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Abstract: In the present study, three different structures with preferentially exposed crystal 

faces were supported on commercial carbon black by the polyol method (nanoparticles 

(NP/C), nanobars (NB/C) and nanorods (NR/C)). The electrocatalysts were characterized 

by XRD, TEM, TGA and cyclic voltammetry at three different ethanol concentrations. 

Considerable differences were found in terms of catalytic electroactivity. At all ethanol 

concentrations, the trend observed for the ethanol oxidation peak potential was preserved 

as follows: NB/C < NP/C< NR/C < commercial Pd/C. This result indicates that, from a 

thermodynamics point of view, the NB/C catalyst enclosed by Pd(100) facets presented the 

highest activity with respect to ethanol electro-oxidation among all of the catalysts studied.  
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1. Introduction  

World energy production is dominated by fossil fuels. Nevertheless, growing concerns regarding the 

depletion of petroleum-based energy resources, environmental contamination, and the increase in fuel 

prices due to limited oil reserves have motivated intensive research to substitute renewable energy sources 

for fossil fuels [1]. One possible way of obtaining energy from renewable sources involves the 

fermentation of organic matter to produce bioethanol, which is a low-toxicity liquid that features high 

power density (8 KWh/kg) and is easy to transport [2]. It has been suggested that instead of using 

bioethanol in internal combustion engines it could be used to generate hydrogen through steam-reforming 

reactions for more efficient fuel-cell applications [3–5]. An alternative way of producing energy from 

ethanol has recently been proposed. This consists of using a Direct Ethanol Fuel Cell (DEFC) to perform 

the Ethanol Electro-oxidation Reaction (EOR) directly over an anodic electrocatalyst. The problem 

with using ethanol as a fuel is that the EOR is difficult to induce and occurs at slower rates compared 

to modern electrocatalysts. This typically leads to the incomplete oxidation of ethanol, which reduces 

the efficiency of fuel cells and can lead to the creation of by-products or electrode deactivation [6]. 

However, studies on EOR have been performed in recent years, and it is expected that substantial 

improvements in the EOR can still be made [7].  

Although Pd is nearly inert to the EOR in acid media, it has demonstrated competitive EOR activity 

and a slightly better ability to break the C-C bond of ethanol in high pH media compared to Pt-based 

catalysts. This opens the opportunity of using Pd instead of Pt, thus reducing the cost of fuel cells. In 

addition, the abundance of Pd in the Earth’s crust is 200 times higher than that of Pt [8,9]. 

Recently, it has been shown that the electrocatalytic activity and selectivity of a catalyst can be 

greatly enhanced by using nanocrystals enclosed by specific crystal facets that are intrinsically more 

active with respect to a particular reaction. For example, polygonal Pd catalysts with dominant (111) 

facets show excellent thermal stability and catalytic activity with respect to formic acid  

electro-oxidation compared with common Pd/C catalysts [10]. In addition, a strong morphological 

dependence of the catalytic activity of Pd toward the oxygen reduction reaction (ORR) has been 

reported. Upon changing the morphology of Pd catalysts from that of nanoparticles to that of nanorods 

with preferential (110) facets by electro-deposition, the specific activity increases 10-fold and becomes 

comparable to that of Pt under the operating potentials of fuel cells [11]. Furthermore, Pt nanocube 

catalysts with dominant (100) faces show a lower onset potential and higher current density during 

methanol and ethanol electro-oxidation than polycrystalline Pt catalyst in acid media [12].  

