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Abstract: This paper develops a bi-directional prediction approach to predict the 

production parameters and performance of differential fibers based on neural networks and 

a multi-objective evolutionary algorithm. The proposed method does not require accurate 

description and calculation for the multiple processes, different modes and complex 

conditions of fiber production. The bi-directional prediction approach includes the forward 

prediction and backward reasoning. Particle swam optimization algorithms with K-means 

algorithm are used to minimize the prediction error of the forward prediction results. Based 

on the forward prediction, backward reasoning uses the multi-objective evolutionary 

algorithm to find the reasoning results. Experiments with polyester filament parameters of 

differential production conditions indicate that the proposed approach obtains good 

prediction results. The results can be used to optimize fiber production and to design 

differential fibers. This study also has important value and widespread application 

prospects regarding the spinning of differential fiber optimization.  

Keywords: bi-directional prediction; neural networks; multi-objective evolutionary algorithm; 

performance prediction; differential fibers 
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1. Introduction 

It is well known that before the fiber production line starts, the production parameters must be 

determined. If the fiber performance needed is changed, the corresponding production parameters must 

be changed, too. If there is an approach to find the relationship between fiber performance and 

production parameters, the fiber production can be optimized. However, the fiber production line is a 

large-scale production system that has multiple processes, different modes and complex conditions, so 

it is difficult to complete the above task. Since the 1960s, a large amount of basic theory research has 

been applied on fiber production. The traditional optimization methods of this system involve 

controlling the production equipment, improving the production processes and optimizing the fiber 

performance. However, most of them are applied to controlling production, such as the control of 

winding machines [1], the coagulation bath [2] and the stretching process [3]. In recent years, there has 

been some research in building mathematic models of the production process, which uses simulation 

technologies to find the accurate description and calculation for every step or a part of the fiber 

production, but not the whole process. Tan tried to find the relationship between diameter distributions 

and the viscosity and elasticity of meltblown fibers [4]. Gou gave a two-dimensional model of dry 

spinning polymer fibers [5]. Lee gave a numerical reduction model of optical fibers [6]. Kadi gave a 

review of the influence from mechanical behavior [7]. Arafeh used a neuro-fuzzy logic approach to 

model the material process [8]. Although these research results are accurate and correct, they have not 

considered the interaction influence among multiple steps. In addition, if the production mode or the 

equipment condition is changed, this research must be re-modified in order to adapt to the new 

production process. 

In order to find the relationship between the fiber performance and production parameters in the 

method of a black box, neural networks and multi-objective evolutionary algorithm are mentioned here, 

and both algorithms have been applied on industrial problems successfully for many years. There are 

some reviews for different neural networks [9–13]. The multi-objective evolutionary algorithm is an 

area for multiple criteria decision making, which is used to make an optimal decision in the presence 

of trade-offs between two or more conflicting objectives. It has been successfully used in pattern 

recognition, adaptive control and prediction problems [14,15]. Some similar research in this field has 

been done, such as Liu adopting an adaptive neuro fuzzy inference system (ANFIS) to perform 

parameter prediction [16], Deng using intelligent decision support tools to design production [17], Yu 

using a fuzzy neural network to predict the fabric hand [18] and Yang using a neural network approach 

to optimize the mechanical characteristics of short glass fiber [19]. However, most of the existing 

results about prediction problems are always a matter of one-way prediction.  

Based on neural networks and a multi-objective evolutionary algorithm, this paper develops an 

approach to predict both fiber performance and production parameters, and its final target is to 

optimize fiber production. This approach only depends on the production parameters and their 

corresponding fiber performance, so it remains unaffected when the production modes or the 

equipment conditions are changed. The prediction in this paper consists of the bi-directional prediction 

process, which includes the prediction of the fiber performance by the production parameters and the 

prediction of the production parameters by the fiber performance. If these two prediction processes are 

regarded as two irrelevant parts, they can be solved by many kinds of algorithms, but there may be 
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some problems. Because the forward prediction is based on the production process, it is a forward 

