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Abstract: We present an experimental investigation of optical spin orientation in colloidal 

CdS quantum dots (QDs) by a femtosecond laser pulse at room temperature. The spin 

carrier and its spin-generation process are clarified. Firstly, the observed spin signals of 

CdS QDs in time-resolved Faraday rotation measurements are shown to belong to electron 

carriers, by comparing the spin dephasing dynamics and Landé g factor between CdS QDs 

and bulk materials. Secondly, spin dynamics unaffected by the faster carrier recombination 

suggests that the spin-polarized electrons are not photoexcited but resident in the dots. 

Moreover, hole spins should dephase very fast compared with electron spins, otherwise the 

trion (two electrons with opposite spin orientations and one hole) recombination  

process will affect the resident electron spin signals. The electron spin is generated in a 

short time of which the excitation light is absorbed and the resident electron is excited to 

trion states, i.e., of pulse durations. Due to fast hole spin dephasing, trion recombination 

gives null spin signals, and the subsequent electron spin dynamics is controlled by its 

intrinsic mechanisms. 

Keywords: electron spin; optical manipulation; pump-probe; quantum dots 

 

OPEN ACCESS



Materials 2013, 6 4524 

 

 

1. Introduction 

The spin states of semiconductor quantum dots carry prospects in realization of solid-state qubits 

for quantum-information processing and computation (QIPC) [1,2]. A key element for QIPC is the 

initial quantum state preparation. As quantum error correction (QEC) schemes require >104 operations 

within the decoherence time, the state initialization speed must be much faster than the quantum state 

decoherence rate [3]. In this regard, ultrashort laser pulses have advantages in fast spin generation and 

control, as well as convenient detection of transient spin states [3–9]. Applications of ultrafast laser 

technology in semiconductor spintronics have attracted much interest in recent years. 

III-V semiconductor (such as InAs, GaAs, InGaAs) quantum dots (QDs), often used in spin 
investigations, normally have an ensemble spin dephasing time *

2T  of a few nanoseconds at cryogenic 

temperature [7]. Spin dephasing time in QDs is limited by electron-nuclear hyperfine interactions in 

zero or low magnetic field [10,11]. Thus, materials with weak hyperfine coupling are helpful to hold a 

long electron spin lifetime. II-VI QDs generally have smaller hyperfine-interaction strength than that 

of their III-V counterparts, and consequently draw much attention in spin manipulation studies [12–15]. 
Recently, colloidal II-VI CdS QD has been shown to keep long-lived spin coherence with *

2 3 nsT   at 

room temperature [16]. Room-temperature environment in spin manipulations would be of great 

interest for future practical device applications. The spin coherence amplitude in colloidal CdS QDs 

could be easily manipulated by a prepump or control laser pulse with femtosecond pulse durations [17], 

which further makes CdS QD materials attractive in spin studies. 

In this work, we present an in-depth study to clarify the spin generation process in colloidal CdS 

QD at room temperature, under the irradiation of femtosecond laser pulses. We will firstly clarify 

whether the measured spin signals come from electrons or holes, and whether the spin carriers are 

photoexcited or resident in the dots. The answer is that the spin signal comes from resident electrons. 

Then, we experimentally judge that the spin relaxation time of the hole in trion complexes  

(two electrons and one hole) should be much faster than the trion recombination time. Based on these 

experimental results, the spin generation process will finally be illustrated in detail. 

2. Experimental 

Commercially available colloidal CdS QDs were purchased from Sigma-Aldrich Corporation  

(St. Louis, MO, USA). The used QD sample (Lumidot™ CdS 480) is surface-stabilized with oleic acid 

coating, and dissolved in toluene with dot diameter sizes ~5.6 nm. The QD’s photoluminescence (PL) 

peak is at ~476 nm. The obtained QDs solution is used in a quartz cell directly for the measurements. 

As a comparison, we also measured the electron spin coherence in bulk CdS material [single crystals 

with a thickness of 0.5 mm, purchased from MTI Corporation (Richmond, CA, USA)]. The PL peak of 

CdS single crystals is at ~507 nm. The PL spectra for CdS QD and bulk samples are shown in  

Figure 1. Due to quantum confinement effect, the QD emission peak is blue shifted compared with that 

of bulk sample. 

