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Abstract: Degradation mechanisms such as lithium plating, growth of the passivated 

surface film layer on the electrodes and loss of both recyclable lithium ions and electrode 

material adversely affect the longevity of the lithium ion battery. The anode electrode is 

very vulnerable to these degradation mechanisms. In this paper, the most common aging 

mechanisms occurring at the anode during the operation of the lithium battery, as well as 

some approaches for minimizing the degradation are reviewed. 
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1. Introduction 

The high energy/ power density, and excellent cycle life of the lithium ion battery have positioned it 

as the preferred portable energy source for consumer appliances and in the automotive industry. The 

performance of the battery depends on the development of materials for the various components of the 

lithium ion battery [1–3]. The degradation of these components during battery operation adversely 

affects the energy delivery of the lithium ion battery. 

The various battery components undergo different aging mechanisms; the binder and electrolyte 

decompose, the current collector corrodes, the separator melts and corrodes, and the cathode undergoes 

structural disorder and metal dissolution.  

The anode undergoes a multitude of aging mechanisms that degrade the electrochemical 

performance of the lithium ion battery. The most commonly used anode materials include carbon-based 
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compounds and lithium-alloys. The microstructure, texture, crystallinity and morphology of the anode 

material directly influence its performance [4]. 

By design, the anode electrode has a large geometry dimension compared to the cathode electrode 

so as to prevent edge lithium plating at the anode ends. Also, the anode electrode generally has excess 

anode capacity compared to the cathode so that the battery can deliver high energy density [5]. A 

reduced anode capacity will polarize the anode to a potential close to lithium deposition potentials. 

However, higher surface area of the electrode is preferred to active surface area, since a higher surface 

allows short diffusion paths for lithium ions between the graphite particles; this facilitates fast charge 

and discharge rate and improves the capacity of the battery. Decrease particles size tends to increase 

the specific surface area from BET (Brunauer Emmett and Teller) method and the irreversible capacity 

loss increases. On the other hand, irreversible capacity decreases as the active specific area of the 

electrode increases. The intercalation of lithium ions into the graphite sheets at various stages, e.g., 

LixC6, LixC12, during the charging cycles to provide a nominal theoretical capacity of the carbon based 

anode of about 372 mAh/g. Additives, such as B, N and P, have been used to enhance this capacity. 

Nevertheless, the anode has been associated with many aging mechanisms in the lithium ion 

battery. The focus of this paper is to elucidate the various aging mechanisms occurring at the anode of 

the lithium ion battery. Although the main focus will be on the aging mechanisms, a brief analysis of 

various treatment measures adopted to mitigate these aging mechanisms on the anode will be discussed. 

2. Formation of Passivated Surface Layer  

Graphite is one of the common anode materials for lithium ion batteries operating in organic 

electrolytes, such as LiPF6, with co-solvents like ethylene carbonate (EC), dimethyl carbonate (DMC), 

diethyl carbonate (DEC), methyl ethyl carbonate (EMC)). The reaction of the anode with the 

electrolyte solution in the formation stage results in the formation of species such as ROCO2Li and 

CO2OLi, on the anode surface. The layer formed by these species is referred to as the solid electrolyte 

interphase (SEI). The ROCO2Li can undergo reduction reaction with CO2 and traces of H2O in the 

electrolyte to form lithium carbonate [6] which further react with EC to form transesterification 

products such DMDOHC, EMDOHC and DECDOHC. In addition, anion contaminates, such as F− 

from HF and PF5, readily react with lithium to form insoluble reaction products which are  

non-uniform, electronically insulating, and unstable on the surface of the graphite particles [7–11]. In 

addition, the dissolution of the cathode electrode metal from the lattice into the electrolyte due to the 

disproportionation of Mn3+ (into Mn2+ and Mn4+) by traces of hydrofluoric acid (HF) in the electrolyte, 

resulting in the deposition of cation contaminates, such as of Mn, Co and Fe, on the anode electrode 

surface [12], 

At higher battery potentials, during the intercalation of lithium ions into the anode lattice structure, 

the graphite anode oxidizes. At this potential, electrolyte co-solvents, such as EC, which is highly 

reactive, react with the lithium ions and the reaction products quickly precipitate and grow on the 

anode surface [13,14]. The presence of these reaction products on the surface retards the intercalation 

kinetics of the carbon anode [15]. The surface layer grows in thickness as the decomposition reaction 

continues [16–22]. The layer thickness is established to be a function of operating cycles, regardless of 

the charging protocol (i.e., pulse charging or DC charging) [23–25]. The layers become unstable and 
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crack due to expansion and contraction of the graphite lattice during the insertion and de-insertion of 

the lithium ions [26–28]. This allows further surface reaction at these sites that may eventually isolate 

the graphite particles from the current collector. Figure 1 shows a typical surface film morphology and 

cracking of the layer (e.g., [26,27]). The surface crack formed on the surface does not typically travel 

to the carbon electrode [26]. The formation of this surface film layer is the predominate source of 

lithium ion loss in lithium ion battery during storage conditions [25]. It also leads to an increase in the 

charge transfer resistance, impedance, and clogs pores on the carbon anode electrode [29–31], which 

limits accessibility of lithium ions to the anode surface leading to an increase in irreversible  

capacity [32–34]. The growth of this surface layer on the anode electrode is prevalent in the electrolyte 

system with EC as the co-solvent compared to those with DEC or DMC as co-solvents [35–38]. 