process in nature, which means it can be seen as an independent prediction. However, backward 

reasoning is complex, because it is a reverse process in nature. For example, different production 

parameters can achieve same fiber performance, and this situation will affect the backward reasoning 

results, which means that one-way prediction is not enough to solve this backward reasoning. In a 

word, comparing with the forward prediction, which can be solved by different algorithms simply, 

backward reasoning is too complex to be realized by the same algorithms as the forward prediction, 

because of the missing data, the conflict data, the interaction influences and other problems. In order to 

avoid those problems, the forward prediction and backward reasoning are designed together in the  

bi-directional prediction approach in this paper, and in addition, the prediction approach adopted in 

this paper is a bi-directional prediction approach, whose backward reasoning is based on  

the forward prediction. 

In order to solve the accuracy problem, through experiments and data analysis, this paper uses 

hybrid intelligent algorithms, including a particle swarm optimization algorithm with a K-means 

algorithm to optimize the clustering and to increase the accuracy of the forward prediction. Backward 

reasoning, as mentioned before, is based on the forward prediction, and it can be seen as a  

multi-objective evolutionary problem. This paper uses a multi-objective evolutionary algorithm, the 

clustering results and the forward prediction to achieve the backward reasoning results. 

The remainder of this paper is organized as follows. In Section 2, we give the introduction of the 

fiber production and the bi-directional prediction optimization, including the production process, the 

production parameters, the fiber performance and the design of the forward prediction and backward 

reasoning. In Section 3, the implementation, simulation results and error analysis of the  

bi-directional prediction approach are given, which is applied to design polyester filament parameters. 

Finally, concluding remarks are given in Section 4. 

2. Fiber Production and Bi-Directional Prediction Optimization 

2.1. Fiber Production Process  

The production of fiber is a complex production line, which generally consists of two systems: the 

melting transportation system and the spinning system. The melting transportation system is used to 

convert the fiber materials to liquid, and this is accomplished by the following spinning system. The 

spinning system includes a quenching area and a stretching process. The quenching area is used to help 

the liquid to solidify in the streams, which are called ‘as-spun’ fibers [20,21], and then, the ‘as-spun’ 

fibers can be stretched in the stretching process, according to the stretching ratio. Although different 

fibers ask for different combinations of equipment and materials, the basic production processes are 

similar. The production process of polyester staple fiber is depicted in Figure 1.  

In order to produce fibers with good performance, the optimization of fiber production always 

depends on the adjusting and controlling of production parameters. Because the production line 

consists of several processes, there are numerous production parameters that need to be determined in 

every process. In addition, all the processes have interaction influences on each other. The traditional 

approaches, which follow experience, are not accurate enough to solve the problems above, and the 
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mathematic models are not adaptable enough to solve for differential fibers. Therefore, if we can find a 

way to achieve the bi-directional prediction results with hybrid intelligent algorithms, the production 

parameters can be determined and fiber production can be optimized.  

Figure 1. The process of fiber production.  

 

First of all, the selection of the key production parameters and fiber performance is the foundation 

of this paper. At the beginning of production, the materials will be melted into liquid according to a 

predefined viscosity and temperature; this process belongs to the chemical category, so it is not taken 

into account in this paper. After this process, the materials will enter the quenching area and the 

stretching process. These two processes are the most important ones in this paper, so all the parameters 

of these processes are considered in the bi-directional prediction approach. 

In the bi-directional prediction approach, the prediction of fiber performance by production 

parameters is a forward prediction process and the prediction of production parameters by fiber 

performance is a backward reasoning process. 

2.2. Fiber Production Process Overall Design of Bi-Directional Prediction Approach 

As mentioned above, the bi-directional prediction approach consists of the forward prediction and 

backward reasoning. 
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2.2.1. Forward Prediction 

Because fiber production is a positive process, the forward prediction is a positive process, too. It 

stands to reason that when the parameters of fiber production are changed, the corresponding fiber 

performance will be changed accordingly. In addition, production is a long-term process, which means 

that the predetermined production parameters usually need not be changed once in production. 

