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Abstract: A finite element approximation is proposed for the dynamic analysis of  

two-dimensional (2D) lattice materials. The unit cell is modeled by means of a defined 

number of shear deformable micro-beams. The main innovative feature concerns the 

presence of a microstructure-dependent scale length, which allows the consideration of the 

so called size-effect that can be highly relevant, due to the characteristics of the lattice at 

the local scale. Some numerical results show the influence of the microstructure parameter 

on the dynamic behavior of two-dimensional lattice materials. 
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1. Introduction 

At the local scale, many periodic materials can be seen as made of interconnected beams. Such 

materials, also called lattice materials [1,2], have received a wide interest in the scientific and 

industrial community over the last years, mainly due to their high strength to weight and stiffness to 

weight ratios, which, of course, are an important advantage from a static point of view. Lattice 

materials, in fact, can be designed to be stretching-dominated, thus providing higher structural 

performances. Many scientific papers dealing with the characterization of their effective elastic 

properties are available in the literature [3–7]. In comparison, only a few papers focus on their 

dynamic behavior, which is of an identical practical interest in the engineering field. Innovative 

applications are, in fact, related to many aspects concerning the elastic wave propagation mechanism 
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within them. A small number of recently published works [8–12] has pioneered the study of the wave 

propagation phenomena in two-dimensional (2D) periodic lattice materials, with the main scope of 

detecting the existence of phononic band gaps, i.e. frequency ranges, within which the propagation of 

elastic/acoustic waves is prevented regardless of the incident wave direction. These studies look at a 

new generation of devices for energy absorption, noise and vibration control. Moreover, very interesting 

results have also been established within the field of civil engineering, where a new seismic mitigation 

strategy has been proposed that exhibits a close analogy with the idea of a lattice material [13]. 

In the context of lattice materials, the periodic topology plays a relevant role, considering the strict 

relation with the bending mechanism, which can be significantly dominant at the micro scale, where 

both the displacements and rotations can be similarly important [14]. This, in addition to experimental 

evidence reported by many authors [15–19], suggests an overcoming of the classical continuum theory, 

which assumes only displacements as kinematic quantities. 

According to the classical continuum theory, stress-transfer locally occurs only through a force 

vector per unit area. As a consequence, stresses and strains can be represented by symmetric  

second-order real tensors. Nevertheless, for the accuracy of any prediction given via the classical 

theory, the condition that changes in stresses and strains (with wavelength λ) can be considered as 

uniform at the local scale is pivotal: D > λ  l, with D denoting the global (structural) size, while l is a 

characteristic length representative of the microstructure. On the contrary, when dealing with a number 

of situations [20–24] (thin films, adhesive interfaces, notches, crack tips, localized deformations, 

boundary layers), it can be observed that the scale lengths of the problem agree with a new different 

condition (D > λ > l), rather than the previous one (D > λ  l). More precisely, the lower the ratio  

λ/l > 1.0, the greater the importance of considering non-uniform stresses and strains at the local scale. 

Unfortunately, due to the lack of an internal characteristic length, classical models are unable to 

capture the microstructure-dependent size-effect and, therefore, need to be extended by using higher 

order, non-local continuum theories. 

Many continuum theories have been introduced over time in order to account for the  

size-effect [25–32]. Recently, non-local theories for the Bernoulli–Euler [33] and Timoshenko [34] 

beams have been proposed according to a modified couple stress theory [35] by using the non-local 

constitutive equation introduced in [30]. 

In line with these last developments, the present work proposes the analysis of the  

microstructure-dependent size-effect on the dynamic behavior of 2D lattice materials. 

Due to the very important conclusions outlined in [33,34], this influence is expected to be relevant 

also on the local resonance phenomena, which determine the existence of frequency band gaps within 

the low frequency region. 

To this scope, a refined 1D finite element approximation, accounting for a micro-scale length 

parameter, as well as the shear deformability, has been proposed. 

