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Abstract: MCM-41 was used as a support and, by using atomic layer deposition (ALD) in 

the liquid phase, a catalyst was prepared by consecutively loading titanium oxide and 

vanadium oxide to the support. This research analyzes the effect of the loading amount of 

vanadium oxide on the acidic characteristics and catalytic performance in the dehydration 

of butanol. The physical and chemical characteristics of the TiO2-V2O5/MCM-41 catalysts 

were analyzed using XRF, BET, NH3-TPD, XRD, Py-IR, and XPS. The dehydration 

reaction of butanol was performed in a fixed bed reactor. For the samples with vanadium 

oxide loaded to TiO2/MCM-41 sample using the liquid phase ALD method, it was possible 

to increase the loading amount until the amount of vanadium oxide reached 12.1 wt %. It 

was confirmed that the structural properties of the mesoporous silica were retained well 

after titanium oxide and vanadium loading. The NH3-TPD and Py-IR results indicated that 

weak acid sites were produced over the TiO2/MCM-41 samples, which is attributed to the 

generation of Lewis acid sites. The highest activity of the V2O5(12.1)-TiO2/MCM-41 

catalyst in 2-butanol dehydration is ascribed to it having the highest number of Lewis acid 

sites, as well as the highest vanadium dispersion. 
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1. Introduction 

Metal oxides are important catalysts in the petrochemical and fine chemical industries. In the 

catalytic reaction, supported metal oxides are used for dehydration, ethylene polymerization, 

isomerization, selective catalytic reduction of nitrogen oxides, and so forth. Among the catalysts, 

vanadium oxide is attracting much research interest, because of its many possible uses in a variety of 

chemical processes, due to its unique characteristics and high catalyst efficiency. Many studies dealing 

with the characteristics of vanadium oxide supported on oxides have been published [1–4]. Silica is 

known to be inadequate as a support for vanadium oxide, due to the weak interaction between 

vanadium oxide and the silica surface. Among all oxides, only zirconium oxide and titanium oxide 

appear to be viable options to achieve high dispersion through strong interaction with VOx. However, 

zirconium oxide and titanium oxide do not have enough surface area to achieve a high loading amount 

and a high level of dispersion simultaneously. 

Therefore, to achieve the goal of obtaining highly loaded and dispersed vanadium oxide, an 

appropriate support is essential. Furthermore, to date there have been few reports on the use of 

mesoporous silica as a support for vanadium oxide. Most studies suggest that since the Si–O–V bonds 

are at least partially broken during the heat treatment, the vanadium oxide being supported is very 

unstable, and that this low stability is a major obstacle to the use of mesoporous materials to support 

vanadium oxide. From this perspective, to support vanadium oxide it is necessary to devise a way to 

use a mesoporous material with a monolayer of titanium oxide attached to its surface. 

Wang et al. reported a method to produce a highly dispersed metal oxide on the surface of 

mesoporous silica using the atomic layer deposition (ALD) method in the liquid phase [5]. This 

method, devised by Ichinose et al., is a surface sol-gel process, and was originally employed to 

produce a thin metal oxide film on a two dimensional (2D) surface [6]. The Ichinose method is a 4-step 

process. The first step involves chemical adsorption of alkoxide in the liquid phase; the second step 

involves washing the remaining alkoxide precursor that has not been adsorbed with a solvent; the third 

step is hydrolysis of the chemically adsorbed alkoxide; and the last step involves a drying process. This 

method can be applied to form different monolayers of metal oxides, including zirconium oxide, 

vanadium oxide, and titanium oxide, on the surface of mesoporous silica. 