The EOR over Pd surfaces is a typical multistep and multiselective catalytic process with a complex 

network of elementary steps. However, the structure of Pd catalysts can greatly affect the EOR due to 

the various atomistic properties and adsorption behaviors of different Pd crystal facets. In this respect, 

the adsorption behavior and oxidation mechanisms of ethanol over Pd surfaces, including (111), (100) 

and (110), have been studied by Density Functional Theory (DFT) in recent years. The  

results show, for the first time, that the activity and selectivity of ethanol oxidation on Pd are highly 

structure-sensitive and prove that Pd(100) is the best surface for the dissociation of an ethanol 

molecule, with a rather low energy barrier [13]. Nevertheless, unlike those performed for Pt-based 

catalysts, theoretical and experimental structure-sensitivity studies related to the EOR over Pd surfaces 

is scarce. 
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In this study, preferential Pd structures were synthesized, characterized and supported on 

commercial carbon black (C). The polyol synthesis method was used to prepare three different 

structures, nanoparticles (NP/C), nanobars (NB/C) and nanorods (NR/C), which were used as anode 

electrocatalysts for the ethanol oxidation reaction. The catalysts were physicochemically characterized 

by Electron Microscopy Transmission (TEM), Thermo-Gravimetric Analysis (TGA) and X-Ray 

Diffraction (XRD). The nanostructures were electrochemically evaluated for EOR in alkaline medium 

using Cyclic Voltammetry (CV) at three ethanol concentrations (0.1, 1 and 3 M).  

2. Materials and Methods 

2.1. Synthesis of Catalysts  

The catalyst was synthesized using a previously reported method, which was slightly modified [14]. 

In the case of the NP/C catalysts, 5 mL of ethylene glycol (EG, J.T. Baker, Austin, TX, USA, 99.9%) 

was placed in a 25 mL three-neck flask equipped with a reflux condenser and a Teflon-coated 

magnetic stirring bar. The flask was heated in static air under magnetic stirring at 373 K. Meanwhile, 

0.0486 g of Na2PdCl4 (Sigma-Aldrich, St. Louis, MO, USA, 98%) was dissolved in 3 mL of deionized 

water, and 0.0916 g of polyvinylpyrrolidone (PVP, Aldrich, St. Louis, MO, USA, Mw = 55,000) was 

dissolved in 3 mL of EG at room temperature. These two solutions were then injected simultaneously 

into the flask using a two syringe pumps (Cole Palmer Instruments Company, Vernon Hills, IL, USA) 

at a rate of 45 mL h−1. The reaction mixture was heated at 373 K while 0.037 g of carbon black 

previously heat treated at 550 K for 3 h was added during the reduction process. After 1 h, the reaction 

was cooled to room temperature before the product was collected by filtration and washed with 

deionized water to remove most of the EG and excess PVP. Finally, the product was dried at 333 K for 

12 h. A similar process was employed to produce the NR/C catalyst, except that 0.6 g KBr (J.T. Baker, 

Austin, TX, USA, 99%) was added in the Pd precursor solution to promote unidirectional growth. For 

the NB/C catalyst, a procedure similar to that used to produce the NR/C catalyst was followed, except 

that diethylene glycol (DEG) (Aldrich, St. Louis, MO, USA, 99%) instead of EG was used to perform 

the reaction [14]. 

2.2. Materials Characterization  

The crystallinity of the catalysts was investigated using a Bruker D8 Advance, X-ray diffractometer, 

operated using Cu-Kα radiation at 30 kV and 30 mA over a 2θ range of 20–130 with a step size of 

0.009151°. TEM analyses were conducted on a Jeol JEM-100S apparatus operated at 60 kV to observe 

the morphology and crystal size of the catalysts. The Pd load deposition was measured by TG analysis 

of the prepared catalyst, which was carried out using a thermogravimetric balance (TA Instruments, 

Q500). Thermogravimetric analysis was performed from room temperature to 1073 K at a heating rate 

of 10 K min−1 under an air flow rate of 60 cm3 min−1.  

2.3. Electrochemical Measurements  

All electrochemical measurements were conducted on a potentiostat/galvanostat BASi-Epsilon in a 

three-electrode cell at room temperature. An Hg/HgO in 1 M KOH and a platinum foil electrode were 