2. Frequency Gaps 

Due to the complexity of the equations governing the wave propagation within a periodic material, 

there is no general rule that can be used to predict whether phononic band gaps exist before a full 

analysis has been performed. 



Materials 2013, 6 3 

 

 

The existence of phononic band gaps is commonly related to the destructive interference occurring 

in the multiple scattering and reflection of elastic waves, which propagate throughout a periodic 

material. It is well known that the position and width of the phononic band gaps depend on the lattice 

topology, as well as the elastic moduli of the material and the mass density. Nevertheless, the influence 

of the micro-scale constitutive parameters has yet to be analyzed in detail. 

Recent experimental and numerical studies [36–38], however, show the existence of phononic band 

gaps in frequency ranges lower than those evaluable from the above cited destructive interference 

theory, revealing the link between these low frequency band gaps and the local resonance phenomena 

of the inner microstructures. Moreover, in a recent work [39], a modified 2D lattice material with 

square topology, obtained by connecting auxiliary cantilever beams to the primary micro-structure, 

was investigated. The frequency band diagrams, numerically identified, show as a result the relevant 

role played by the physical mechanism of local resonance. 

Based on the previous considerations, it is the opinion of the authors that the study of the dynamic 

response of 2D lattice materials should require a more refined continuum approach, which accounts for 

the stiffness modification related to the size-effect. To this aim, a micro-scale length parameter has 

been proposed according to the hypotheses of the modified couple stress theory developed in [35]. 

3. Free Waves Propagation in 2D Periodic Lattice Materials 

The study of the wave propagation within a periodic material generally involves the Bloch’s 

theorem, which allows one to reduce the analysis of an infinite lattice to that of a single unit cell. An 

example of a simple two-dimensional square lattice material and the corresponding unit cell is depicted 

in Figure 1, where e1 and e2 are the unit vectors along the directions of spatial periodicity. The square 

topology implies in this case that e1 and e2 are normal to each other.  

Figure 1. Example of two-dimensional (2D) square lattice material. 

 

In the example above (Figure 1), the microstructure is composed of interconnected beams arranged 

along the directions e1 and e2 only. In general, however, more complex microstructures can be 

investigated. For instance, in [39], a modified 2D lattice material has been considered, which exhibits a 

more elaborated unit cell. 

According to the Bloch’s theorem, if a plane elastic wave with angular frequency ω propagates in 

the lattice material (Figure 1), the displacement of an arbitrary point P is given by: 

     expk i t   u r u r k r  (1)
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In Equation (1), the symbol r indicates the position of the point P, k denotes the Bloch wave vector 

and uk (r) is the amplitude, which is characterized by the same spatial periodicity as the point lattice. 

As a consequence, it is possible to express the position of any point P as a function of the position of 

the corresponding point O, which is located in a reference unit cell. Once the reference cell has been 

selected (see Figure 1), it results: r = r0 + n1e1 + n2e2, where (n1, n2) is an integer pair and r0 is the 

position vector of O. It is then possible to update Equation (1) as follows: 

     0 1 1 2 2exp n n   u r u r k e k e  (2)

In brief, changes in wave amplitude from a generic cell to the adjacent one do not depend on the 

cell location within the point lattice. By virtue of this, it is possible to restrict the study of an infinite 

lattice system to the analysis of a unit cell. 
It is easy to verify that the reciprocal unit vectors 1ê  and 2ê  assume the following form: 

 
2 3

1 1
1 2 3

ˆ 2 2 
 

 
e e

e e
e e e

 (3)

 
3 1

2 2
2 3 1

ˆ 2 2 
 

 
e e

e e
e e e

 
(4)

where e3 is the unit vector normal to the plane of the problem (Figure 1). 