Because of the production conditions and environment conditions, there must be a small disturbance 

between the real production parameters and the presupposed production parameters. In other words, 

the real measured production parameters of production, at the same time, are not the same, but they are 

similar. Therefore, if the production parameters are similar, there must be little difference between the 

fiber performances. Meanwhile, though the production parameters of every production process are 

unstable, the fiber performance must also have incredibly small variations, which means they all have 

the characteristic of aggregation. 

From the above analysis, the relationship between the production parameters and the fiber 

performance can be assumed as a many-to-many problem. Because there is a characteristic of 

aggregation in the production parameters and their corresponding fiber performance, this  

many-to-many problem can be simplified to a one-to-one problem by a clustering algorithm. In order 

to solve this one-to-one problem, this paper developed neural networks based on a clustering algorithm 

to fulfill the function of the forward prediction. 

2.2.2. Backward Reasoning 

The prediction of production parameters by fiber performance is a reverse process, so the prediction 

process can be seen as backward reasoning. Compared with the forward prediction process, the 

backward reasoning process is more complex. Traditional prediction approaches will meet some 

problems, as follows. Firstly, the variety of fiber performance is more inadequate than the production 

parameters. Secondly, because the production has several processes and every process of the whole 

production is not independent of each other, it is possible that similar fiber performance can sometimes 

be achieved with different production parameters, which means that backward reasoning cannot be 

simplified to a one-to-one problem; it is a one-to-many problem. The one stands for the fiber 

performance, and the many stands for the production parameters. Therefore, traditional neural 

networks based on a clustering algorithm, which is used in the forward prediction process, are not 

suitable for backward reasoning. 

In order to solve the above problems, backward reasoning consists of not only itself, but also the 

clustering results and the forward prediction. First, we use the clustering results as the foundation of 

backward reasoning. Since the clustering results are based on the production parameters, it can keep 

the variety of fiber performance without changing its structure and avoid the influences of the missing 

and conflict data. Secondly, in order to solve the one-to-many problem, the multi-objective 

evolutionary algorithm is used in it to find the optimal answer in the many part, and the forward 

prediction is used to calculate the objectives.  

Figure 2 is the overall chart of the bi-directional prediction approach above. 
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Figure 2. The overall chart of the bi-directional prediction approach. 

 

2.3. Design and Improvement of the Bi-Directional Prediction Approach 

The design and improvement of the bi-directional prediction approach will be divided into three 

parts: the clustering process, the forward prediction and backward reasoning. 

2.3.1. Design of the Clustering Process 

As mentioned above, the bi-directional prediction is composed of the forward prediction and 

backward reasoning. Backward reasoning depends on the forward prediction, and the forward 

prediction is based on the positive clustering result; so, the clustering result is the most important point 

in the bi-directional prediction approach. 

The clustering algorithm is an important tool for data analysis and an unsupervised classification 

algorithm, which can classify the unlabeled data automatically. Up to now, a lot of algorithms have 

been proposed and applied in clustering problems, but they all have a common problem, that the result 

is the locally optimal solution. In order to solve this problem, this paper uses some hybrid intelligent 

algorithms to optimize traditional clustering algorithms. Compared with other clustering algorithms, 

the particle swam optimization algorithm (PSO) with its multifarious particles can get the global 

optimal solution more efficiently [22,23], and the K-means algorithm is good at optimizing the local 

optimal solution [24,25].  