Recently, there has been an imbalance between demand and supply in the butenes market, due to 

rising naphtha prices according to rising oil prices. In addition, the ethane cracking process has been 

newly established, and is expanding at an accelerating pace. Since the ethane cracking process 

produces a large amount of ethylene but no C4 derivatives, there is an overall shortage of C4 

derivatives. The supply shortage will worsen and the prices will continue to rise unless a new raw 

material is developed. In response, many researchers and companies are currently attempting to use 

biomass—a sustainable fuel—to produce hydrocarbons, as well as other techniques to produce butenes 

from bio-butanol [7–12].  
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In this research, MCM-41—a mesoporous silica—was used as a support. By using atomic layer 

deposition (ALD) in the liquid phase, a catalyst was produced by consecutively loading titanium oxide 

and vanadium oxide to the support. This study focused on analyzing the effects of the loading amount 

of vanadium oxide on the acidic characteristics and the effectiveness of the dehydration reaction of 

butanol. The physical and chemical characteristics of a TiO2-V2O5/MCM-41 catalyst were analyzed 

using XRF, BET, NH3-TPD, XRD, Py-IR, XPS, and so forth. The dehydration reaction of butanol was 

performed in a fixed bed reactor. 

2. Experimental Details 

MCM-41 was prepared following procedures described in the literature [13,14]. Titanium oxide 

was added on MCM-41 using the ALD method [8]. MCM-41 was suspended in anhydrous toluene and 

refluxed at 100 °C for 3 h under bubbled N2. The titanium precursor (titanium (IV) isopropoxide) was 

suspended in anhydrous toluene and refluxed for 6 h under bubbled N2. The solution including  

MCM-41 was then mixed with the precursor solution and refluxed for 15 h under bubbled N2. After 

washing with toluene, the mixed solution was filtered, dried in a 120 °C oven for 30 min, and finally 

calcined at 500 °C. The resultant solid was refluxed again in toluene and then vanadium triethoxide 

was added to the toluene suspension. The amount of added vanadium triethoxide corresponds to that 

needed to obtain a loading of 2.6–12.1 wt % vanadium oxide. The mixture was refluxed, filtered, 

dried, and calcined at 500 °C. This sample is referred to as V2O5-TiO2/MCM-41.  

Inductively coupled plasma-atomic emission spectroscopy (ICP-AES; Flame Modula S, Spectro, 

Germany) was used to analyze for titanium and vanadium in the sample. Before these analyses, a 

sample pre-processor (Milstone/Ethos Touch Control) was used, where 7 mL of nitric acid and 2 mL 

of hydrochloric acid were added to 0.2 g of the sample, followed by heating at 453 K for 17 min before 

sample introduction to the ICP-AES instrument. The crystallinity of the catalysts was investigated 

using an X-ray diffractometer (XRD). XRD was obtained from a Rigaku D/MAX-II device using Cu 

Kα radiation energy, and small-angle powder XRD patterns were recorded on a Rigaku D/max-2500 

X-ray diffractometer. Nitrogen adsorption–desorption isotherms were determined using a 

Micromeritics ASAP 2020. The surface area was calculated according to the BET equation. The pore 

volume was obtained by the t-plot method. X-ray photoelectron spectroscopy (XPS) was used to 

analyze the oxidation state of vanadium oxide on the samples [8]. The XPS analyses were conducted 

on a MultiLab ESCA 2000 X-ray photoelectron spectrometer with MgKa radiation at 300 W.  

The acidic property of the samples was analyzed using temperature-programmed desorption (TPD) 

of chemisorbed ammonia [15,16]. The natures of the acid sites were investigated using pyridine as the 

probe molecule [13,15]. Pyridine vapor was admitted in doses until the surface of the catalyst wafer 

was saturated. Infra-red spectra over a wafer that contained chemisorbed pyridine were recorded using 

a Spectrum GX (Perkinelmer) with an MCT detector at a temperature range of 100–350 °C.  

2-Butanol dehydration reaction was performed using a fixed bed reactor containing 0.01 g of the 

catalyst. After maintaining the reactor temperature at a fixed level under a nitrogen flow of 

200 mL/min, 2-butanol was supplied in a flow of 1 ml/hr. In this case, the WHSV was 80 h−1 (for 

butanol). A syringe pump was used to inject 2-butanol into the reactor at a fixed rate. The N2 gas flow 

was regulated with a mass flow controller, and the reactor temperature was controlled with a tubular 
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furnace equipped with a programmable temperature controller. The gas phase products were analyzed 

using an online gas chromatograph (YL 6100 GC) equipped with FID and an alumina capillary column. 