If the Bloch wave vector is expressed in the reciprocal space as follows: 

 (5)

Then, from Equation (2), the following equation is obtained, which provides a periodic boundary 

condition for the dynamic analysis of the unit cell: 

     0 1 1 2 2exp 2 n k n k   u r u r  (6)

4. Finite Element Approximation 

The analysis of the free wave propagation in 2D lattice materials can be performed by modeling a 

unit cell only. Rigid connections are usually considered between the micro-beams of which the unit 

cell is composed. Examples of the finite element (FE) mesh over the unit cell are shown in Figure 2. In 

this figure, both a simple 2D square lattice materials (I) and a more elaborated one (II) are sketched, 

the last one being composed of auxiliary cantilever beams interconnected to the primary 

microstructure. It is worth noting that this second example is substantially the same as reported in [39]. 

Regardless of how many micro-beams are interconnected to form the unit cell, the mesh here 

proposed is composed of finite elements characterized by six degrees of freedom (d.o.f.), including 
three d.o.f per each node p (p = node i or node j): the displacements pu , pv  along the directions 1i , 2i  

and the rotation pφ  about the axis 3i , where ( 1i , 2i , 3i ) are the local co-ordinates depicted in Figure 3, 

with 1i  aligned from node i to node j and 3i  = 3e . It is important to highlight that, without losing 

generality, the first four nodes of the mesh are supposed to be located at the connections with the 

adjacent cells, while the fifth node is located at the center of the unit cell under consideration (Figure 2). 
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Figure 2. Examples of the FE mesh over the unit cell of a 2D square lattice material (a 

being the lattice constant). 

 

Figure 3. Finite element. 

 

Let eu
 
be the numeric vector collecting all degrees of freedom related to a generic finite element 

(Figure 3): 
T

e i i i j j ju ,v ,φ ,u ,v ,φ   u  (7)

Accounting for a general orientation of the finite element, it is useful to express the numeric vector 

eu , which refers to the local co-ordinates system ( 1i , 2i , 3i ) as a function of the nodal displacements 

referred, instead, to the global co-ordinates system ( 1e , 2e , 3e  = 3i ):
T

e i i i j j jU ,V ,Φ ,U ,V ,Φ   U  with 

iΦ  = iφ  and jΦ  = jφ . It results: 

e e e

cos 0 0 0 0

cos 0 0 0 0

0 0 1 0 0 0

0 0 0 cos 0

0 0 0 cos 0

0 0 0 0 0 1

sen

sen

sen
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(8)

  being the angle from 1e  to 1i . 
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where η indicates the following dimensionless quantity accounting for the influence of the 

shear deformations 

12
 (10)

the displacements field  T, ,u v  , expressed in the local co-ordinates, can be interpolated over the 

generic finite element as follows: 

1 1 2 2

1 2

v φ v φ e

1 2

0 0 0 0

0 0  

0 0 0 0

u f f

v

f f

   


  
      
     

u e Nu  (11)

In Equation (10), the symbols E, G, I and
 

sA  indicate the Young modulus of the bulk material, the 

shear modulus, the inertia of the cross-section and the area of the cross-section incorporating the shear 
correction ( s skA A ). With reference to the well-known plane strain hypothesis, both I and

 
sA  are 

evaluated per unit length along 3i . Furthermore, el  denotes the length of the finite element. 

Moreover, in Equation (11), the symbols 1f and 2f  denote the classical linear Lagrange 

polynomials, while the symbols 
1v , 

1φ
 , 

2v and 
2φ

  denote four enhanced shape functions, which 

allow the incorporation of the effect of shear deformations. It results: 

 1

1
1

2
f    (12)
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f    (13)
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   2φ 11 21

2
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(17)

with   indicating the normalized axial coordinate ( 1  , Figure 3) and pqh  being four appropriate 

interpolating cubic functions (p = 1,2), (q = 0,1):  
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The finite element proposed is able to account for shear strains and is locking-free. These features, 

as it is well-known, are essential for short transient and wave propagation analysis. A Bernoulli-Euler 

element, in fact, exhibiting an infinite phase velocity, because the parabolic order of the equation of 

motion, is useless for simulating wave propagation. 