The main measurement techniques involved in this paper are time-resolved Faraday rotation 

(TRFR) and time-resolved differential transmission (TRDT) spectroscopies, which are used to measure 

spin and carrier relaxation dynamics, respectively. Figure 2 shows the experimental setup for TRFR 
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measurements. Femtosecond visible laser pulses come from an optical parametric amplifier (OPA), 

obtained by parametric nonlinear processes and frequency mixing from a Ti: sapphire regenerative 

amplifier (800 nm wavelength, 50 fs pulse duration, 3 mJ/pulse intensity, and 1 kHz repetition rate). 

The OPA output is split by a beam splitter into pump and probe parts. The energies of the pump/probe 

laser beams are degenerate, which are set in the lower energy side to the PL peak for both CdS QD and 

bulk samples. The circularly-polarized pump and linearly-polarized probe laser beams are focused into 

a same spot with a diameter of about 200 μm on the sample. Their intensity can be varied by adjusting 

a half-wave plate before a Glan-Laser polarizer. The probe intensity is 10 times lower than the  

pump intensity. 

Figure 1. Photoluminescence spectra for CdS quantum dots (QDs) and bulk samples. Peak 

intensities are normalized to the same level. 
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Figure 2. Experimental scheme for time-resolved Faraday rotation measurements. 
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Circularly polarized pump laser pulse generates spin-polarized carriers, and the generated spin 

signal is detected by the rotation angle of the polarization plane of a linearly polarized probe pulse. 

Magnetic field B up to 1 tesla from an electromagnet is applied in Voigt geometry (B perpendicular to 

spin polarization direction). The measurements are done using a balanced photodiode detector 

connected to a lock-in amplifier in order to get a better signal to noise ratio. In the TRFR 

measurements, the broadband half-wave plate rotates the transmitted probe beam polarization to 45° 

with respect to the Glan-Laser polarizing beam splitter before pumping-on, getting a null signal in the 

difference of bridge arms. The small pump-induced deviations from this null condition then represent 

the polarization plane rotation of the probe light. The detection scheme using a balanced diode bridge 

helps to cancel out all laser intensity noises effectively. TRDT setup is similar to that for TRFR. The 

mere difference is that the transmitted probe light does not go through the Glan-Laser polarizing beam 

splitter, but, instead, goes directly into a photodiode for lock-in detection. All the measurements are 

performed at room temperature. 

3. Results and Discussion 

Figure 3 shows the TRFR measurement results both in CdS QDs and in bulk samples at B = 0, 250 

and 1000 mT. Compared with that in a zero magnetic field, the signals show periodic oscillation in an 

external transverse magnetic field, denoting the existence of spin signals. The signals oscillate as a 

result of spin precession in the magnetic field, with a frequency being equal to Larmor precession 
frequency, ω μ /L Bg B  . The oscillatory amplitude decays with time due to spin dephasing by 

interaction with the environment. The evolution of Faraday rotations θF(t) can be described by 

Equation (1), 

*
2

θ ( ) θ (0)cos(ω ) exp( )F F L

t
t t

T
   (1)

where θF(0) is the initial amplitude at the time of which spins are just initiated by the pump pulse, and 
*

2T  is the ensemble spin dephasing time. 

Figure 3. Time-resolved Faraday rotation signals for CdS QD and bulk sample in different 

transverse magnetic fields. 
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With increasing magnetic field, the Faraday rotation (FR) oscillatory frequency becomes larger. 

Figure 4 gives information of Larmor frequency as a function of magnetic field for CdS QDs and bulk 
sample. According to ω / (μ )L Bg B  , g = 1.930 ± 0.004 and 1.78 ± 0.02 can be obtained for QDs and 

bulk sample, respectively. The g factor in CdS bulk sample agrees well with the value of electron g 

factor in the literature (while hole g factor is around 1.23 in CdS bulk samples) [18], denoting the 

measured spin signals are from electron carriers. The g value of 1.93 in CdS QDs is also electronic, 

and larger than 1.78 in CdS bulk due to that quantum confinement in QDs makes electron g factor 

become larger [19]. 

Figure 4. Magnetic field dependence of time-resolved Faraday rotation (TRFR) oscillation 

frequencies. Linear fits give information of g factor, with error obtained from the fit algorithm. 
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In CdS QDs, *
2T  are varied remarkably in different magnetic fields as shown in Figure 3, from 0.7 ns 

at B = 1000 mT to 2.8 ns at B = 250 mT. However, *
2T  of CdS QDs are all obviously longer than that 

of CdS bulk sample which is approximately 36 ps in all measured magnetic fields. The reason is that 

spin-orbit coupling mechanism, which controls the spin dynamics in bulk materials, is strongly 

suppressed in QDs due to electronic localization on the nanometer length scale. 