Firstly, the whole clustering process will be operated by every kind of fiber performance, which can 

optimize the clustering results. All the training data are preprocessed to be the same order as Equation (1); 

this normalization approach can avoid the effects of the difference across different data kinds and 

increases the clustering efficiency and accuracy. The preprocess effect is relieved by Equation (2), 

where X
*
 is the initial data and X is the processed data. 
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Secondly, we use the PSO function and multifarious particles to find the preliminary result. The 

selection of the initial particles of the PSO function is random in the training data, and the initial 

particles include the input data and the output data of every center. The selection in training data can 

avoid the generation of invalid centers, and including the output data can avoid the error of data 

mutations. The fitness of the PSO function is the key point, and the calculation of the i-th fitness is as 

shown in Equation (3), where xj is the j-th training input data, n is the number of training input data,  

Xi is the i-th particle and m is the number of particles.         is the calculation of the Euclidean 

distance between xj and Xi. 
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Thirdly, the particle updating functions are as shown in Equation (4), where w is the speed factor,  

r1 and r2 are random numbers between 0 and 1, Pbest and Gbest are the best particle and the global best 

particle, respectively, t is the step number of this updating and nstep is the total iterative times of the 

whole clustering process. Equation (4) shows the traditional particle updating functions [22]. 
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(4)  

Through iterative analysis and calculation, all the particles will be directed to the best result, which 

means that most of the particles will be similar to each other. When the similarity of the particles 

reaches a certain high degree, the best particle is nearer to the global optimal solution. However, all the 

initial particles are different in their centers’ order with respect to each other, so the similarity is 

difficult to judge by the particles themselves. However, the fitness of every particle stands for both the 

cluster accuracy and its particle, so the similarity of the fitness can stand for the similarity of the 

particles. Then, the K-means function is added to increase the accuracy of the optimal solutions and to 

optimize the clustering result. 

In addition, a mutation operator is used to make particles that are far from the local optimal solution. 

Because the mutation operator can lead the particles to be both better and worse, the mutation operator 

is used on all the particles, except the optimal particle. Then, the optimal particle can just  

keep being optimized. 

Finally, we calculate the output centers according to the input centers and the training output data, 

as shown in Equation (5), where Yj is the j-th output center, Xj is the j-th input center, xi is the training 

input data, which are clustered into the j-th input center, yi is the corresponding training output data of 

xi and n is the number of training data in the j-th center. The numerator of the coefficient calculation is 

the exponent of the distance between the input data and the input center, and its denominator is the 

total of all the distance factors. This cannot only keep the inverse proportion between the coefficient 

and the distance, but also avoid the effect from the coefficients’ order of magnitude. In this function, 

the closer the input data is to the input center, the bigger the coefficient of the corresponding output 

data will be weighted, which means it can decrease the effect from some data that have similar 

production parameters and performance with a large difference. 
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(5)  

The steps of the clustering algorithm are as follows. 

Step 1: Preprocess the training data by Equation (1). 

Step 2: Select the initial particles randomly in the training data and calculate the initial fitness by 

Equation (3) of all the particles and the initial Pbest and Gbest with their particle as the local 

and global optimal one. 

Step 3: Update the particles by Equation (4) and make sure that all velocities of particles are less 

than Vmax.  

Step 4: Calculate the fitness of all the particles by Equation (3) and update Pbest and its local 

optimal particle. If Pbest < Gbest, then Gbest = Pbest, and update its globally optimal particle. 

Step 5: Regard the Pbest particle as the optimal particle; other particles have the mutation operator. 

The rate of the mutation operator is 10%, and the mutations will change into another 

particle selected in the training data randomly. 

Step 6: If all the steps are over, or two thirds of the fitness values are similar to the global best 

particle’s, then use the K-means function to optimize the global best particle three times; 

else, return to Step 3. 

Step 7: Calculate the output centers as in Equation (5) by the global best particle, and output the 

clustering result. During the calculation, if there is no training data in one center, then this 

center will be deleted from the final clustering result. 

2.3.2. Design and Improvement of the Neural Networks 

Traditional neural networks can do prediction, but this prediction is point prediction, which conveys 

little information about the prediction accuracy [10,11]. Radial basis function neural networks based 

on a Gaussian function are used here to optimize the prediction accuracy and avoid the point  

prediction [26,27]. There are some traditional difficulties in this kind of algorithm: the calculation of σ 

and the calculation of weight [7,9].  

Firstly, the value of σ in the radial basis function neural networks shows the width of each center, 

and the final fitness value of each clustering result shows the average distance of all the centers. 