According to the non-local beam model presented in [35] (see Appendix), the generalized stresses 

within the generic finite element can be expressed as a function of the nodal displacements: 

 T e,  ,  ,  N M Y V S CBu  (22)

where N, M, Y and V denote the generalized stresses of the beam model, C denotes the matrix given in 

Equation (A30) and B is a numeric matrix with the following entries: 

   
   

1 1 2 2

1 1 2 2

1 2

1 2

v φ 1 v φ 2

v φ 1 v φ 2

0 0 0 0

0 0 0 0

1 1 1 1
0 0

2 2 2 2

0     0     

f f

f f

f f

f f

   

   

  
   
         
 
      

B  (23)

with reference to the global coordinates, the element stiffness matrix eK  assumes the following form: 

1
T T

e

12
el d




 K Q B CBQ  (24)

On the other hand, the kinetic energy can be expressed as follows: 

 
1

2 2 2 T
e e e

1

1
ρ ρ ρ

2 2
elT Au Av I d 




 
    

 
 u M u     (25)

where the consistent mass matrix eM  is computed over the generic finite element by means of: 

2

1 1 0 0
T T

0 1 0e
0 01

1
ρ

2 2
e

r

l
A d

 
 
 
 
   

 M Q N NQ  with /r I A  (26)

By standard procedures, the equations of motion can be assembled in the following matrix form: 

g g g g M U K U F  (27)
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where gM and gK  are the overall mass and stiffness matrices of the unit cell and 

 Tg 1 2 3 4 5, , , , , , NU U U U U U U  and F
 
denote the nodal displacements and external forces vectors in 

the global reference system ( , 1e , 2e ), respectively, N  being the number of nodes over the unit cell. 

If a plane elastic wave with angular frequency   is considered, Equation (27) assumes the new form: 

2
g g g( )  M K U F  (28)

The last form of the equations of motion (Equation (28)) must be coupled with the periodic 

boundary conditions given by Equation (6): 

 1 3 1exp 2 kU U  (29)

 2 4 2exp 2 kU U  
(30)

where 1U , 2U , 3U  and 4U  are the nodal displacements relative to node 1 to 4, indicated in Figure 2 

(connections with the four adjacent cells).  

By means of Equations (29) and (30), the number of degrees of freedom is equal to 

 dof 3 2N N   . The global displacements vector  Tg 1 2 3 4 5, , , , , , NU U U U U U U , in fact, can be 

expressed as a function of a reduced displacements vector  Tr 3 4 5, , , , NU U U U U , according to the 

following relationship: 

g rU HU  (31)

where the matrix H  works as a transfer operator: 

1

2

c

c

 
 
 
 
 
   
 
 
 
 
  

I 0 0 0 0

0 I 0 0 0

I 0 0 0 0

0 I 0 0 0
H

0 0 I 0 0

0 0 0

I 0

0 0 0 0 I











  

   



,  1 1c exp 2 k ,  2 2c exp 2 k  (32)

with:  

1 0 0

0 1 0

0 0 1

 
   
  

I  (33)

0 0 0

0 0 0

0 0 0

 
   
  

0  (34)
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Finally, the equations of motion of the unit cell can be expressed in the following form: 
2 T T T

g g r( )  H M H H K H U H F  (35)

The condition F 0  (free wave motion) implies that the study of the wave transmission within the 

periodic square lattice material reduces to the eigenvalue problem of Equation (35). For fixed values of 

1k  and 2k  , to be expressed in the reciprocal space ( 1ê , 2ê ) according to Equation (5), the frequencies 

of the wave propagation coincide with the eigenvalues of the problem formulated in Equation (35). 
Varying 1k  and 2k  along the boundary of the irreducible part of the first Brillouin zone, the band 

structure of the lattice material can be detected. In Figure 4, the filled region (triangle OAB) indicates 

the irreducible part of the first Brillouin zone concerning the square topology under consideration. 

Figure 4. Irreducible part of the first Brillouin zone. 