The electron could be photo-excited or originally resident in the QD. The spin lifetime of  

photo-excited electrons will be limited by the electron-hole recombination process, but not in the case 

of resident electrons. Therefore, we can compare the decay dynamics between TRFR and TRDT 

measurements in order to check the origin of spin carriers, where spin and carrier relaxation dynamics 

are detected, respectively. Figure 5 shows the results of TRDT and TRFR measurements at B = 50 mT, 

under the same pump and probe light conditions. In the TDRT measurements, the curve shows 

biphasic dynamics, with τ1 ~ 0.37 ns and an immeasurably long time τ2 (τ1 is related to the intrinsic 

recombination of initially populated internal core states and τ2 related to the recombination of surface 
trapped states [20]), while the TRFR curve only shows single exponential dynamics with *

2 ~3.6 nsT . 

The carrier population dynamics has no effect on the spin evolution process, otherwise the spin 

dynamics would be partly affected by τ1 process of the carrier recombination. Thus, the spin carriers in 

our QD samples should be resident electrons. The resident electron may come from the charge transfer 

between the stabilizer reagent of oleic acid molecules and CdS QDs [20]. 
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Figure 5. Comparison between time-resolved differential transmission and Faraday 

rotation measurement results under identical experimental conditions. 
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Now we can figure out the excitation profile of a QD with a resident electron, under the irradiation 

of a circularly-polarized pump pulse. Optical excitation of a resident electron results in the formation 

of trions. The trion singlet ground state consists of two electrons with opposite spin orientations and a 

single hole with a spin of ±3/2. Let us consider the simplest case as shown in Figure 6, i.e., the 

resonant excitation of the trion singlet ground state, by a σ+ laser pulse in zero magnetic field. 

According to optical selection rules, only spin-up resident electrons will be excited to spin-up trion 

states where the total spin is defined by the hole spin, leaving a net part of spin-down-polarized 

resident electrons [21]. When an external transverse magnetic field is applied, the spin-polarized 

electrons then precess, inducing periodically oscillatory FR signals. 

The resultant spin-up trions can recombine to create spin-up electrons via the same channel, or  

spin-down electrons after the hole spin flip. If a hole in the trion looses its spin rapidly, trions will not 

contribute any Faraday rotation signals, and the spin polarization of the electrons returning from the 

trion recombination is also negligible. In this case, trion recombinations will not affect the resident 

electron spin dynamics. While if the hole spin relaxes slowly, e.g., much slower than carrier 
recombination rate, the resident electron spin dephasing rate will become *

2 1(1/ 1/ )T  , or it is 

implied that trion recombinations have influence on the resient electron spin dynamics. Following the 

comparison result shown in Figure 5, one can conclude that hole spins of CdS QDs really have a rapid 

relaxation rate (much larger than trion recombination rate), otherwise the electrons unequally return 

from the two arms of trion recombinations, and then affect the resident electron spin relaxation 

dynamics. It is further convinced by the fact that no trion (or hole) spin signals are detected on the 

present measurement time scale. The hole-spin relaxation is rapid due to valence band mixing [22]. 
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Figure 6. Excitation scheme of the electron spin generation in a negatively charged 
quantum dot under resonant trion excitation. ↑↓ electron spin; ,  , hole spin. τ,  τh

s , trion 

recombination time and hole spin lifetime, respectively. 
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4. Conclusions 

Spin initialization process under the irradiation of a femtosecond laser pulse is revealed 

experimentally in colloidal CdS QDs at room temperature. By comparing the spin dephasing dynamics 

and Landé g factor between CdS QDs and bulk materials, it is concluded that the observed spin signals 

of CdS QDs belong to electron carriers. Comparison between time-resolved differential transmission 

and Faraday rotation measurements shows that carrier recombination has no effect on electron spin 

relaxation dynamics. Therefore, one can conclude that, on the one side, the electron is resident in the 

dots, and on the other side, hole spins relax rapidly. The resident electron spin dynamics is not affected 

by carrier recombinations but controlled by its intrinsic mechanisms, e.g., electron-nuclear hyperfine 

interaction or inhomogenous dephasing [16]. The electron spin initialization process is completed 

within the pulse durations. As the ensemble dephasing time in colloidal CdS QDs is of a few 

nanoseconds [16], the spin initialization time is much faster than its relaxation time. 
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