Supplementary Information

This supporting information includes additional morphological characterization and additional target adsorption data.

Figure S1. Nitrogen sorption isotherms and pore size distributions for grafted HX (**A**,**C**) and CF (**B**,**D**) sorbents. Panel A—HX05M05B (black) shifted by +450, HX 1M1B (red) shifted by +390, HX2M (blue) shifted by +200, HXB4 (green) shifted by +110, HX4M (purple), HX2M2B (orange) shifted by -90; Panel B—CF05M05B (black) shifted by +450, CF 1M1B (red) shifted by +300, CF2M (blue) shifted by +170, CFB4 (green), CF4M (purple), CF2M2B (orange) shifted by -160; Panel C—colored as in Panel A. Panel D—colored as in Panel B.

Figure S2. Nitrogen sorption isotherms (**A**) and pore size distributions (**B**) for CF2 (green) and CF3 (black, shifted +390) and the grafted variants CF2-4M (red) and CF3-4M (blue, shifted +370).

Figure S3. Scanning electron microscope (SEM) images of CF2 (**A**) and CF3 (**B**) showing differing macroscale morphologies.

Table S1. Summary of ions bound by materials variants using 10 mg of sorbent in a 200 ppm solution (5 mL).

			Target Bo	ound (µg)						
Material	Perchlorate	Perrhenate	Nitrate	Thiocyanate	Sulfate	Phosphate				
		НУ	K Products	5						
HX2M	239	333	114	166	311	200				
HX1M3B	216	547	116	84	146	178				
HX2M4B	54	330	68	20	121	164				
	CF Products									
CF4M	188	359	101	112	191	199				
CF1M1B	339	633	158	180	78	168				
CF2-4M	168	137	60	134	197	163				
CF3-4M	258	257	91	191	250	191				
	Purolite Products									
A530E	670	1000 *	610	750	_	270				
A532E	680	1000 *	760	750	_	270				

* 100% of target bound; when concentrations of targets were increased to 500 ppm, the Purolite resins also bound 100% of perrhenate (2510 μ g), but only 1740 μ g (A530E) and 650 μ g (A532E) perchlorate.

Matarial]	Farget Ratio		
waterial	ClO ₄ /ReO ₄	ClO ₄ /NO ₃	ClO ₄ /SCN	ClO ₄ /SO ₄	ClO ₄ /PO ₄
		ŀ	IX Products		
HX2M	0.72	2.10	1.43	0.77	1.20
HX1M3B	0.39	1.86	2.57	1.48	1.21
HX2M4B	0.16	0.79	2.70	0.45	0.33
		(CF Products		
CF4M	0.52	1.86	1.68	0.98	0.94
CF1M1B	0.54	2.14	1.88	4.35	2.02
CF2-4M	1.23	2.80	1.25	0.85	1.03
CF3-4M	1.00	2.84	1.35	1.03	1.35
		Pu	rolite Produc	ts	
A530E	0.67*	1.10	0.89	_	2.48
A532E	0.68*	0.89	0.91	_	2.52

Table S2. Ratio of perchlorate bound to ions bound by materials variants using 10 mg of sorbent in a 200 ppm solution (5 mL).

* Artificially limited by experimental conditions. When target concentrations were increased to 500 ppm for perchlorate and perrhenate, target bound for A530E was increased to 1.74 and 2.39 mg, respectively indicating a ratio of 0.73. For A532E under these conditions, binding of perchlorate was 0.68 mg and perrhenate was 2.37 mg giving a ratio of 0.28.

Ion	Crystal	Radius (Å) Stokes	CSD [1]	Ionic [2]	References
Perchlorate	_	1.37	1.40(6)	1.81	[3]
Perrhenate	2.60	1.79	1.70(3) *	0.56	[4]
Phosphate	_	_	1.50(4)	0.38	_
Sulfate	_	_	1.47(3)	0.37	_
Nitrate	1.79	1.40	1.24(6)	0.13	[4]
Thiocyanate	2.13	1.58	1.39(5) §	_	_

Table S3. Radii for ionic targets considered in these studies.

* search screens refined to select for ionic form only; [§] reported value is half the S–N distance.

Figure S4. Perchlorate binding from batch experiments by HX4M (A), CF2-4M (B), CF3-4M (C), CF4B (D), CF2M2B (E), CF1M1B(F), HX1M1B (G), CF2M (H), HX2M (I), HX2M2B (J), CF1M3B (K), HX1M3B (L). Shown are experimental data (black circles) as well as the results of fitting that data (red \times).

Figure S5. Competitive ion binding from mixed target solutions. Data for each axis is plotted as the ratio of the target bound from the two target solution to that bound from the single target solution: binding from solutions of perchlorate and perrhenate (red circles) and binding from solutions of perchlorate and thiocyanate (black squares). Target ratios of 4:1, 1:1, and 1:4 were utilized. (A) CF4M; (B) CF2-4M; (C) CF1M3B; (D) HX1M3B; (E) HX2M.