Therefore, this paper uses the final fitness value of each clustering result to calculate the value of σ by 

Equation (6), where m is the number of kinds of fiber performance, and factor 2 enlarges the width of 

every center by the average distances as the maximum distance. 

σ( ) 2 ( ), 1,2i fitness i i m    (6)  

Secondly, the traditional function to calculate the weight of every output center relies on the value 

of σ. Although the calculation of σ is improved and simplified, in this paper, it is an average value.  

In order to reduce the prediction errors, this paper also improves the function of weight value, which 

can assure that the total value of all the weights is one and the prediction value is within the range.  

The traditional Gaussian function is as shown in Equation (7), while the improved Gaussian function is 
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as shown in Equation (8), where wij is the j-th output center’s weight of the i-th output kind, X is the 

input data, Cij is the j-th input center of the i-th output kind, σ is a constant, m is the number of output 

kinds and n is the clustering amount. 
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(8)  

The steps of the clustering algorithm are as follows. 

Step 1: Preprocess the input production parameters by Equation (1). 

Step 2: Calculate the σ by Equation (5) and the weights by Equation (7). 

Step 3: Add up the production of every center and its weight. 

Step 4: Relieve the preprocess effect by Equation (2), and get the prediction result of the  

fiber performance. 

2.3.3. Design and Improvement of the Multi-Objective Evolutionary Algorithm 

Backward reasoning is a one-to-many problem; in other words, there is more than one production 

parameter set that can achieve the target fiber performance. As mentioned above, the foundation of 

backward reasoning is the positive clustering result based on output classes. Therefore, every 

clustering result can be seen as a subset, and every local optimal solution can be seen as a sub-goal.  

A multi-objective evolutionary algorithm is a good tool to solve this kind of problem and find the 

globally optimal solution [28,29]. The non dominated sorting genetic algorithm (NSGA)-II [28,30] 

algorithm has been one of the most popular algorithms to solve this kind of problems in recent years. 

The backward reasoning process based on the multi-objective evolutionary algorithm is shown  

as follows: 

Step 1: According to the input data in backward reasoning, select the high similarity output centers 

and their corresponding input centers in the positive clustering results by the classes of the 

output data and save the deviations between the input data and the centers. All of the 

corresponding input centers are candidate solutions. 

Step 2: Optimize all of the candidate solutions by the selection process, the genetic operator and 

replacement process. Calculate the fitness of every objection by Equation (9) of the 

solution, where Sij is the j-th output of the i-th solution’s forward prediction result, Xj is the 

j-th output of the input fiber performance, m is the number of the solutions and n is the 

number of fiber performance kinds. 

( ) ( ), 1,2 , 1,2ij jfitness j abs S X i m j n     (9)  

Step 3: Select the better solutions to be the optimized solution sets by two rules. Firstly, calculate 

the better number of other solutions, which is in total better than this solution, solution by 

solution. The in total better solution means that every fitness value in it is smaller than the 
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corresponding fitness value in this solution. Secondly, from the better numbers, small to big, 

calculate the total value of all the fitness solutions by the solutions that have the same better 

number, and choose the one that has a smaller value to fulfill the new solution set, until the set 

is full. 

Step 4: If all the steps are over, then relieve the preprocess effect and output the final solution set; 

else, return to step 2.  

Figure 3 is the overall chart of the algorithm above. 

Figure 3. The overall chart of backward reasoning.  

 

3. Application and Results  

The bi-directional prediction approach consists of three parts, the modified clustering algorithms, 

the forward prediction and backward reasoning. Therefore, the application of this prediction approach 

will be tested in those three parts. 

3.1. The Performance of the Clustering Approach 

As mentioned above, the forward prediction is based on the clustering results, and backward 

reasoning is based on the forward prediction; the modified clustering algorithm is the foundation of the 
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bi-directional prediction approach. The accuracy and veracity of this modified clustering algorithm is 

an important problem. Because the accuracy and veracity of fiber production parameters have no 

judgment standard, the iris data is used to test this algorithm. Iris data, which has three classes, 150 

data rows and four columns, is always used in the performance test of a clustering algorithm. 