Figure 1. Growth of the passivation layer on the anode resulting from electrolyte 

decomposition. (a) Surface film agglomerates; (b) Surface film forms a “mat” on the 

carbon particle surface area. 

 
(a) (b) 

3. Anode Impedance 

The growth of the passive surface layer on the anode creates resistance to lithium ion flow, which 

results in a rise in the charge transfer resistance and the impedance of the anode [39,40]. This increase 

in anode impedance is said to increase with charge rate, cycle number, temperature, and anode material 

particle size [41–43]. However, at low temperatures (10–30 °C) and low charge rate(C/20), the anode 

electrode contribution to the overall battery impedance is low. This is attributed to the small amount of 

the surface film formed on the electrode surface [44]. The low charge rate limits the amount of excess 

Li+ that is not intercalated into the electrode to react with the electrolyte [45,46]. A typical SEM 

micrograph of anode covered with products of electrolyte decomposition reaction products is shown in 

Figure 2. (e.g., [38,39,44,46,47]). Common surface reaction products formed on the anode surface 

include Li-alkyl carbonates, lithium carbonate species and fluorinated products. These products affect 

the intercalation and de-intercalation kinetics of the anode, and thus result in an increase in anode 

electrode impedance relative to the cathode [47–49]. 
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Figure 2. A typical SEM micrograph of surface film growth on the graphite particles.  

(a) Small precipitate of surface film on the carbon particles; (b) Precipitate thickness increases. 

 
(a) (b) 

Comparing the impedance of the anode is difficult owing to the multitude of testing conditions and 

different anode materials used in various batteries. However, Figure 3a,b shows the impedances of the 

individual electrodes as well as the overall battery impedance. In these two cases, the anode 

contributes less to the overall battery impedance compared to the cathode. In these two cases, carbon is 

the anode material, while LiPF6 in EC+DMC is the electrolyte system and the operating conditions are 

low-to-medium temperature and low charge rate. The higher battery impedance exists at high 

operating temperature and charge rate, where the surface reactions are enhanced and a thicker surface 

film layer is formed on the electrode surface. 

Figure 3. (a) Anode contributing less to total battery impedance (charge rate of C/2 at 

room temperature) [39]; (b) Anode contributing less to total battery impedance (graphite 

and LiNi0.8Co0.15Al0.05O2 electrodes: 0.5C charge rate at 40 °C) [45]. 

 
(a) 

 
(b) 
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4. Degradation Due to the Loss of Recyclable Lithium Ions 

The irreversible lithium ion loss is generally attributed to two phenomena, namely: (i) solid 

electrolyte interface (SEI) layer formation via electrolyte decomposition at the formation stage;  

(ii) side reaction of lithium ion with decomposed electrolyte compounds and water (e.g., 10–1500 ppm) 

in the electrolyte at the later stage of the battery operation [50]. 

The loss and/or consumption of recyclable lithium ions at the anode by the passive layer is a major 

cause of the reduction in the reversible capacity of the lithium ion battery [51,52]. As the layer grows, 

lithium is consumed in the reaction and the increased thickness inhibits Li+ transfer, thus the lithium 

ions must tunnel through the layer. This phenomenon is the main degradation mechanism in fully 

charged batteries at storage conditions [52–55], where the electronic insulating surface layer formed 

clog the pores and isolate graphite particles. The irreversible lithium ion loss is also a function of the 

specific area of the graphite particles, since an increase in area increases the volume of reaction 

products [56,57]. For a graphite anode with low specific area, the charge loss is low. The electrolyte 

additive, vinylene carbonate (VC) is one that increases the lithium ion loss rate at the anode for the 

Li/coke electrode during storage (ambient temperature conditions). Because it increases the rate of SEI 

formation reaction at ambient temperature conditions to increase the SEI thickness. However, its 

beneficial effect is seen at higher temperature (35–50 °C) and higher voltages >0.4 V for Li/coke, 

electrode as it slows down the side reaction rate and undergoes reduction and polymerization to form 

poly alkyl Li-carbonate species that suppress both solvent and salt anion reduction on the anode electrode. 