Materials 2012, 5              
 

1689

used as the reference electrode and counter electrode, respectively. The working electrode was 

prepared using a glassy carbon (GC) disc measuring 3 mm in diameter, which was previously polished 

with alumina powder (0.05 μm), sonicated for 10 min and washed with deionized water. During the 

electrochemical measurements, a mixture containing 1.0 mg of electrocatalyst and 73 μL of isopropyl 

alcohol (Baker, 99.9%) was pretreated for 20 min under ultrasonication. Then, 7 μL of Nafion® 

solution (5% isopropyl alcohol, Electrochem) was added to the mixture and sonicated for 20 min again 

to obtain a well-dispersed ink. A 2.2 μL portion of the catalyst ink was then transferred onto the 

surface of the GC electrode and dried in air to obtain a catalyst thin film. Cyclic voltammetry (CV) 

was performed in aqueous solutions of 1 M KOH in both the absence and presence of ethanol solutions 

of various concentrations from −1 to 0.4 V (vs. NHE) at 0.05 V s−1. 

3. Results and Discussion 

3.1. Materials Characterization 

3.1.1. XRD Analysis 

The XRD diffraction patterns of NR/C, NB/C and NP/C are shown in Figure 1. The XRD 

reflections showed face-centered cubic lattice structures with diffraction peaks at Bragg angles of  

2θ = 40.119, 46.659, 68.121, 82.1, 86.619 and 119.334°, corresponding to the (111), (200), (220), 

(311), (222) and (331) planes of the Pd metallic phase (JCPDS 46-1043, Figure 1a), respectively. In 

addition, a reflection at 2θ~25° was observed, which was assigned to the (002) plane of the carbon 

black, and a broad peak centered at 2θ~35° was observed on the commercial Pd/C and NP/C catalysts, 

which was likely due to the main reflection of PdO·H2O (JCPDS card 09-0254). The latter peak 

indicates the incomplete reduction of these catalysts or surface re-oxidation after the purification step. 

The average crystal size was calculated based on the broadening of the (111) diffraction peak 

according to the Scherrer Equation [15]: 

max2 cos

9.0




B
d   

Where λ is the wavelength of the incident X-ray (0.1542 nm for Cu-Kα radiation); θ is the angle of the 

maximum peak; and B2θ is the width of the half-height peak [15]. The average crystal sizes calculated 

for the commercial Pd/C, NR/C, NB/C and NP/C catalysts were 4.9, 10.2, 9 and 6.4 nm, respectively. 

The (111) to (200) intensity ratios calculated for the commercial Pd/C, NR/C, NB/C and NP/C 

catalysts were 2.82, 2.77, 2.71 and 2.94, respectively. This suggests that the NB/C catalysts showed 

the most dominant (200) plane of all the catalysts that were studied. Furthermore, the NP/C catalyst 

shows a highly dominant (111) plane. Similar results were reported for polyhedral Pd/C catalysts 

synthesized by the polyol process [10]. 
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Figure 1. XRD patterns of commercial Pd, NR/C, NB/C and NP/C catalysts. 

 

3.1.2. Thermogravimetric Analysis. 

The TGA curves of the catalysts are presented in Figure 2. The behavior observed was similar for 

all of the prepared catalysts and similar to that reported for other Pd/C catalysts [8,16]. The TGA 

curves show three distinct regions: the slight loss in weight at temperatures below 600 K may have 

been caused by the evaporation of adsorbed water and the residual organic solvent. The second region 

consists of a significant decrease in the weight fraction at temperatures in the range of 650–900 K, 

which is mainly associated with the decomposition of complex organics; this indicates that the carbon 

reacted with O2 to form CO2 at temperatures above 850 K. The stable weight fractions corresponding 

to the real Pd loading on the carbon were found to be 15.4, 13.7, 7.5 and 3.3 for the commercial Pd/C, 

NP/C, NR/C and NB/C, respectively. The low Pd loading in the NR/C may be related to the presence 

of Br- ions because they can suppress the deposition of Pd atoms by protecting the surface through 

adsorption [17]. In addition, the lowest Pd load found in the NB/C catalyst was associated not only 

with the ion etching of Br− but also through the weaker reducing power of the DEG, which employed 

in the present work to slow the reduction rate required to achieve NB formation [14].  