 

5. Numerical Results 

In order to elucidate the investigation approach, the finite element model presented in the previous 

section has been applied for studying the dynamic behavior of a 2D square lattice material. More in 

detail, a parametric analysis has been carried out by varying the role of the microstructure length l. The 

example under consideration concerns the scheme (I) shown in Figure 2, the geometry and the 

mechanical parameters being fixed, as indicated in Table 1. 

Table 1. Geometry and mechanical parameters. 

lattice constant: 1.0 mma   

cross-section area per unit length along i3 
1 21.000 10  mm / mmA    

cross-section shear area per unit length along i3 2 2
s 8.333 10  mm / mmA    

flexural inertia per unit length along i3 
5 48.333 10  mm / mmI    

Young modulus 5 22.100 10  N/mmE    
shear modulus 4 28.077 10  N/mmG  
Poisson ratio 0.3 
mass density -6 3ρ 7.850 10  Kg/mm 

The mesh used for the numerical simulations has been obtained by dividing both the horizontal 

beam and the vertical one shown in Figure 2 (I) by 50 finite elements, each one. The overall number of 

finite element results equal to 100, while the overall number of nodes (N) is equal to 101. The final 

number of degrees of freedom (Ndof) is thereby equal to 297. Many tests have been carried out in order 

to check the convergence rate and to assess the accuracy of the numerical solutions. 

 

e1


e2

O A

B
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The following values of the dimensionless microstructure parameter /l a 
 
have been considered 

in the analysis: {0.00, 0.01, 0.05, 0.10}. It is important to remark that the first value ( 0.00  ) implies 

that the size-effect is not present. 

The eigenvalue problem given by Equation (35) has been solved via a call to a dedicated routine 

belonging to the IMSL Math Library. Thus, the frequency values have been identified and represented 

in a dimensionless form 
 
by means of: 

1/    (36)

where 1  denotes the first bending resonance frequency of a pinned-pinned beam with the same 

properties given in Table 1, its length being equal to the lattice constant a: 

2

1 2

EI

a A




  (37)

In Figure 5, a typical diagram of   versus the modal number n is presented, with 1, 2, ... , 297n  . 

The figure refers to fixed values of k1 and k2 (i.e., a well-defined point on the boundary of the 

irreducible part of the first Brillouin zone). 

Figure 5. Dimensionless frequencies versus n (fixed point on the boundary OABO). 

 

As it is easy to argue, the size-effect is found to be strongly relevant within the high frequency 

region when dealing with λ > 0.01. 

For what concerns the dynamic behavior within the low frequency region, Table 2 indicates also in 

this case a considerable influence of the parameter  . 

With respect to the corresponding predictions obtained by assuming λ = 0.00, relevant variations 

emerge, being the maximum percentage increase (+93%) found at point A when λ = 0.10. 
  

297 n
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Table 2. Ten lowest frequency values (dimensionless). 

λ = 0.00 λ = 0.01 λ = 0.05 λ = 0.10 

O A B O A B O A B O A B 
1 0.00 0.15 1.79 0.00 0.15 1.80 0.00 0.19 1.85 0.00 0.29 1.89
2 0.00 1.83 1.81 0.00 1.83 1.81 0.00 1.88 1.88 0.00 1.91 1.94
3 4.21 4.04 4.35 4.27 4.09 4.40 5.40 5.18 5.41 7.17 6.91 7.06
4 4.21 4.50 4.35 4.27 4.56 4.41 5.40 5.62 5.43 7.17 7.34 7.11
5 6.07 6.17 6.27 6.16 6.26 6.37 7.88 7.99 8.12 10.74 10.87 11.02
6 8.60 8.70 8.80 8.70 8.81 8.91 10.53 10.65 10.75 12.94 13.06 13.17
7 15.62 15.32 15.33 15.77 15.46 15.48 18.10 17.76 17.77 20.66 20.30 20.27
8 15.62 15.64 15.34 15.77 15.78 15.48 18.10 18.10 17.77 20.66 20.63 20.27
9 20.49 20.60 20.72 20.72 20.83 20.95 24.62 24.71 24.82 29.29 29.31 29.31
10 22.97 23.08 23.18 23.18 23.28 23.38 26.45 26.54 26.61 30.14 30.12 30.06