3. Results and Discussion  

3.1. Catalyst Characterization 

The XRF analysis results of the loading amount of titanium oxide and vanadium oxide in samples 

that were produced using the atomic layer deposition method under a liquid phase are indicated in 

Table 1. It is known that the stability of vanadium oxide is low when mesoporous silica is used as the 

support. Herrera et al. reported a method to load vanadium oxide onto the surface of mesoporous silica 

with an attached monolayer of titanium oxide by using atomic layer deposition [9,17]. In the research 

presented here, the loading amount of titanium oxide in a sample that had only loaded titanium oxide 

(TiO2/MCM-41) using the liquid phase ALD method was 8.4 wt %. For the samples with vanadium 

oxide loaded to a TiO2/MCM-41 sample using the liquid phase ALD method, it was possible to 

increase the loading amount until the amount of vanadium oxide reached 12.1 wt %.  

Table 1. Loading amount of metal oxides on MCM-41 determined by inductively coupled 

plasma (ICP). 

Catalyst TiO2 (wt %) V2O5 (wt %) 

TiO2/MCM-41 8.4 – 
V2O5(2.6)-TiO2/MCM-41 7.6 2.6 
V2O5(3.6)-TiO2/MCM-41 7.5 3.6 
V2O5(7.6)-TiO2/MCM-41 7.0 7.6 

V2O5(12.1)-TiO2/MCM-41 7.1 12.1 

Figure 1 shows the XRD patterns of V2O5-TiO2/MCM-41catalysts. As shown in the low angle XRD 

patterns, all of the samples exhibited an intense peak and two small peaks, corresponding to peaks at 

(100), (110), and (200), which are characteristic of a 2-dimensional hexagonal mesostructure [7,14]. 

The high-angle XRD patterns of TiO2/MCM-41 and V2O5-TiO2/MCM-41catalysts show no diffraction 

intensity, except for the peak that corresponds to amorphous silica, thereby implying that vanadium 

oxides, as well as titanium oxides, are highly dispersed on the support materials.  

N2 adsorption–desorption isotherms of the MCM-41, TiO2/MCM-41, and V2O5-TiO2/MCM-41 

samples are shown in Figure 2. All of these materials exhibit a Type IV isotherm, which, according to 

the IUPAC nomenclature, is characteristic of a mesoporous material [18]. Textural parameters of all 

the catalysts are summarized in Table 2. After introducing the titanium precursor, the BET surface area 

and pore volume decreased slightly. This may be due to partial pore blockage by the introduction of 

titanium oxide. Furthermore, the surface area and pore volume of the V2O5-TiO2/MCM-41 catalysts 

decreased with increasing vanadium oxide loading up to 12.1 wt %. As illustrated by XRD, vanadium 

oxide and titanium oxide might form highly dispersed, small particles. Therefore, the particles can be 

located mainly in the mesopores and are well distributed over the internal surface. This might result in 

a decrease in the surface area of V2O5-TiO2/MCM-41.  
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Figure 1. XRD patterns of various catalysts (a) low angle XRD; (b) high angle XRD.  

(a) (b) 

Figure 2. N2 adsorption–desorption isotherms of various catalysts. 
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Table 2. BET surface area and pore volume of the catalysts. 

Catalyst SBET (m2/g) Vp (cm3/g) 

MCM-41 1069 0.99 
TiO2/MCM-41 955 0.84 

V2O5(2.6)-TiO2/MCM-41 954 0.87 
V2O5(3.6)-TiO2/MCM-41 898 0.82 
V2O5(7.6)-TiO2/MCM-41 907 0.84 
V2O5(12.1)-TiO2/MCM-41 859 0.78 

In order to investigate dispersion of vanadium species on the sample, X-ray photoelectron 

spectroscopy in the vanadium 2p region was applied to various samples with different vanadium 

loading. Figure 3 shows the peak around 525 eV originating from the oxygen satellite peak, when a 

Mg Kα X-ray source was used. A small peak at 517 eV is assigned to V(5+) species in the sample [19], 

as marked in the line of the figure. With an increasing amount of vanadium—from 2.6 wt % to  

7.6 wt %—the peak area of V 2p3/2 increases slightly. Moreover, when the vanadium loading reaches 

12.1 wt %, the peak intensity of V 2p3/2 is substantially enhanced, implying that in this range the 

additional vanadium species becomes well dispersed on the surface. These high vanadium dispersion 

results obtained from XPS correspond well to the activity results—that the sample with 12.1 wt % 

vanadium loading has maximum activity. In other words, the close relationship between vanadium 

dispersion and the activity is elucidated. 

