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Abstract: This paper presents workability, compressive strength and microstructure for 

geopolymer pastes and mortars made of class C fly ash at mass ratios of water-to-fly ash 

from 0.30 to 0.35. Fluidity was in the range of 145–173 mm for pastes and 131–136 mm for 

mortars. The highest strengths of paste and mortar were 58 MPa and 85 MPa when they 

were cured at 70 °C for 24 h. In XRD patterns, unreacted quartz and some reacted product 

were observed. SEM examination indicated that reacted product has formed and covered 

the unreacted particles in the paste and mortar that were consistent with their high strength. 
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1. Introduction 

Recently, a new alternative binder termed geopolymer has emerged in the field of construction and 

building materials. Geopolymer is well known for its excellent properties such as good fire and acid 

resistance, high compressive strength, low shrinkage, and solidification of heavy metal wastes,  

etc. [1,2]. This material is usually based on an alumino–silicate precursor activated in a concentrated 

alkali hydroxide solution, to which is often added alkali silicate to control the final chemical 

composition. At present, efforts have been made to investigate geopolymer prepared using fly ash. 
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However, work on fly ash geopolymer so far has been based on class F fly ash [3–5], and few 

published papers have described geopolymer made using class C fly ash. The main distinction between 

class F fly ash and class C fly ash is that the latter contains a higher amount of calcium. Previous 

researchers pointed out that literature was generally focused on the activation of low calcium fly ashes, 

in which the calcium was more seen as a contaminant producing different hydrate [6,7] assemblages 

that may cause decrease in strength [8] and reduced rate of reaction [9]. A few studies, on the other 

hand, have concluded that class C fly ash has both pozzolantic and cementitious properties [10,11]. 

And calcium content has significant influence on the properties of the fresh mixture as well as the 

properties of the final hardened product [12,13] and may lead to the formation of calcium silicate 

hydrate compounds in addition to the geopolymer gel products, augmenting the mechanical strength of 

the hardened matrix [14]. In geopolymer made using class C fly ash, curing at ambient and elevated 

temperature could produce higher strength compared to geopolymer made using class F fly ash [15]. 

Geopolymer have been manufactured as paste, mortar and concrete. In previous studies, 

compressive strength and Young’s modulus of fly ash-based geopolymer did not change significantly 

between paste and mortar [5,16]. However, in mortar, compressive strength depends on the strength of 

the geopolymeric gel, the interfacial bonding between the geopolymeric gel and aggregate and the 

aggregate itself [5]. Moreover, any partial reaction of the surfaces of siliceous aggregates with the 

alkali silicate solution may form additional reaction products surrounding the aggregate particles that 

may contribute to its strength [17,18]. Thus, the properties of geopolymer paste and mortar differ to 

some extent. 

This study considers mechanical properties and microstructure of class C fly ash-based geopolymer 

paste and mortar. 

2. Experimental Test  

2.1. Materials 

Class C fly ash (CFA) used in this study was obtained from Harbin Acheng Suibao Thermoelectric 

Power Plant, China. Chemical composition of fly ash precursor is 48.2% SiO2, 18.4% Al2O3  

19.6% CaO, 3.7% Fe2O3, 1.1 MgO, 1.7% SO3, 5.2% free-CaO.  

The fly ash was mechanically activated in a steel ball mill for 1 hour. Its specific surface area was 

490 m2/kg. Alkaline activators in the investigation were sodium silicate which contained Na2O and 

SiO2 and solid content of 41% from Julide Chemical Co., Langfang, China, and solid content of 41% 

and sodium hydroxide solution prepared from analytical grade sodium hydroxide pellets. 

Mineralogical composition of the sand aggregate used in this study is silica produced in Xiamen, 

China. The granulometry distribution of the sand obtained by sieve analysis is shown in Figure 1. 
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Figure 1. Grading curve of sand aggregate. 

 

2.2. Mixture Design and Specimen Preparation 

2.2.1. Mixture Design 

Paste samples were made according to the procedure in [15]. The appropriate mass proportion of 

Na2O to CFA was 10% and dosage of sodium hydroxide is 73 g per 1000 g of fly ash. Modulus ratio of 

the mixed alkali activator was equal to 1.3 (where modulus ratio = SiO2/Na2O). The mass ratio of 

water-to-fly ash was 0.3, 0.32 and 0.35, respectively. The water mass included the water in the sodium 

silicate and extra water that was used to dissolve the sodium hydroxide. Mortar samples were made 

with sand to CFA ratio of 2.75. Sodium hydroxide solution and sodium silicate solution had been 

previously mixed together and heated with water for 5 min so that the Ms would be approximately 1.3. 

Mixing was done in a laboratory at approximately 23 °C. The geopolymeric fly ash precursor and 

alkali silicate and hydroxide solution were mixed for 5 min. For mortar, aggregates were then added 

and followed by a final mixing of another 3 min. Right after the mixing, the fluidity of the fresh 

geopolymer paste and mortar was determined using the test method for fluidity of cement mortar [19]. 