6. Conclusions 

As highlighted in a number of papers, the dynamic behavior of a square lattice material is 

significantly affected by the underlying microstructure. Due to the spatial periodicity, the hypothesis of 

infinite lattice points allows us to reduce the analysis to the unit cell and to investigate the dynamic 

behavior by means of the Bloch theorem. 

It has been found by many authors that the natural frequencies predicted via a non-local beam 

model are always higher than those evaluated by classical beam models, due to the increased bending 

stiffness related to the so-called size-effect. 

A more refined beam model is therefore required.  

For the scope of a reliable evaluation of the existence, position and width of frequency band gaps, in 

the opinion of the authors, the study of a 2D lattice materials should account for possible size-effects. 

The paper provides a simple 1D finite element, developed in accordance with a simplified couple 

stress theory, which is able to simulate the size-effect via a unique microstructural parameter. Shear 

deformations are also accounted for. 

The numerical results confirm the influence of the size-effect on the dynamic behavior of 2D 

periodic materials. 

Appendix 

In accordance with higher order theories, the local equilibrium conditions require the presence of 

couple stresses m Mn  (moment per unit area) in addition to the classical Cauchy stresses t Tn , 

while with respect to a global continuum, equilibrium equations can be expressed as follows: 

ρ dv ds
V V

   nb t 0  
(A1)

   ( ) ρ ρ dv ( ) ds
V V

      o o n nx - x b c x - x t c 0  
(A2)

In Equations (A1) and (A2), V indicates an arbitrary volume of a deformable body bounded by V , 

the symbol n denotes the outer normal to V , b and c denote, respectively, the body force and the body 
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couple per unit mass, ρ is the mass density, x − xo denotes the distance vector of a generic point from 
an arbitrary pole O. Furthermore, nt  and nc  denote, respectively, the traction and couple (per unit 

surface) acting on the boundary of the body. 

The divergence theorem can be invoked in order to transform the 2D integrals in  

Equations (A1) and (A2): 

(ρ Div ) dv
V

  b T 0
 

(A3)

 TDiv ρ 2 dv
V

   M c w 0
 (A4)

In Equation (A4), the symbol Tw
 
represents the axial vector related to the skew part of the stress 

tensor T. Since the volume V is arbitrary, the volume dependence can be discarded, leading to the 

following equilibrium equations: 

Div ρ T b 0  in V (A5)

TDiv ρ 2  M c w 0  in V (A6)

 nTn t  on ∂ (A7)

 nMn c  on ∂ (A8)

Due to the presence of the couple stresses, Equation (A6) implies that the Cauchy stress tensor T is 

not symmetric. Then, it can be decomposed as follows: 

 T S L  (A9)

 T1

2
 S T T  

(A10)

 T1

2
 L T T  

(A11)

Furthermore, it results: 

T ijk jk i

1

2
e L w e  (A12)

On the other hand, at the local scale, the deformation measures are represented by the following 

two tensors: 

j
ij ijk k

i

u
Γ e θ

x


 


 (A13)

j
ij

i

θ

x


 


 (A14)

The symbols Γ  and Κ  denote the (small) strain and curvature tensor, respectively. It is easy to 

verify that the following relationships exist: 
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  ji
ij ij ji

j i

uu1 1
E

2 2 x x

 
      

  
 (A15)

   ij ij ji ijk k k

1
A e ω θ

2
      (A16)

where iu  and iθ  denote the generic components of the displacement field and the micro-rotation field 