Figure 3. V 2p XPS of various samples: (a) V2O5(2.6)-TiO2/MCM-41; (b) V2O5(3.6)-

TiO2/MCM-41; (c) V2O5(7.6)-TiO2/MCM-4; and (d) V2O5(12.1)-TiO2/MCM-41. 
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oxide up to 12.1 wt %, the number of acid sites, calculated from the peak area of NH3 desorption, did 

not increase with increasing vanadium oxide loading.  

Figure 4. Temperature-programmed desorption of ammonia over various catalysts. 
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Figure 5. FT-IR of adsorbed pyridine over V2O5(12.1)-TiO2/MCM-41 sample. The sample 

was desorbed under 10−3 torr at 100, 150, 200, 250, and 300 °C.  

 

Figure 6. FT-IR of adsorbed pyridine over various samples (150 °C, 10−3 torr). 
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3.2. 2-Butanol Dehydration 

The effect of space velocity on 2-butanol dehydration over V2O5(12.1)-TiO2/MCM-41 catalyst was 

investigated (Figure 7). When the WHSV was increased from 40 to 160 h−1, 2-butanol conversion 

decreased drastically. A slight decrease in 2-butanol conversion was observed, however, when the 

WHSV was increased from 160 to 480 h−1. When the WHSV was increased from 40 to 80 h−1, the 

selectivity to 1-butene decreased, while that of cis-2-butene increased. In the case of a further increase 

of the WHSV to 480 h−1 the product distribution was almost unchanged. Because this observation 

suggests that there was a kinetically controlled reaction at a higher WHSV, the catalytic performance 

of the catalysts in this study was investigated at a WHSV of 80 h−1 thereafter. In addition, it was noted 

that 2-butanol hardly reacted without the catalyst under the reaction conditions of 250 °C and 1 atm. 

Figure 7. Effect of space velocity on conversion and selectivity in 2-butanol dehydration 

(Reaction condition: 250 °C, 1 atm, catalyst: V2O5(12.1)-TiO2/MCM-41). 
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explained by the total acid amount of the catalysts. We therefore investigated the characteristics of 

surface acid sites over the catalysts. It was apparent that the Lewis acid sites were dominant over the 

V2O5(12.1)-TiO2/MCM-41 among the catalysts, which could be confirmed by IR spectra of pyridine 

adsorption. Therefore, the highest activity of the V2O5(12.1)-TiO2/MCM-41 catalyst is ascribed to it 

having the highest number of Lewis acid sites as well as the highest vanadium dispersion.  

Figure 8. Conversion, selectivity, and yield of 2-butanol dehydration over various catalysts:  

(a) MCM-41; (b) TiO2/MCM-41; (c) V2O5(2.6)-TiO2/MCM-41; (d) V2O5(3.6)-TiO2/MCM-41; 

(e) V2O5(7.6)-TiO2/MCM-4; and (f) V2O5(12.1)-TiO2/MCM-41. (Reaction condition: 250 °C, 

1 atm, WHSV 80 h−1). 
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4. Conclusions  

For the samples with vanadium oxide loaded onto the TiO2/MCM-41 sample using the liquid phase 

ALD method, it was possible to increase the loading amount until the amount of vanadium oxide 

reached 12.1 wt %. It was confirmed that the structural properties of the mesoporous silica were 

retained well after titanium oxide and vanadium loading. The NH3-TPD and Py-IR results indicated 

that weak acid sites were produced over the Ti/MCM-41 samples, which is attributed to the generation 

of Lewis acid sites. The highest activity of the V2O5(12.1)-TiO2/MCM-41 catalyst in 2-butanol 

dehydration is ascribed to it having the highest number of Lewis acid sites as well as the highest 

vanadium dispersion. 
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