Table 1 lists the parameters of the algorithm applied in this paper, and Table 2 is the error list and 

the fitness of the proposed algorithm, the traditional PSO algorithm and the K-means algorithm. 

According to the results, the proposed algorithm has accuracy and veracity of high levels, and the 

clustering result by this algorithm can also optimize the prediction accuracy. 

Table 1. Parameters of the algorithm applied.  

Category Item Value 

Parameters Value 

Learning Factor (C1,C2) 1.5 

Speed Factor (wmax) 0.9 

Speed Factor (wmin) 0.4 

Velocity Maximum 0.5 

Maximum Step 100 

Classify Number 3 

Particle Number 10 

Data Size 

Size of Training Input Data (150 × 4) 

Size of Training Output Data (150 × 1) 

Size of Input Centers (3 × 4 × 1) 

Size of Output Centers (3 × 1) 

Table 2. Clustering results of different algorithms. PSO, particle swam optimization algorithm.  

Item PSO K-means This Paper 

Error 15 17 6 

Final Fitness 0.67 0.53 0.27 

3.2. The Prediction Results of Polyester Staple Fiber 

3.2.1. Parameters Selection  

As mentioned before, the most important sections of fiber production are the quenching area and  

the spinning system, and the material melting is assumed to be predetermined in this paper. The 

experiments are based on a 1.56 dtex (its fineness is 1.56 dtex) cotton-type polyester staple fiber with a 

fully-closed quenching area fiber production line. Since there are many production lines, with different 

production parameters, there are a large number of production parameters and their corresponding 

fiber performances. Table 3 is a parameters list with the value ranges of these fiber production lines. In 

Table 3, the major variable production parameters are the spinning velocity (SV), the spinning 

temperature (ST), the quenching velocity (QV) and the quenching temperature (QT). In addition, the 

major variables of fiber performance were the elongation, corresponding to 1.5 times the yielding 

stress (EYS1.5), the coefficient of variance (EYSCV), the breaking tenacity (BT) and the ability for 

elongation when broken (BE). 
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Table 3. Clustering results of different algorithms. EYSCV, elongation yielding stress 

coefficient of variance; BT, breaking tenacity; BE, ability for elongation. 

Category Item Value 

Fiber Category 
Fineness (dtex) 1.56 

Post-drawing Ratio 3.6523 

Equipment Parameters 

Non-quenching Gap Height (cm) 6 

Number of Spinneret Orifice 3064 

Diameter of Spinneret Orifice (cm) 0.0022 

Pump Mass Throughput (g/min·hole) 0.0097 

Spinning Parameters 

Spinning Velocity (m/min) 1000~1197 

Spinning Temperature (°C) 280~299 

Characteristic Viscosity (dL/g) 0.63 

Quenching Parameters 
Quenching Velocity (m/min) 100~139 

Quenching Temperature (°C) 20~24 

Fiber Performance 

EYS1.5 196.29~237.78 

EYSCV 5.46~10.04 

BT 5.82~6.81 

BE  20.94~24.05 

3.2.2. Design of the Bi-Directional Prediction Approach  

All of the practical fiber data are divided into two parts. About 3000 of them are selected as  

training data, and the others are the testing data. Table 4 lists the parameter setting of different parts of 

the bi-directional prediction approach. 

Table 4. Parameters of the bi-directional prediction approach. 