Figure S6. (A) Perchlorate breakthrough for 50 mg column of Purolite A530E using a 10 ppm solution at a flow rate of 1 mL/min; (B) Chloride recovered in volumes collected during breakthrough experiment. Dashed lines are from data for CF4M (Figure 4). The capacity of the commercial sorbent is much greater than that of the CF sorbents developed for this study. The data for this column, however, shows significant target breakthrough from the initial application. Total target bound across these additions was 3.74 mg; (C) Repeated applications of 0.2 M HCl (5 mL each for a total of 35 mL) recovered only 27% of the total target bound.

Table S4. Perchlorate preconcentration from deionized water. The target recovered in each volume for perchlorate application and recovery from a column of CF3-4M. Target was applied to the column as a solution in 50 mL of deionized water at 1 mL/min (effluent). The column was then rinsed with 3 mL of deionized water (rinse 1) before elution of the target in 2 mL of 0.2 M HCl (eluent). The column was purged with 10 mL of 0.2 M HCl (purge) and rinsed with 3 mL deionized water (rinse 2) before application of the next target sample.

Target	unit	Applied	Effluent	Rinse 1	Eluent	Purge	Rinse 2	Total
0.2 ppm	μg	10.7	0	0.14	6.60	2.81	0	9.55
	ppm	0.2	0	0.05	3.30	0.28	0	-
	%	_	0	1	62	26	0	89
	μg	26	2.14	0.25	15.85	8.03	0	26.26
0.5 ppm	ppm	0.5	0.04	0.08	7.92	0.80	0	-
	%	-	8	1	62	31	0	102

	μg	50	4.70	0.51	30.46	11.96	0	47.63
1 ppm	ppm	1.0	0.09	0.17	15.23	1.20	0	_
	%	_	9	1	61	24	0	95
	μg	99	13.43	1.08	62.08	24.13	0	100.72
2 ppm	ppm	2.0	0.27	0.36	31.04	2.41	0	-
	%	_	14	1	63	24	0	102
	μg	250	52.95	3.66	148.59	46.35	0	252
5 ppm	ppm	5.0	1.06	1.22	74.30	4.64	0	_
	%	_	21	1	59	19	0	101
	μg	500	115.30	0.39	289.62	9.61	0	501
10 ppm	ppm	10	2.31	0.13	144.81	96.08	0	_
	%	_	23	0	58	19	0	100

 Table S4. Cont.

Table S5. Perchlorate preconcentration from mixed target solutions. The target recovered in each volume for perchlorate plus competing ion application and recovery from a column of CF3-4M. Target was applied to the column as a solution in 50 mL of water at 1 mL/min (effluent). The column was then rinsed with 3 mL of deionized water (rinse 1) before elution of the target in 2 mL of 0.2 M HCl (eluent). The column was purged with 10 mL of 0.2 M HCl (purge) and rinsed with 3 mL deionized water (rinse 2) before application of the next target sample.

Target mixture	unit	Applied	Effluent	Rinse 1	Eluent	Purge	Rinse 2	Total
	μg	84.64	33.05	1.89	38.74	5.17	0	78.86
2 ppm perchlorate	ppm	1.69	0.66	0.63	19.37	0.52	0	_
2 ppm perchlorate	%	-	39	2	46	6	0	93
$\frac{1}{2}$ nnm narrhanata	μg	85.54	89.81	0	21.84	0	0	61.64
2 ppin permenate	ppm	1.71	0.80	0	10.92	0	0	_
	%	—	47	0	26	0	0	72
	μg	462.34	207.02	14.81	239.35	15.42	0	476.59
10	ppm	9.25	4.14	4.94	119.67	1.54	0	_
	%	_	45	3	52	3	0	103
⊤ 5 nnm nerrhenete	μg	284.73	107.72	7.43	97.52	4.60	1.68	218.64
5 ppin permenate	ppm	5.69	2.15	2.48	48.76	0.46	0.46	_
	%	_	38	3	34	2	0	77
	μg	238.38	9.68	6.46	115.76	6.87	0	228.77
5 mmm manahlanata	ppm	4.77	1.99	2.15	57.88	0.69	0	_
5 ppm percinorate	%	—	42	3	49	3	0	95.97
10 nnm nerrhenste	μg	508.72	293.62	19.31	205.03	6.56	1.38	525.88
to ppin permenate	ppm	10.17	5.87	6.44	102.51	0.65	0.46	—
	%	—	58	4	40	1	0	103
	μg	84.57	33.88	2.02	38.93	0	0	74.83
2 nnm norshlarata	ppm	1.69	0.68	0.67	19.47	0	0	_
	%	—	40	2	46	0	0	88
2 nnm thiogyanate	μg	91.70	43.42	3.30	37.64	5.57	0	89.93
2 ppm mocyanate	ppm	1.83	0.87	1.10	18.82	0.56	0	_
	%	_	47	4	41	6	0	98
	μg	426.25	214.34	10.66	222.18	10.60	0	457.78
10 nnm narahlarata	ppm	8.53	4.26	3.55	111.09	1.06	0	-
	%	_	50	3	52	2	0	107
5 nnm thiocyanate	μg	218.90	119.92	5.74	91.31	8.89	0	225.86
5 ppm unocyanate	ppm	4.38	2.40	1.91	46.65	0.89	0	-
	%	<u> </u>	55	3	42	4	0	103

