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Abstract: Solid dispersions of tanshinone IIA (TanIIA) using hydroxyapatite (HAp) as the 

dispersing carrier (TanIIA-HAp SDs) were prepared by the solvent evaporation method. 

The formed solid dispersions were characterized by scanning electron microscopy (SEM), 

differential scanning calorimetry analysis (DSC), X-ray powder diffraction (XRPD) and 

Fourier transforms infrared (FTIR) spectroscopy. The in vitro dissolution rate and the 

stability of TanIIA-HAp SDs were also evaluated. DSC and XRPD showed that TanIIA 

was changed from a crystalline to an amorphous form. FTIR suggested the presence of 

interactions between TanIIA and HAp in solid dispersions. The result of an in vitro 

dissolution study showed that the dissolution rate of TanIIA-HAp SDs was nearly  

7.11-folds faster than free TanIIA. Data from stability studies for over one year of  

TanIIA-HAp SDs performed under room temperature revealed no significant differences in 

drug content and dissolution behavior. All these results indicated that HAp may be a 

promising carrier for improving the oral absorption of TanIIA. 
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1. Introduction 

Tanshinone IIA (TanIIA), a highly lipophilic compound, isolated from the Chinese medicinal herb 

Salvia miltiorrhiza, has been reported to treat cardiovascular and cerebrovascular diseases, including 

angina pectoris, arrhythmias, acute ischemic stroke and hyperlipidemia [1–6]. However, it was limited 

in clinical use, due to its poor oral absorption (below 3.5%) caused by its poor solubility and low 

dissolution rate [7–12]. Therefore, a pharmaceutical strategy for promoting its solubility or dissolution 

rate should be designed to develop tanshinone IIA as a new drug candidate.  

Solid dispersion is one of the most successful techniques, which could enhance the dissolution rate 

of poorly aqueous soluble drugs by particle size reduction, amorphous fraction and wettability 

improvement [13–15]. The high energy state of the amorphous form confers higher solubility and 

improves bioavailability through increasing dissolution. Thus, the application of amorphous phases has 

been the subject of very intensive investigations in the pharmaceutical field [16–18]. However, the 

thermodynamic instability of this amorphous state is generally associated with the high energy state 

and may lead to unacceptable physical changes, such as recrystallization during storage [19,20]. 

Although factors governing physical stability remain controversial and complicated, it was well known 

that specific interactions between drug and carrier may retard this conversion to the crystalline  

form [21–23]. As reported by Wu et al. [24] and Al-Obaidi et al. [25], the hydrogen bonding between 

drug and carrier is responsible for drug dispersion and depresses the crystallization of drug in  

solid dispersions. 

Hydroxyapatite (HAp) is a natural element of human hard tissues (70% of bone is made up of this 

organic mineral) and has been commonly studied in bone tissue engineering, owing to its good 

biocompatibility [26–29]. HAp is known for its bioactive (i.e., ability of forming a direct chemical 

bond with surrounding tissues), osteoconductive, non-toxic, non-inflammatory and non-immunogenic 

properties [30,31]. Furthermore HAp has been applied widely in various biomedical applications, 

owning to its unique functional properties of high surface-area-to-volume ratio and porosity. Its 

ultrafine structure, which is similar to biological apatite’s, had a great impact on cell-biomaterial 

interaction [32–34]. However, HAp has not yet been reported as a carrier of solid dispersions. 

Therefore, TanIIA-HAp SDs were prepared by the solvent evaporation method; and they were studied 

by scanning electron microscopy (SEM), differential scanning calorimetry analysis (DSC), X-ray 

powder diffraction (XRPD) and Fourier transforms infrared (FTIR) spectroscopy, along with the  

in vitro dissolution rate and stability. Through this research, we expect to pave the preliminary way 

towards the feasibility of HAp as a carrier of solid dispersions.  

2. Experimental Section  

2.1. Materials  

TanIIA with 98% purity was purchased from the Nanjing ZeLang Medical Technology Co., Ltd. 

TanIIA standards were purchased from the National Institute for the Control of Pharmaceutical and 

Biological Products (Beijing, China). HAp was supplied by Shanghai Jiang Lai Bio-Technology Co., 

Ltd. All reagents were of analytical grade, except methanol, which was of chromatographic grade. 
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2.2. Preparation of Solid Dispersions and Physical Mixtures 

Solid dispersions of TanIIA with HAp in various weight ratios were prepared using the solvent 

evaporation method. In brief, TanIIA was dissolved in ethanol and HAp was suspended into the above 

solution (the weight ratio of TanIIA and HAp was 1:3, 1:5, 1:7 and 1:9). The formed suspension was 

evaporated under reduced pressure in a rotavapor (Buchi, Switzerland) at 45 °C. The obtained solid 

dispersions were further dried in a vacuum chamber (Heraeus, Germany) at room temperature for 12 h 

to remove the remaining ethanol. Subsequently, samples were stored in a desiccator until further 

analysis. Physical mixtures were prepared by mixing TanIIA with HAp, then grinding thoroughly with 

a mortar and pestle until homogeneous mixtures were obtained. 

2.3. In vitro Dissolution Study 

2.3.1. HPLC Analysis of TanIIA 

The concentration of TanIIA in the dissolution medium was determined by using a high 

performance liquid chromatography (HPLC) system (Shimadzu Scientific Instrument, MD, USA), 

consisting of a UV detector (SPD-10A), a pump (LC-10AD) and an automatic injector (SIL-10A). The 

mobile phase of methanol and water (85:15, v:v) was used at a flow rate of 1.0 mL min−1. The  

samples were analyzed at 270 nm and the 30 °C temperature of a DiamonsilTM RP-C18 column  

(250 mm × 4.6 mm, 5 μm). 