Similarly, in batteries stored at voltages greater than 3.6V, electrolyte oxidation at the cathode can 

also induce surface reaction deposits that cover the active cathode electrode area. These covered areas 

are insulating, which could result in a non-homogeneous local current distribution in the  

cathode electrode. 

5. Anode Degradation Due to Structural Changes  

Anode materials, such as mesosphere pitch-based carbon (MSPBC) and vapor grown carbon fibers 

(VGCF), have high surface area morphologies that provide large discharge capacity and high charge 

rate performance [4]. During battery degradation, the ordered and radial structures of the carbon 

electrode may become less ordered, but this structural change is not the main contributor to battery 

degradation [58]. Degradation can be either in the form of the lithium plating or the formation of the 

surface film (e.g., new XRD peaks as in Figure 4). Neither the particles size nor the lattice parameter 

change significantly with these degradation processes [59].  

Cycling the lithium ion batteries at high C-rate and high state of charge (SOC) induces mechanical 

strain on the graphite lattice of the anode electrode due the steep gradient of lithium ions, and thus 

lattice parameter, in the particle. This mechanical strain caused by the insertion and de-insertion of the 

lithium ions cracks, fissures and splits the graphite particles thus making these particles less oriented as 

compared to the original platelets [60]. Pressed graphite particles improve the ionic conductivity with a 

trade off in a decreased ohmic resistance and irreversible capacity loss [61]. The nature and orientation 

of the graphite particles influences the reversible capacity of the anode. For instance, less-oriented 

graphite particles have a low reversible capacity due to more difficult lithium intercalation kinetics and 

to the formation of new boundaries between crystallite at which irreversible lithium ions/electrolyte 
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interaction can occur [62–66]. While flake-like graphite particles have higher gravimetric capacity at 

higher C-rate compared to spherical particles [67]. Although the crystal structure of the anode typically 

does not change with aging, a change in the rhombohederal/hexagonal content during battery operation 

has been reported. The increase in the hexagonal content during the first and third stage of lithium ions 

intercalation lowers Faradic efficiency, thereby decreasing the reversible capacity of the anode [68–70], 

so ideally a high ratio of rhombohederal/hexagonal content which gives a high reversible capacity is 

most desired. 

Figure 4. Structural changes on the anode electrode from degradation. (a) Surface cracks 

on the sufrcae of aged anode electrode; (b) XRD spectra of aged anode electrode showing 

change in cystal structure (new phases).  
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6. Influence of Particle Size, Active Surface Area and Porosity  

The size of the graphite particles in the anode greatly influences the performance of the anode. 

Small particles contain short diffusion paths between the graphite particles, which facilitate fast charge 

and discharge rate [71]. Similarly, the larger surface area of the smaller graphite particles are prone to 

higher internal heat generation and lithium ion are consumed during the exothermic reaction at high 
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temperatures greater than 60 °C [72] compared to larger particles size, this leads to an increase in the 

irreversible capacity of the graphite electrode [73–75]. The area specific impedance (ASI) of the 

graphite particles remains constant and does not vary much with capacity of the battery until the 

maximum capacity is reached [76] as shown in Figure 5. In the same vein, there has not been a direct 

correlation between the porosity of the graphite and the reversible capacity of the anode [77]. Figure 6 

is a selected plot of graphite anode porosity data for prismatic and cylindrical (1.5 V) batteries cycled 

at 1C. An increase in porosity decreases the active surface area, reduces the electrical path into the 

graphite particles and reduces the accessibility of the lithium ions into the current collector. Although 

the pores will accommodate a large volume of electrolyte, they serve as a reaction point during the 

electrolyte decomposition process. 

Figure 5. Effect of area specific impedance (ASI) on charge capacity [76]. 

 

Figure 6. Effect of anode porosity on charge capacity for prismatic cell and cylindrical cell 

charge at 1C at 300 cycles [77]. 

 

The density of the graphite anode has an effect on its ability to withstand degradation under 

strenuous battery operating conditions. A higher anode electrode particle density decreases the 

porosity and by extension, the active surface area of the electrode which reduces the 

electrode/electrolyte contact area. Therefore the denser the graphite material, the lower the irreversible 

capacity [78,79]. Furthermore, increased heat generation from a denser electrode material produces 

gaseous species [79] at temperatures greater than 120 °C from the thermal decomposition of the SEI 
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layer. This implies that the thermal stability of the graphite anode is strongly dependent on the particle 

size of the graphite electrode. 