Figure 2. TGA curves of commercial Pd/C, NR/C, NB/C, and NP/C catalysts. 
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3.1.3. TEM Observations 

The morphology of the Pd catalysts supported on carbon black is shown in Figure 3. As shown in 

Figure 3a, most of the nanoparticles consisted of Pd nanobars with an average particle size of 

approximately 4 (width) × 4 nm (large) to 4 (width) × 10 nm (large). This implies that compared to the 

previous synthesis of unsupported nanobars, where the particle size was ~ 8 × 8 nm to 8 × 10 nm, 

similarly shaped and thinner Pd nanobars were successfully prepared and supported on carbon  

black [14]. The average particle sizes of the commercial Pd/C and NP/C catalysts (Figure 3b,d 

respectively) were 6 and 5 nm, respectively; these results are in good agreement with the results of the 

XRD analysis. Moreover, the high-magnification TEM images indicate that the commercial Pd/C 

catalyst is composed of irregularly shaped Pd nanoparticles, while the NP/C catalyst is composed of 

polygonal Pd nanostructures. This result was expected because the NP/C catalysts were produced by 

modifying the synthesis method reported by Xiong et al. to produce unsupported Pd nanoparticles [14]. 

This suggests that carbon black did not participate in the formation of the nanostructures. The NR/C 

catalyst (Figure 3c) featured nanorods of various lengths ranging from ~5–80 nm, with a measured 

diameter of 5 nm. These nanorods are longer than those reported by Xiong et al. [14], most likely due 

to the higher reaction temperature employed in the present study (388 K versus 373 K).  

Figure 3. TEM images of (A) NB/C; (B) commercial Pd/C; (C) NR/C; and (D) NP/C catalysts. 

 

A B
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3.2. Electrochemical Characterization 

3.2.1. Cyclic Voltammetry in Absence of Ethanol 

Figure 4 shows the voltammetric curves of the NP/C, NB/C and NR/C and Pd commercial catalysts 

in 1 M KOH solution at room temperature. The current was normalized by the specific surface area 

(ESA) and the metal loading of each catalyst. Three potential peaks were observed in the anodic scan, 

which correspond to different electrochemical processes occurring over the Pd surface. The peaks that 

appear at potentials lower than –0.75 V are associated with the oxidation of absorbed and desorbed 

hydrogen, according to Equation (1) [18]. It was noted that the NB/C and NR/C catalysts presented 

lower hydrogen absorption than commercial Pd/C catalysts: 

Pd-Habs/ads + OH− → Pd + H2O + e− (1) 

Figure 4. Cyclic voltammograms of (a) commercial Pd/C; (b) NR/C; (c) NB/C; and  

(d) NP/C catalysts in 1 M KOH at room temperature. 

 

The second peak occurs at potentials of ~ −0.3 V and is related to the adsorption of hydroxyl groups, 

according to Equation (2) [19]. These peaks in the NR/C and NB/C catalysts shifted towards more 

negative potentials compared to the peaks of the commercial Pd/C catalyst. This implies that the 

synthesized NB/C and NR/C presented a higher affinity for hydroxyl group adsorption compared to the 

commercial Pd/C catalysts. This observation will be further discussed within the context of the  

half-cell experiments: 

Pd + OH− ↔ Pd-OHads + e− 
(2) 

The third peak occurs at potentials above −0.2 V. Although this signal is associated with a process 

that has not been fully explained, it is generally accepted that OH- ions are first chemisorbed during the 

initial stage of oxide formation and then are transformed into higher-valence oxides at higher 

potentials (Equations 3,4). On the other hand, a peak centered at ~ −0.3 V was observed in the cathodic 
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Pd-OHads + Pd-OHads ↔ Pd-O + H2O (4) 

Pd-O + H2O + 2e− ↔ Pd + 2OH− (5) 

3.2.2. Cyclic Voltammetry in Presence of Ethanol  

Figure 5 shows the ethanol electro-oxidation of the electrocatalysts with different morphologies in 

the 1 M KOH. The previously proposed oxidation sequence for ethanol oxidation in alkaline  

media sets the ethanol adsorption as the first step followed by further dissociation, according to 

Equations (6,7) [18]: 

Pd + CH3CH2OH ↔ Pd-(CH3CH2OH)ads
 

(6) 