Category Item Value 

Forward Prediction 

Learning Factor (C1,C2) 1.5 

Speed Factor (wmax) 0.9 

Speed Factor (wmin) 0.4 

Velocity Maximum 0.5 

Maximum Step 100 

Classify Number 350 

Particle Number 10 

Size of Training Input Data (3000 × 4) 

Size of Training Output Data (3000 × 4) 

Size of Input Centers (350 × 4 × 4) 

Size of Output Centers (350 × 4) 

Size of Weights (350 × 4) 

Backward Reasoning 

Population Size 40 

Generations Number 1000 

Objectives Number 5 

Variables Number 4 

  



Materials 2013, 6 5979 

 

 

3.2.3. Results and Analysis 

(1) Clustering Results 

The clustering results are the foundation of forward prediction and backward reasoning. Its 

accuracy and rationality have direct influences on the bi-directional prediction results. In order to 

prove that the clustering results are accurate and reasonable, other algorithms are used to compare with 

it. The clustering results, including the final classification number and the fitness, are as shown  

in Table 5. 

Table 5. Clustering results of different algorithms. 

Item PSO K-means 
This Paper 

EYS1.5 EYSCV DT DE 

Centers 213 160 343 345 344 344 

Fitness 0.140 0.087 0.049 0.048 0.045 0.049 

All the original classification numbers are set to 350. Through the clustering process, some centers 

will be deleted, because they are too alike other centers. In the proposed algorithm, the clustering 

process is repeated four times, because the corresponding output data has four kinds. The final center 

number of the proposed algorithm is twice as much as that of the traditional algorithms. It can be said 

that the proposed algorithm keeps the variety of the centers. Table 6 lists the comparison of clustering 

results with different algorithms; some data are classified in the same center by traditional algorithms, 

while by the proposed algorithm, they are classified in different centers, where all the data are 

preprocessed by Equation (1).  

Table 6. The center number of different algorithms. SV, spinning velocity; ST, spinning 

temperature; QV, quenching velocity; QT, quenching temperature. 

Training Data Center Nubmer 

SV ST QV QT DE PSO K-means This paper 

0.12  0.06  0.99  0.46  0.62  6 23 153 

0.01  0.27  0.99  0.59  0.74  6 23 169 

0.04  0.22  0.74  0.46  0.68  6 23 234 

0.09  0.11  0.99  0.46  0.66  6 23 305 

In addition, the fitness of all algorithms is the total value of the difference of the training data and 

its corresponding center, so the smaller the fitness is, the better the clustering result is. It can be said 

that the proposed algorithm in this paper has a good clustering result. 

(2) Forward Prediction Results 

The fiber performance, including EYS1.5, EYSCV, DT and DE, can be predicted by forward 

prediction with the production parameters consisting of SV, ST, QV and QT. 

The production parameters as the input data are listed in Table 7, in which one parameter is 

regarded as the variable and the others are the invariant parameters. Figure 4 shows the actual values 

and the prediction results of different parameters, respectively. Some prediction results in Figure 4 
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may have a bigger error than others, but this is mostly because of the y-range; so, the forward 

prediction achieves good results. 

Table 7. Prediction parameters of the input. 

Number SV ST QV QT 

(a) Variable 290 134 21 

(b) 1050 Variable 130 20 

(c) 1140 290 Variable 21 

(d) 1050 280 130 Variable 

Figure 4. (a) Prediction results relying on SV; (b) prediction results relying on ST;  

(c) prediction results relying on QV; (d) prediction results relying on QT. In order to prove 

that the forward prediction algorithm has a good result generally and that it can be adapted 

to differential fibers, we use more datasets from the experiment above and another 

experiment’s data to test it. The training data is about 3,000 datasets, and the testing data is 

about 300 datasets. Table 8 is the average error of both fibers. The errors of the differential 

fibers can be acceptable, and these results can lay a good foundation for  

backward reasoning.  

 

(a) 

 

(b) 
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Figure 4. Cont. 

 

(c) 

 

(d) 

Table 8. Forward prediction results of differential fibers. 

Error (%) EYS15 EYSCV DT DE 

Fully-closed 0.28 0.74 0.21 0.20 

Semi-open 0.26 0.64 0.22 0.20 

(3) Backward Reasoning Results 

The production parameters, including SV, ST, QV and QT, can be predicted by backward reasoning 

with the fiber performance consisting of EYS15, EYSCV, DT and DE. 