7. Metallic Lithium Plating on the Anode 

Its light weight, high voltage and high energy density once made lithium metal foil the preferred 

anode electrode for the lithium ion battery. However, its propensity to the formation of dendrites and 

moss made it unattractive. In the light if this, many more anode materials have been developed to 

replace the lithium metal foil as an anode material. Common anode materials currently used in lithium 

ion batteries include graphite, coke, hard carbon and lithium titanate. Among these, the unmodified 

graphite electrode is most susceptible to lithium plating because of the close proximity of its reversible 

potential to that of Li+/Li [80,81]. Lithium plating by itself is reversible, as the plated lithium oxidizes 

at potential of about 100mV, a potential much lower than that of lithium de-intercalation at the anode 

electrode, causing a voltage overshoot during the discharge cycle (over potential) as shown in Figure 7a. 

Well-ordered carbon and non-graphitizable carbon have gradually replaced lithium metal as the 

preferred anode material for the lithium ion battery because of their superior capacity, good 

cycleability, lower susceptibility to lithium plating, and low electrode potential relative to Li+/Li. 

Figure 7. (a) Schematic current voltage over-potential caused by lithium plating [81];  

(b) Lithium metal morphologies [82]. 
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There are several factors that initiate the formation of metallic lithium on the surface of the anode 

electrode, some of these include: (1) the nature of the electrolyte (i.e., electrolyte formulations with 

high EC content exhibit lithium plating); (2) the ratio between anode and cathode capacities (i.e., low 

anode/capacity ratio will polarize the anode and promote lithium plating); (3) the operating 

temperature and the charge rate [i.e., low temperature (−20 °C) and high charge rate] all influence 

plating on the anode [81,83]. These factors affect the anode kinetics and the lithium ion diffusion rate, such 

that lithium plates on the surface of the electrode rather than intercalating into the lattice of the carbon. 

The formed metallic lithium deposits on the graphite anode are affected by the degree of random 

orientation of the particles in the crystal structure in the anode material and the non-uniformity of the 

current distribution which is a function of diffusion and current density [84,85]. The disorientation of 

the particles in the graphite electrode initiates inhomogeneity in the charge distribution on the anode 

electrode in the third and fourth intercalation stages and results in the formation of moss-like deposits 

and dendrites [82,86,87]. These moss-like deposits and dendrites grow as a function of the temperature 

and current density between the polymer separator and the anode. As the temperature and charge rate 

increases, the reaction rate also increases and metallic lithium is deposited on the graphite at 

overcharge. Dendrites can cause the separator to disconnect and become isolated from the electrolyte 

and in some instances pierce through the separator. The mat of dead lithium and dendrites can cause a 

short circuit and thermal runway in the battery (e.g., Figure 7b). The signature of lithium plating in 

batteries is usually manifested as a voltage plateau on the discharge voltage profile and low columbic 

efficiency [88].  

The vulnerability of the anode electrode to degrade rapidly has prompted research to improve its 

stability. Several methods have been explored, including the inclusion of stabilizing compounds into 

the graphite matrix, formulations of dendrite and lithium plating suppression electrolyte systems. 

Elements such as Sn and carbon have been dispersed on the surface of the graphite to improve the 

electrochemical cycling properties of the anode electrode [89–92]. Sn on the surface of carbon anode 

reduces the SEI resistance and the overall electrode polarization at low temperature [93]. Also  

Sn-graphite anode increases passivation layer conductivity. While a carbon black coating suppresses 

the delithiation process in the inner structure of the graphite at elevated temperature and thus improves 

cycle life and capacity fade [94,95].  

Another category of treatment on the surface of the anode electrode is the coating of the surface 

with additives like AD25, AsF6, VC and by thermal oxidation of the surface of the anode [95,96]. 

Thermal oxidation of graphite in air increases the surface area and fractional edge sites, which 

increases pores size and reduces particles size [97–99] and thus reduces the non-homogeneity of 

charge distribution that cause lithium plating. The additives AD25 and AsF6 stabilize the graphite at 

elevated temperature and suppress the formation of metallic lithium and reduction products of the 

LiPF6 [20,100,101]. Lastly, mechanical compression of the graphite particles during the electrode 

preparation process reduces the pore size thereby reducing the non-homogeneity of the charge 

distribution on the electrode and improving the reversible and irreversible capacities [101]. 
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8. Conclusions 

The anode of the lithium ion battery undergoes several degradation mechanisms during aging. 

Lithium plating is one aging mechanism which ends the life of a battery more rapidly due to the 

formation and growth of lithium dendrites. The decomposition of the electrolyte and subsequent 

formation of the film surface layer on the anode, cause an increase in the impedance and the 

consumption of recyclable lithium ions. These degradation mechanisms rarely affect the crystal 

structure of the anode electrode. The addition of various stabilizers, robust electrolyte systems, and 

temperature treatment are some of the methods that have been adopted to mitigate these aging effects 

on the electrode. However, further improvement is still needed to build a more robust anode that can 

deliver high energy density and good cycleability at various operating conditions.  
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