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Abstract: The objective of this work was to examine the potential of oscillating 

nanomagnetic gene transfection systems (magnefect-nano™) for improving the 

transfection efficiency of NIH3T3 mouse embryonic fibroblasts (MEFs) in comparison to 

other non-viral transfection techniques—static magnetofection™ and the cationic lipid 

agent, Lipofectamine 2000™. Magnetic nanoparticles (MNPs) associated with the plasmid 

coding for green fluorescent protein (GFP) were used to transfect NIH3T3 cells. The 

magnefect-nano system was evaluated for transfection efficiency, and any potential 

associated effects on cell viability were investigated. MNPs associated with the  

plasmid coding for GFP were efficiently delivered into NIH3T3 cells, and the magnefect-

nano system significantly enhanced overall transfection efficiency in comparison to lipid-

mediated gene delivery. MNP dosage used in this work was not found to affect the cell 

viability and/or morphology of the cells. Non-viral transfection using MNPs and the 

magnefect-nano system can be used to transfect NIH3T3 cells and direct reporter gene 

delivery, highlighting the wide potential of nanomagnetic gene transfection in  

gene therapy. 
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1. Introduction 

In recent years, conventional therapies have provided limited improvement in treating complex 

diseases, creating an increasing need for the investigation of gene therapy as a potential tool for 

clinical and/or scientific research purposes [1–3]. 

Despite the success of viral vectors at transfecting a variety of primary cells and cell lines, over the 

past decade, there has been an increasing shift towards the use of non-viral gene transfection due to 

viral-associated concerns, mostly regarding safety, such as induced inflammatory response and 

mutagenesis, as well as limitations on the plasmid size [4–8]. 

As gene therapy and stem cell therapy are closely related, very often using embryonic stem cells 

and stem cell lines for their clinical and research applications, MEFs have demonstrated a key role for 

the expansion and maintenance of embryonic stem cells as their feeder layers [9], as well as their 

different applications in tissue engineering [10,11]. Up to now, limited work has been done to 

investigate the potential of transfecting MEFs (NIH3T3 cells) for their use in tissue engineering and 

stem cell biology.  

Here, we investigate the potential of the novel non-viral, nanomagnetic gene transfection in the 

presence of oscillating magnetic fields for NIH3T3 transfection.  

Originally, magnetic nanoparticle-based gene transfection was demonstrated by Mah, Byrne et al. 

more than a decade ago [12–15]. The group used magnetic microspheres with GFP-carrying rAAV 

linked to the microspheres via heparin sulfate. The complex was magnetically targeted to a specific 

region of a culture of HeLa cells. The magnetic targeting enabled highly efficient uptake of the GFP 

gene into HeLa cells localized at the site of the applied magnetic field. 

In further experiments, Plank, Scherer, Rosenecker and others developed magnetic nanoparticles for 

non-viral “magnetofection” use, in which plasmid DNA or siRNA is coupled directly to magnetic 

nanoparticles coated with charged polymers to which the plasmids adhere [14–17]. High-field,  

high-gradient permanent magnets placed beneath the culture plate rapidly draw the particle/DNA 

complex into contact with the cells in culture, where it is taken up via endocytosis. 

In 2003, in order to improve the transfection efficiency of magnetofection-type transfection 

techniques, our group began developing a variation of magnetofection, which employs oscillating 

magnet arrays to promote more efficient transfection via mechanical stimulation of endocytosis. The 

technique generally improves transfection efficiency, but also maintains the advantages of 

magnetofection—rapid transfection and high cell viability in comparison to other non-viral 

transfection methods [18–20]. In addition, studies by our group and others on magnetic nanoparticles 

for regenerative medicine and gene transfection have shown that these techniques have little or no 

toxic effects on cells [19–24]. 

The technique works by attaching DNA or siRNA to magnetic nanoparticles coated with a charged 

polymer, which condenses the DNA on the surface. The complex is placed into cell culture plates and 
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DNA coding for GFP) (Plasmid Giga Kit, QiaGen, West Sussex, UK) in Knock-out DMEM media 

(Gibco-Invitrogen, UK) using spectrophotometry. nTMag MNPs are biocompatible and biodegradable, 

100 nm in diameter, superparamagnetic nanoparticles (when used as per manufacturer’s instructions) 

with magnetite cores coated with proprietary multilayer PEI derivate. nTMag MNPs have been 

provided with accompanying quality control information that includes pH value of suspension (7.0), 

particle size distribution (1.7) and zetapotential (+23.87 mV). A range of different nTMag concentrations 

were mixed with a fixed volume of pEGFP-N1 plasmid (30 μL). The proportion of DNA that remained 

unbound (i.e., still in solution after centrifugation) was then determined. A sample containing only 

DNA and Knock-out DMEM media, but no nTMag MNPs, was assayed as a control. Following 

mixing of the MNPs and DNA at room temperature (RT) for 15 min, samples were centrifuged at 

14,000 rpm for 5 min to induce sedimentation of the particles and/or particle:DNA complexes. The 

absorbance of the supernatant containing the unbound DNA was measured for each sample at 260 nm 

and compared with the Knock-out DMEM blank sample. In order to determine the proportion of 

unbound (free) DNA, absorbance readings were expressed as percentages of the absorbance of the 

DNA-only (blank) control. 

2.3. Transfection of NIH3T3 Cells Using the Magnefect-Nano System 

Experimental evaluation of transfection efficiency was performed using transfection complexes 

composed of 100 μL of Knock-out DMEM medium, 0.2 μg DNA and 0.2 μL nTMag MNPs per 96 

well tissue culture plate well (Sigma-Aldrich, Dorset, UK). Following the addition of the particle/DNA 

complexes to the cell cultures, samples were transferred to an incubator at 37 °C, 5% CO2 and placed 

over the magnefect-nano oscillating magnet array (nanoTherics Ltd., Stoke-on-Trent, UK) for 30 min. 

At 30 min post-transfection, the cell culture plates were removed from the magnefect-nano system, and 

transfection complexes were replaced with 100 μL of supplemented medium (as described previously). 

All samples were transferred back into an incubator for 48 h before analysis.  

2.4. Transfection of NIH3T3 Cells with Lipofectamine 2000 

NIH3T3 cells were maintained as described previously and seeded onto 96 well tissue culture 

plates. Lipofectamine 2000 complexes were composed of 100 μL Knock-out DMEM medium, 0.2 μg 

pEGFP-N1 DNA and 0.5 μL Lipofectamine 2000 per 96 well tissue culture plate well, as per the 

manufacturer's recommended protocol. Following the addition of complexes, samples were transferred 

into an incubator at 37 °C, 5% CO2, and complexes were left on the cell cultures for 6 h, as per the 

manufacturer’s protocol. At 6 h post transfection, all transfection complexes were replaced with  

100 μL supplemented medium (as described previously). All samples were transferred back into an 

incubator for 48h before analysis. 

2.5. Immunofluorescence & Fluorescence Activated Cell Sorting (FACS) Assays 

Following 48 h of incubation, immunofluorescent microscopy was performed to acquire fluorescent 

images of NIH3T3 cells labeled with Phalloidin-TRICH actin stain (Sigma-Aldrich, Dorset, UK) and 

GFP from GFP-expressing transfected NIH3T3 cells, as shown in Figure 3. Images were captured with 
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great potential for use as an effective, non-viral transfection agent for MEFS. A major advantage of 

this technique for use in regenerative medicine and tissue engineering research applications is the fact 

that it is both non-viral and does not impact cell viability, though a thorough investigation of up- or 

down-regulation of off-target genes will be needed before the technique could be used in a  

clinical setting.  
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