From Figure 4, it can be observed that there is a variation tendency in every relationship between 

production parameters and fiber performance. For example, the increase of ST and QT will increase 

EYS15 and DE, while reducing EYSCV and DT. The increase of SV and ST will increase DE, while 

reducing EYS15 and DE. EYSCV will be increased by SV and reduced by QV. This also shows that 

backward reasoning is a one-to-many problem. 

In this paper, there are four kinds of fiber performance, and there is no special order for each 

performance. Therefore, four objective function values will be averaged. Table 9 lists several 

backward reasoning results of the 1.56 dtex cotton-type polyester staple fiber with a fully-closed 
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quenching area fiber production line. All of the experiment data is based on practical fiber production. 

Most of the backward reasoning errors are below 5%, and the average error is around 2%. As 

mentioned before, fibers of a similar performance can have different production parameters. Table 10 

lists the backward reasoning of similar performance. The top part of Table 10 lists some examples of 

similar performance and their corresponding parameters. There are differences of output among N1, 

N2 and N3, which have similar input. After giving the input of N1, because backward reasoning has 

not only converging speed, but also diversity, it will have several solutions of one problem when that is 

necessary. Finally, the solutions of backward reasoning include S1, S2 and S3. S1 is the best solution 

of this prediction; however, S2 and S3 are also feasible answers, because following N2 and N3, these 

two production parameters can achieve similar fiber performance. Table 10 shows that the proposed 

algorithm does well in this backward reasoning. 

Table 9. Prediction results of backward reasoning. 

Number 
Input Actual Predict 

EYS1.5 EYSCV DT DE SV ST QV QT SV ST QV QT 

1 217.31 7 6 23 1074 290 22 134 1069.8 289.6 22.0 136.5 

2 205.28 8.94 6.6 21.61 1182 286 22 117 1196.7 285.8 22.0 117.2 

3 217.84 8.6 6.3 22.56 1095 297 22 139 1094.2 296.8 22.0 138.7 

4 214.63 8.25 6.37 22.32 1090 282 23 113 1077.3 280.0 23.0 113.7 

5 214 7.23 6.39 22.27 1057 282 23 139 1078.0 283.5 23.5 138.6 

6 223.62 6.49 6.16 22.99 1103 296 24 131 1054.7 288.7 23.7 137.0 

7 202.2 10.04 6.67 21.38 1190 287 20 110 1190.4 281.5 20.0 106.3 

8 205.93 9.87 6.58 21.66 1197 292 20 107 1165.9 284.3 20.2 106.3 

9 225.81 8.38 6.11 23.15 1041 297 20 112 1030.5 290.9 21.1 108.8 

10 223.90 7.81 6.15 23.01 1087 292 23 107 1089.1 292.3 22.9 108.3 

Error (%) 1.65 1.11 1.34 1.85 

Table 10. Prediction results of backward reasoning. 

Item Number 
Input Output 

EYS15 EYSCV DT DE SV ST QV QT 

Real Data 

N1 223.90 7.81 6.15 23.01 1087.00 292.00 23.00 107.00 

N2 224.92 7.79 6.13 23.09 1079.00 292.00 23.00 106.00 

N3 225.47 7.86 6.11 23.13 1047 292 22 111 

Solution 

S1 

223.90 7.81 6.15 23.01 

1089.08 292.33 22.87 108.34 

S2 1079.08 291.33 22.78 105.34 

S3 1045.10 289.99 22.04 111.93 

4. Conclusions  

A newly bi-directional prediction approach based on hybrid intelligent algorithms, which involved 

neural networks and multi-objective evolutionary algorithm, is adopted and further developed in this 

paper. The bi-directional prediction approach makes an attempt to find the relationship between the 

production parameters and the fiber performance of differential fiber production lines and optimizes 

the production of the fiber. In addition, the parameters of the bi-directional prediction approach can be 
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changed to suit differential fibers. The predictions of differential fibers given in this paper prove the 

accuracy of this approach. This approach can provide a way to determine the parameters before real 

production and to meet different types of fiber performance. 
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