terms of thermodynamic optimization, the material properties are nothing without considering the available exergy of the working system, for more information see [5,11]. The figure of merit is clearly the central term for TE material engineering.



A general rule is that if a material is good (high zT) then it is good in both TEG and cooler applications. However, the question is whether the constraint [image: there is no content]const. can be considered as a local condition for an optimal material. The counter argument usually advanced is that the Seebeck coefficient [image: there is no content] and the electric conductivity [image: there is no content] have opposite shapes, which has given rise to the hope that a down-opened parabola [image: there is no content] (resp. [image: there is no content]) could be close to the optimal condition. This hope is not fulfilled when considering the problem from a mathematical point of view. In the performance integrals, [image: there is no content] is representing an internal degree of freedom that must be fixed by an upper limit or similar constraint in order to prevent that global performance diverges. Doing so, a constraint optimization problem for the thermoelectric figure of merit has been formulated and solved. As the result we obtain convex, optimal functions [image: there is no content], slightly falling with temperature, for both TEG and TEC. It is well-known that curves [image: there is no content] falling with temperature are practically not usable for most materials. However, it has turned out that the optimal function [image: there is no content] is almost a constant k(T)=[image: there is no content] for a TEC and close to this constant function for a TEG, respectively (see Table 1 and Table 2). This fact underlines the importance of the constraint zT=[image: there is no content]=const. which is often used in practice; usually this constraint can only be reached approximately.
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Appendix


We complete the proof of Theorem 2 with the following lemma:



Lemma A1. 

Every solution [image: there is no content](T)=z(T)T of Equation (11a) (TEG) or Equation (11b) (TEC), respectively, is a convex function.





Proof. 

We simultaneously deal with both Equation (11) and differentiate


T1+[image: there is no content](T)1+[image: there is no content](T)±12=μ



(11)




with respect to T for fixed [image: there is no content] and obtain


1+[image: there is no content]1+[image: there is no content]±12+T1+[image: there is no content]±1221+[image: there is no content]kμ′(T)+T1+[image: there is no content]±1kμ′(T)=0













Now we expand all items in a way that the left hand side of Equation (11) appears in the numerator of every fraction and replace it by μ,


μT+μ2(1+[image: there is no content])+μ1+[image: there is no content]1+[image: there is no content]±1kμ′(T)=0








or, equivalently,


kμ′(T)12(1+[image: there is no content](T))+11+[image: there is no content](T)1+[image: there is no content](T)±1=−1T











Since the item [image: there is no content] in the brackets is positive we have [image: there is no content] for all [image: there is no content], hence we see again that our optimal solution is monotonically decreasing. Moreover, we have


kμ′(T)=−T2(1+[image: there is no content](T))︸[image: there is no content]+T1+[image: there is no content](T)1+[image: there is no content](T)±1︸[image: there is no content]−1








The items [image: there is no content] and [image: there is no content] are strictly increasing since [image: there is no content](T) is decreasing w.r.t. T. This implies that [image: there is no content] is strictly decreasing and kμ′(T)=−[image: there is no content] is strictly increasing again. This means strict convexity of [image: there is no content]. ☐





© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
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