2.2.2. Specimen Preparation and Methods for Analysis 

After measuring the fluidity, paste was then cast into the cubic molds of the size 20 mm × 20 mm × 

20 mm, and mortar was placed in prism molds of the size 160 mm × 40 mm × 40 mm for strength test 

of paste and mortar, separately, according to [20]. For determination of strength, the samples were then 

vibrated for 10 s to release any residual air bubbles. Subsequently, samples were sealed with a film to 

prevent moisture loss and the carbonation of the surface. Samples were demolded after a 

predetermined delay time of 1day and then put in the oven at the elevated temperature of 70 °C for  

24 hours. At the end of this curing period, specimens were put in the laboratory to cool down for 1 

hour. The compressive strength results reported were the average of six samples. Microstructural 

characteristics of the samples were analyzed using X-ray diffraction (XRD) and scanning electron 

microscope (SEM). 
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3. Results and Discussion 

3.1. Fluidity 

The fluidity of the paste and mortar are shown in Table 1. For the paste, fluidity at the time 30 s and 

30 min after mixing were both measured. The fluidity of the geopolymer increased as w/s increased. 

The geopolymer pastes were more fluid at 30 min than at 30 s. At 30 s after mixing, the alkaline has 

little effect on the dispersal of fly ash. At 30 min after mixing, the alkaline can contact fully with the 

surface of fly ash and disperse the fly ash, increasing the fluidity, according to reference [16]. Fly ash 

particles themselves are spherically shaped, thus allowing easy dispersal within the alkaline 

environment. Mortars were less fluid than pastes. For the mortar with 0.30 of water-to-fly ash ratio, it 

is too sticky to obtain the fluidity value. For paste samples, water-to-fly ash ratio from 0.30 to 0.35 

may meet the demand of workability as cement materials in construction application. For fly ash-based 

geopolymer, achieving the target fluidity required less water than needed for Portland cement paste. It 

was also common sense that more extra water resulted in better fluidity. On the other hand, increases 

in the concentration of sodium hydroxide decreased the fluidity of the mixes [21]. In this study, all the 

paste samples consisted of the same amount of fly ash, sodium hydroxide and sodium silicate. 

Different amounts of extra water were added to dissolve the sodium hydroxide, and the concentration 

of sodium hydroxide changed. The concentration of sodium hydroxide of pastes with 0.30, 0.32, 0.35 

water-to-fly ash ratios was 29.0 M, 22.1 M and 15.3 M, respectively. As a result, the fluidity increased 

with a decreasing concentration of sodium hydroxide. 

Table 1. Fluidity of geopolymer with different water-to-fly ash ratio. 

Geopolymer Water-to-fly ash ratio 
Fluidity (mm) 

30 s 30 min 

Geopolymer paste 
0.30 145 162 
0.32 169 192 
0.35 173 195 

Geopolymer mortar 

0.30 - 

- 0.32 131 

0.35 136 

The fluidity of mortar samples was distinctively lower than the paste. In the mortar sample (0.35 of 

water-to-fly ash ratio), for example, the fluidity value is only 136 mm compared to 173 mm in paste 

with 0.35 of water-to-fly ash ratio. Sand aggregate hindered the flow of mortar, resulting in a decrease 

of fluidity. It was noted that for the 40 and 50 wt. % aggregate samples’ workability was low, while 

geopolymer mortars with 10–30wt. % of aggregate exhibited acceptable fluidity [5]. The synthesis of 

fly ash-based geopolymer mortar must consider the appropriate mass ratio of sand to fly ash. A 

previous study revealed that the mass ratio of sand to fly ash could vary from 1.5 to 2.75 [21–23]. And 

40 wt. % sand samples were considered optimistic [24]. In this study, the mortar had 63 wt. % sand in 

the sample with 0.35 of water-to-fly ash ratio. 
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3.2. Compressive Strength 

Compressive strength of paste and mortar with different water-to-fly ash ratios after curing at  

70 °C for 24 hours are shown in Figure 2. Average strengths for paste and mortar are 41 MPa and  

81 MPa, respectively.  

Figure 2 shows that the strength decreased with the increase in water-to-fly ash ratio, a similar 

behavior as seen in Portland cement. Reduction in compressive strength was observed when additional 

water was added, thereby indicating the importance of maintaining a high sodium hydroxide 

concentration. As mentioned previously, the concentration of sodium hydroxide was in excess of  

15 M, and a higher concentration sodium hydroxide led to a greater dissolution of the fly ash and 

consequently increased the degree of geopolymerization and thus also the compressive strength [25]. 

Moreover, higher solids/liquids ratio contributed to the increase of the porosity level of the hardened  

geopolymer, causing a decline in strength [26,27]. Normally, alkaline activation of fly ash can be 

divided into three consecutive stages: (1) decomposition–coagulation; (2) coagulation–condensation; 

and (3) condensation–crystallization [28]. Water plays an important role in these stages. Water added 

to dissolve the sodium hydroxide should remain at some level. More extra water leads to a greater 

amount of the activator. If there was too much activator, the excess would remain in the sample, 

weakening the structure [29]. Excess added water would stay around the hydrolysis species and hinder 

the polycondensation, and reactant would reach out from surfaces of geopolymer if cured in water, 

which may account for the slow strength development [30]. On the other hand, if there was not enough 

alkaline activator, any aluminosilicate material would have no chance to undergo geopolymerization.  