(i = 1,2,3). The symmetric part of Γ  in Equation (A15) denotes the classical infinitesimal strain tensor, 

while the skew part in Equation (A16) accounts for the difference between the macro rotations 

j
k ijk

i

u1
ω = e

2 x


 and the micro rotations kθ  (k = 1,2,3). As a consequence, the virtual work done by the 

internal stresses assumes the following final expression: 

 dvi

V

L         S E L A M K  
(A17)

It is worth noting that if no difference between the micro-rotations and macro-rotations occurs, the 

strain tensor A vanishes and the continuum model reduces to couple stress theory. In this case, the  

anti-symmetric tensor L does not contribute to the work done by the internal stresses. More precisely, 

the derivation of the couple stress theory [29] from the general Cosserat theory [25] has been 

investigated in [32], where a dimensionless number drives the transition. Unfortunately, the definition 

of both the Young modulus and the shear modulus fall in defect if the couple stress theory is 

interpreted as a special case of the micro-polar (Cosserat) theory. 

Whereas, the link from the classical couple stress theory to the simplified form proposed in [35] is 

founded upon the following additional equilibrium equation for the moment of couples: 

   ( ) ρ 2 dv ( ) ds
V V

       o T o nx - x c w x - x c 0  (A18)

that, by virtue of the divergence theorem, becomes: 

 T MDiv ρ 2 2 dv
V

      Z M c w w 0  
(A19)

In Equation (A19), Z indicates the skew tensor related to the distance vector (x – x0) and Mw  
denotes the axial vector corresponding to the anti-symmetric part of M. By considering Equation (A6) 

into Equation (A19), it descends that the couple stress tensor M is symmetric. 

The work done by the internal stresses assumes the following simplified form: 

 dvi

V

L      S E m κ  
(A20)

where m  indicates the deviatoric part of the couple stress tensor M and κ  the symmetric part of the 

curvature tensor K . 

 T1

2
     κ θ θ  with θ =ω  (A21)

a  m M I  with 
1

3
a = ( )tr M  (A22)



Materials 2013, 6 14 

 

 

Finally, the mathematical expression of the deformation energy density w has been assumed 

as follows: 

   2 21
w

2
tr l     E E E κ κ  (A23)

where λ and μ denote the Lame’s constants, while l is a microstructure length scale parameter. 

In detail, with reference to the beam model proposed for the analysis of the unit cell, the 

displacement field is: 

1u ( ) ( )u x x y   (A24)

2u ( )v x (A25)

3u 0 (A26)

where 1u , 2u
 
and 3u  are the displacement field components along the local axes ( 1i , 2i , 3i ); x and y 

denote the rectangular coordinates referred to 1i  and 2i , respectively, and ( )u x , ( )v x  and ( )x  are the 

generalized displacements of the cross-section. It results: 

1
0

2

1
0 0

2

0 0 0

u v
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x x x
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x

 



                  
       
 
 
 

E  
(A27)
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x x





   
     

 
 

   
     

κ  
(A28)

The constitutive equations assume thereby the following form: 

 
T

2
T

2

1
,  ,  ,  ,  ,  ,  

2

u v v
N M Y V

x x x x x

  
                     

C  (A29)

where C denotes the local stiffness matrix: 

 
  

 
  

2

s

1
0 0 0

1 1 2

1
0 0 0

1 1 2

0 0 0

0 0 0

E A

E I

GAl

GA


 


 

 
   
 
 

  
 
 
  

C  (A30)

In Equation (A29), N, M, Y and V denote the generalized stresses of the beam model (axial force, 

bending moment, additional bending moment due to the size-effect, shear force), while 
u

x




, 
x




, 
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2

2

1

2

v

x x

  
   

 and 
v

x
     

 are the conjugated strains. Finally, symbols E, G and   denote the 

Young modulus, the shear modulus and the Poisson coefficient, which are related to the 

Lame’s constants: 

   1 1 2

E
 


 

 (A31)

 2 1

E





 (A32)

In relation to the characteristic length l, a mechanical definition has been given in [27]. 
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