Table 55. Cont.										
	μg	246.12	113.86	21.62	79.05	0	0	214.53		
5 mmm manahlanata	ppm	4.92	2.28	7.21	39.53	0	0	_		
5 ppm percinorate	%	_	46	9	32	0	0	87		
⁺ 10 ppm thiocyanate	μg	474.76	234.37	45.60	149.43	9.63	0	439.02		
	ppm	9.50	4.69	15.20	74.71	0.96	0	_		
	%	—	49	10	31	2	0	92		

Table S5. Cont.

Table S6. Perchlorate recovered from activated charcoal preparatory step in parts per million (ppm).

Applied	Effluent	Variation
0.28	0.23	0.02
1.38	1.14	0.03
6.71	5.59	0.15
10.55	8.19	1.01
46.30	40.53	1.03
88.30	81.49	4.71

Table S7. Perchlorate preconcentration from groundwater. The target in each volume for perchlorate application and recovery from a column of CF3-4M. Target was applied to the column as a 50 mL solution recovered following the AC preparatory column (Table 6; 1 mL/min; effluent). The column was then rinsed with 3 mL of deionized water (rinse 1) before elution of the target in 2 mL of 0.2 M HCl (eluent). The column was purged with 10 mL of 0.2 M HCl (purge) and rinsed with 3 mL deionized water (rinse 2) before application of the next target sample.

Target	unit	Applied	Effluent	Rinse 1	Eluent	Purge	Rinse 2	Total
	μg	11.5	0	0	4.1	0	0	4.1
0.2 ppm	ppm	0.2	0	0	2.1	0	0	_
	%	_	0	0	36	0	0	36
	μg	57	0	0	10	0	0	10
1 ppm	ppm	1.1	0	0	5.2	0	0	-
	%	_	0	0	18	0	0	18
	μg	333	0	0	104	0	0	104
5 ppm	ppm	6.65	0	0	52	0	0	_
	%	_	0	0	31	0	0	31
	μg	411	96	0	132	0	0	228
10 ppm	ppm	8.2	1.9	0	66	0	0	_
	%	_	23	0	32	0	0	55

Table S8. Perchlorate preconcentration from groundwater using Purolite resins. The target recovered in each volume for perchlorate application and recovery. Target was applied to the column as a solution in 50 mL of water at 1 mL/min (effluent). The column was then rinsed with 3 mL of deionized water (rinse 1) before elution of the target in 20 mL of 0.2 M HCl (eluent). The column was rinsed with 5 mL deionized water (rinse 2) before application of the next target sample. Groundwater was collected from a household wells in Fulton, MD, USA (depth of 213 m) and filtered using a 0.7 μ m filter flask before spiking with the indicated target concentration.

Material	Target	Unit	Applied	Effluent	Rinse 1	Eluent	Rinse 2	Total
D		μg	500	34.12	0	90.71	0.53	125.35
Purolite	10 ppm	ppm	10	0.68	0	4.53	0.11	_
ASSUE		%	_	7	0	18	0	26
Dunalita		μg	2500	108.01	0.16	105.06	0.71	213.94
Purolite	50 ppm	ppm	50	2.16	0.05	5.25	0.14	-
A530E		%	_	5	0	4	0	9
Dunalita		μg	500	10.25	0	8.48	0	18.73
Purolite	10 ppm	ppm	10	0.21	0	0.42	0	_
A532E		%	_	2	0	2	0	4
D 11		μg	2500	44.04	0	10.01	0	54.05
Purolite	50 ppm	ppm	50	0.88	0	0.50	0	-
A532E		%	_	2	0	0	0	2

References

- 1. Orpen, A.G. Applications of the Cambridge Structural Database to molecular inorganic chemistry. *Acta Crystallogr. B* **2002**, *58*, 398–406.
- 2. Barbalace, K. Periodic table of elements—Sorted by ionic radius. Available online: http:// EnvironmentalChemistry.com/yogi/periodic/ionicradius.html (accessed on 1 April 2013)
- 3. Yoon, J.; Yoon, Y.; Amy, G.; Cho, J.; Foss, D.; Kim, T.-H. Use of surfactant modified ultrafiltraion for perchlorate ClO₄⁻ removal. *Water Res.* **2003**, *37*, 2001–2012.
- 4. Mbuna, J.; Takayanagi, T.; Oshima, M.; Motomizu, S. Eavluation of weak ion association between tetraalkylammonium ions and inorganic ions in aqueous solutions by capillary zone electrophoresis. *J. Chrom. A.* **2004**, *1022*, 191–200.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).