2.3.2. In vitro Dissolution Studies  

The dissolution studies were performed using the paddle method, according to the 34th edition of 

US Pharmacopoeia. A ZRS-8G dissolution tester (Tianjin, China) was used with 900 mL dissolution 

media (distilled water contained 0.5% sodium dodecyl sulfate) volume at 37 ± 1 °C and a stirring rate 

of 50 rpm. The samples equivalent to 5 mg TanIIA were sealed in hard gelatin capsules with a manual 

capsule filling machine (CapsulCN-50, Zhejiang, China) and put into the dissolution cup. At 

predetermined time intervals of 15, 30, 60, 90, 120 and 180 min, 5 mL of dissolution medium were 

withdrawn and replaced with the same medium volume. The withdrawn samples were filtrated  

(0.45 μm), then spectrophotometrically assayed at 270 nm. Experiments were performed in triplicate. 

2.4. Differential Scanning Calorimetry (DSC) 

The DSC profiles of TanIIA, HAp, physical mixtures and solid dispersions were obtained by using 

differential scanning calorimeter (204A/G Phoenix® instrument, Netzsch, Germany) at a heating rate of 

10 °C/min from 25 to 500 °C in a nitrogen atmosphere. 

2.5. Scanning Electron Microscopy (SEM) 

SEM samples were mounted on aluminum stubs and coated with a thin gold–palladium layer using 

an auto-fine coater unit (Jeol, JFC, Tokyo, Japan). The surface topography was analyzed with a Jeol 

scanning electron microscope (JSM-6360A, Tokya, Japan) operated at an acceleration voltage  

of 30 kV. 
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2.6. X-ray Powder Diffraction (XRPD) 

XRPD was performed at room temperature with a X-ray diffractometer (X-pro Pan analytical, 

Phillips, Mumbai, India). The data were collected through primary monochromated radiation (Cu Ká1, 

ë =1.5406 Å), over a 2θ range of 0°–70° with a step size of 0.04 and a dwell time of 10 s per step. 

About 200 mg of each sample powder were side-loaded in a sample holder to minimize possible 

preferential orientation.  

2.7. Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR spectroscopic analysis was carried out using a Nicolet Nextus 470 FTIR spectrometer 

(Thermo Electron Corporation, USA). The infrared spectra of the samples were recorded in the solid 

state using the KBr disc method over a wave number range of 4000–400 cm−1. Individual HAp, 

TanIIA and physical mixtures were run as controls. 

2.8. Stability Test 

The prepared solid dispersions were stored for 12 months at 25 ± 2 °C and 60% ± 5% relative 

humidity in an artificial climate box. The extent of dissolution was analyzed at predetermined time 

intervals of 0, 3, 6, 9, 12 months.  

3. Results and Discussion 

3.1. In vitro Dissolution Study 

The dissolution rate of TanIIA from different samples is provided in Figure 1. TanIIA crystals 

exhibited a low dissolution rate, with a 13.3% release in 60 min and only reaching 27.3% in 180 min, 

while the dissolution rate of TanIIA from the physical mixture had no significant difference compared 

with the free TanIIA. Furthermore, as we expected, an apparent trend was observed between the HAp 

ratios and the dissolution rate of TanIIA. The 1:9 SDs released 94.6% of drug in 60min, whereas 1:3, 

1:5 and 1:7 SDs exhibited a release of 40.9%, 66.3% and 92.3%, respectively. Moreover, 1:7 and 1:9 

SDs showed similar release curves and higher dissolution rates than the 1:3 and 1:5 SDs. These 

indicated that 7–9 folds of HAp carrier was enough for TanIIA SDs. In view of the need of long-term 

stability for SDs, 1:9 ratio SDs were chosen for further study.  

There were several factors explaining the improved drug dissolution from solid dispersions, such as 

the enhancement in wettability and dispersibility of TanIIA, as well as the decrease in particle size. 

The presence of amorphous TanIIA might be a significant factor, which was confirmed by the results 

obtained from SEM, DSC and XRPD. HAp is a good adsorbent for a wide range of ions, small 

molecules and macromolecules, owing to its unique functional properties of high surface-area-to-volume 

ratio [35,36]. Additionally, adsorption onto insoluble, porous, high surface-area carriers is a  

well-known technique to enhance drug dissolution and has already been described for silica-based 

excipients in the early 1970s [37].  
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carbonyl-stretching vibration peak were shifted from 1678 cm−1 to 1655 cm−1, which suggested that 

TanIIA interacted with HAp, presumably by hydrogen bonds. Hydrogen bonding formation probably 

improved the wettability properties of the drug and further increased the drug dissolution rate. 

Figure 4. The X-ray powder diffractograms: TanIIA (A); HAp (B); 1:9 (w/w) physical 

mixtures (C) and 1:9 (w/w) SDs (D). 

 

Figure 5. Fourier transform infrared (FTIR) spectra of TanIIA (A); HAp (B); 1:9 physical 

mixtures (C) and 1:9 SDs (D).  
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research is needed to investigate HAp’s toxicity or biocompatibility for oral administration in view of a 

few reports dedicated to its oral drug delivery.  
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