Pd-(CH3CH2OH)ads → Pd-(CH3CO)ads + 3H2O +3e- (7) 

Figure 5. Cyclic voltammograms of Pd catalysts in 1 M KOH+: (a) 0.1; (b) 1;  

and (c) 3 M ethanol at room temperature. 
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Thus, the suppression of the hydrogen absorption-desorption signal (Equation 1) was observed in 

the presence of ethanol, which became more evident in the commercial Pd/C and NB/C catalysts as the 

ethanol concentration increased; this was attributed to the dominant dissociative adsorption of ethanol 

in the low-potential region at high alcohol concentrations (Figure 6). 
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Figure 6. Cyclic voltammograms of Pd catalysts in 1 M KOH at room temperature in three 

ethanol concentrations: (a) commercial Pd/C; (b) NR/C; (c) NB/C; and (d) NP/C. 
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Density Functional Theory studies reported, for the first time, that the activity and selectivity of 

ethanol oxidation on palladium are highly structure-sensitive and prove that Pd(100) is the best surface 

for the dissociation of an ethanol molecule due to the strong ethanol-Pd(100) interaction, which leads 

to the lowest energy barrier relative to those of the Pd(111) and Pd(110) surfaces [13]. From the point 

of view of preferential orientations, the results shows that the NB/C catalyst presented the highest 

activity of all of the catalysts studied, which is consistent with the previously mentioned DFT calculus. 

The effect of ethanol concentration on the EOR for the Pd catalysts was also analyzed in the present 

study and is illustrated in Figure 6. Higher current densities were observed when the ethanol 

concentration was increased from 0.1 to 1 M. However, the current density was reduced at an ethanol 

concentration of 3 M. The calculated reductions in the current density were 42, 26, and 65% for the 

NB/C, NR/C and NP/C, respectively. On the other hand, the Ep shifted towards more positive 

potentials as the ethanol concentration increased. This trend was more significant in the commercial 

Pd/C and NR/C catalysts. In fact, the oxidation peak was absent in the window employed at an ethanol 

concentration of 3 M for the commercial Pd catalysts. Furthermore, the ethanol oxidation peak 

remained at nearly the same potential for the NB/C catalyst (see Table 1 and Figure 6d). It has been 

previously suggested that the rate-limiting step of ethanol electro-oxidation involves the reaction of 

ethoxy species with OH− through Equation (8). Moreover, OH- adsorption is assumed to be 

independent of ethanol concentration [18]: 

Pd-(CH3CO)ads + Pd-OHads → Pd-CH3COOH + Pd (8) 

On the other hand, the surface area covered by ethoxy species can be gradually increased as the 

ethanol concentration increases (see Equation 7) leading to higher current densities. At high ethanol 

concentration (3 M), the suppression of hydrogen absorption-desorption processes indicates that 

ethanol adsorption is enhanced, leading to a greater amount of ethoxy species over the Pd surface, 

whereas the adsorption of hydroxyl groups is largely blocked by CH3CO species as the potential 

increases. As indicated by Equation (8), the insufficient coverage of OH- ions will lead to a decrease in 

the peak current, as the peak current is only achieved with an intermediate coverage of the ethoxy and 

hydroxyl adsorbates. 

4. Conclusions 

Different Pd structures with preferentially exposed crystal faces were synthesized and supported on 

commercial carbon black by the polyol method. Although a lower Pd load (determined by TGA) was 

achieved in the catalysts prepared in the present study, considerable differences were found in terms of 

catalytic electroactivity. At all ethanol concentrations, the NR/C catalyst presented the highest peak 

current density, followed by the NB/C and NP/C. Moreover, the trend observed for the ethanol 

oxidation peak potential was preserved at all ethanol concentrations as follows: NB/C < NP/C < NR/C. 

This result is supported by previously reported DFT results and indicates that, from a thermodynamic 

point of view, the NB/C catalyst enclosed by Pd(100) facets (orientations inferred from XRD and TEM 

analysis) presented the highest activity towards ethanol electro-oxidation compared to all of the 

studied catalysts.  
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