Supporting Information

Figure S1. High-resolution transmission electron microscope (HRTEM) images from a $SiO_2/P123$ film after calcination. The images show the rectangular (2D-distorted hexagonal) structure of the film. The scale bar is 50 nm in both cases.

Figure S2. Plots of intensity *vs.* 2θ angle, derived from 1D vertical cuts of grazing incidence X-ray scattering (GISAXS) patterns of SiO₂/P123 calcined samples on glass, FTO and silicon.

Figure S3. Typical GISAXS pattern of Fe-containing SiO₂/P123 film generated by co-precipitation prior to calcination.

Figure S4. X-ray photoelectron spectroscopy (XPS) spectrum of a Fe-containing SiO_2 film obtained with the method of co-precipitation. The Fe 2p 3/2 and Fe 2p 1/2 bands are barely visible. In the O 1s part of the spectrum there is no evidence for a Fe–O peak.

Figure S5. Ellipsometric optical functions of a Fe-containing film obtained from co-precipitation. The functions were fit using a uniform film of SiO₂ and voids in the Bruggemann effective medium approximation (BEMA) approximation and omitting Fe_xO_y . The experimental points (black) are connected with a continuous line, which is a guide to the eye. The red line is the BEMA fit.

Figure S6. XPS spectrum of a Fe-containing SiO_2 film obtained with the method of impregnation. Left: The Fe 2p 3/2 and Fe 2p 1/2 bands are strong and reveal the presence of Fe³⁺ but not of metallic Fe, or Fe²⁺. Right: The O1s band can be deconvoluted and reveals the presence of a strong Fe–O band.

Energy / eV

Figure S7. Ellipsometric optical functions of a Fe-containing film obtained by impregnation. The functions were fitted using a uniform film of hematite and voids on the top (BEMA film) and a bottom film of SiO₂ and voids (omitting Fe_xO_y) in the BEMA approximation.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).