Figure 2. Compressive strength of paste and mortar with different water-to-fly ash ratio. 

 

A previous study maintains the opinion that calcium in fly ash would act as a contaminant, forming 

hydrate assemblages that may decrease mechanical strength and slow down the rate of reaction [6–9]. 

High calcium fly ashes show poor reactivity with alkaline activators due to their low glass content and 

high calcium content, and thus the geopolymer have low strength levels [22]. However, references 

have recently begun to focus on the use of high calcium fly ash as the precursor of the geopolymer. 

The high strength of 63 MPa of class C fly ash-based geopolymer paste was obtained by curing at  

75 °C for 8 h followed by curing at 23 °C for 28 d [15]. Strength of 65 MPa of coarse high calcium fly 

0.30p 0.32p 0.35p 0.32m 0.35m0

20

40

60

80

100

C
om

pr
es

si
ve

 s
tr

en
gt

h 
(M

P
a)

Samples of paste and mortar



Materials 2013, 6 1490 

 

 

ash geopolymer mortar could be obtained with proper delay time and optimum ratio of sodium silicate 

to NaOH [21]. The highest strength 85MPa in this study also indicated the potential for use of class C 

fly ash as a geopolymer precursor. 

Class C fly ash was produced normally from lignite and sub-bituminous coals and usually contained 

a significant amount of calcium hydroxide or lime. For making geopolymer, although silica and 

alumina were the main precursors for the geopolymeric reaction, other factors like curing temperature, 

water content, concentration of the alkaline compound also played a significant role in the resultant 

compressive strength. And a larger amount of silica and alumina did not directly relate to a higher 

strength. Thus, despite class C fly ash’s lower content of silica and alumina, high strength could also 

be obtained when other factors affecting compressive strength remained in an optimistic level. 

For paste, compressive strength depends on the strength of the geopolymer gel. It was obvious that 

at elevated curing temperature, the aluminosilicate geopolymer was the main contributor to hardening 

behavior. For mortar, however, as aggregates were added, compressive strength was then affected by 

many factors, not only the geopolymer binder, but also the interfacial bonding between the 

geopolymeric gel and aggregate and aggregate itself [5]. Addition of up to 63 wt. % sand aggregate 

may lead to a more compacted structure compared to the paste. Two reasons that may contribute to 

mortar’s higher strength may be (1) potential partial reaction of the surfaces of siliceous aggregates 

with the alkali silicate solution forming additional reaction products surrounding the aggregate 

particles; and (2) a highly dense and uniform binder–aggregate interface. A detailed study in the XRD 

patterns and SEM analysis thus remained. 

3.3. Microstructure 

3.3.1. XRD Analysis 

XRD patterns for paste and mortar with different water-to-fly ash ratio are shown in Figures 3 and 4. 

Results revealed that a large part of the structure was amorphous. All samples showed a broad band 

rather than sharp diffraction peaks around 30 degrees of 2theta, showing that gels have been formed in 

these samples. Additionally, peaks of quartz from inactivated raw material had been determined. 

From previous studies of in alkali-activated fly ashes, different hydrate assemblages were formed. 

Besides gel-like sodium aluminosilicate hydrates (N-A-S-H), zeolites were the main hydration 

products depending on mix composition and curing regime [31–35]. N-A-S-H gels were difficult to 

characterize with XRD due to their amorphous or nano-crystalline nature [36]. For class C fly  

ash-based geopolymer, the governing reactions became more complex in the presence of soluble Ca 

species. Compared to the low calcium fly ash, the activated high calcium fly ashes exhibited a different 

composition of the hydrate assemblages [22], and the role of calcium during this process was of 

significant practical interest. One important factor when working with high calcium fly ash was the 

location of the glass diffraction maximum, the highest point in the broad band in the X-ray  

pattern [14]. Calcium species of oxides and silicate minerals from class C fly ash could either  

(1) precipitate as Ca(OH)2; (2) be bonded in geopolymeric gel by replacing cations within the 

geopolymer; or (3) react with dissolved silicate and aluminate species to form C–S–H gel [28]. Based 
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on published results, noticeable amounts of crystalline or a poorly crystalline C–S–H phase was 

usually formed at higher Ca concentrations [37] 

Figure 3. X-ray diffraction of the paste with 0.30, 0.32 and 0.35 of water-to-fly ash ratio.  

 

Figure 4. X-ray diffraction of the mortar with 0.32 and 0.35 of water-to-fly ash ratio.  

 

3.3.2. SEM Analysis 

SEM micrographs of paste and mortar with different water-to-fly ash ratio are shown in Figures 5 

and 6. SEM revealed that the paste and mortar have formed a relatively dense reacted product 

regardless of the water-to-fly ash of paste or mortar. Cracks present in the geopolymer gel were 

believed to occur during testing for compressive strength or when the sample was placed in vacuum 

for coating for SEM. The compacted structure of mortar in this study indicated that there was a great 

deal of reacted product corresponding to high compressive strength. 
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