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Abstract: A previously reported diketopyrrolopyrrole (DPP)-phenyl copolymer is 

modified by adding methoxy or octyloxy side chains on the phenyl spacer. The influence 

of these alkoxy substitutions on the physical, opto-electronic properties, and photovoltaic 

performance were investigated. It was found that the altered physical properties correlated 

with an increase in chain flexibility. Well-defined oligomers were synthesized to verify the 

observed structure-property relationship. Surprisingly, methoxy substitution on the 

benzene spacer resulted in higher melting and crystallization temperatures in the 

synthesized oligomers. This trend is not observed in the polymers, where the improved 

interactions are most likely counteracted by the larger conformational possibilities in the 

polymer chain upon alkoxy substitution. The best photovoltaic performance was obtained 

for the parent polymer: fullerene blends whereas the modifications on the other two 

polymers result in reduced open-circuit voltage and varying current densities under similar 
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processing conditions. The current densities could be related to different polymer: fullerene 

blend morphologies. These results show that supposed small structural alterations such as 

methoxy substitution already significantly altered the physical properties of the parent 

polymer and also that oligomers and polymers respond divergent to structural alterations 

made on a parent structure. 

Keywords: organic solar cells; conjugated polymers; DPP; synthesis; Density Functional 

Theory (DFT) 

 

1. Introduction 

Polymer based organic photovoltaics have attracted a lot of attention as potential renewable energy 

technology in the last decades [1–4]. Low cost and fast roll-to-roll production, in combination with 

light-weight and flexible devices are advantages that make polymer solar cells interesting and a 

potential competitor to traditional silicon-based devices. So far, the most successful polymer solar cells 

are bulk heterojunction-type devices which employ a mixture of an electron donating polymer and an 

electron withdrawing fullerene as the active layer. The performance of the devices has increased 

rapidly in the last few years with power conversion efficiencies now at 8%–10% [5–9]. 

In the last few years, diketopyrrolopyrrole (DPP)-based polymers have emerged as a promising 

material for both thin-film transistors and solar cells, reaching power conversion efficiencies of around 

5% [10–14]. The synthesis of DPP can be performed in a few simple steps from commercial products, 

making it an attractive material for photovoltaic devices. Since DPP is a planar unit it promotes  

π–π stacking, thereby potentially resulting in high charge carrier mobility [15]. The π–π stacking and 

optical properties of the material can be tuned by adding different donor units to the DPP-copolymer 

backbone [16,17]. Attachment of alkyl side chains to the nitrogen atoms in the DPP unit improves the 

solubility of the material, which is important for solution process ability and the film forming ability of 

the polymers [18]. 

Bijleveld et al. recently reported a copolymer based on 2,5-bis(2-hexyldecyl)-3,6-di(thiophen-2-

yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione and benzene, which displayed a band gap of 1.55 eV. 

Photovoltaic devices based on a blend of the so-called PDPPTPT (hereafter P1) and PC71BM reached 

good power conversion efficiency of 5.5% after optimization with a processing agent [19]. If this 

polymer is modified with alkoxy side chains on the phenyl spacer a redshifted absorption will be 

obtained. The alkoxy side chains would also result in a higher molecular weight while the oxygen 

would shift the highest occupied molecular orbital (HOMO) level towards vacuum and reduce the 

energy gap [20–23]. 

However, it is well established that structure-property relationships are usually not straightforward 

as a structural alteration usually alters additional properties aside from the desired ones. Each of these 

additionally changed properties could have an impact on the final performance of a device. For 

instance, longer side chains are commonly employed to improve the solubility and molecular weight 

but also influence solid state aggregation of the polymer and the resulting blend morphology when 

employed with fullerenes in solar cells [24–26]. Employing longer side chains potentially results in 
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decreased device performance through the insulating effect of the side chains, which can hinder the 

movement of charges, as well as a good donor–acceptor contact [27]. Various groups have reported on 

the influence of various polymer properties, such as molecular weight and solvent quality, on optical 

absorption [28,29]. 

Therefore, it is important to investigate not only if alterations on the polymer structure induce the 

desired change in optical or electronic properties, and relate specifically these to performance, but, in 

addition, that the same assessment is done for the additionally altered properties. In an attempt to 

ascertain structure-property relationships more specifically we synthesized P1 derivatives with short 

methoxy (P2) and long octyloxy (P3) side groups on the benzene ring, as well as well-defined 

oligomers based on P1 and P2. This allowed us to attribute several altered physical and optical 

properties to either the alkoxy substitution or conformational effects in the polymer. 

2. Results and Discussion 

2.1. Synthesis and Physical Properties of Oligomers and Polymers 

All polymers and oligomers were synthesized via Suzuki polymerization (Scheme 1), which 

resulted in rather reasonable molecular weights. All materials were analyzed by thermogravimetric 

analysis (TGA) and differential scanning calorimetry (DSC) (Table 1). P3 exhibits a much higher 

molecular weight since addition of octyloxy side chains improves solubility. TGA (Supplementary 

Information Figure S1) indicates that all polymers are quite thermostable, but also that the introduction 

of alkoxy side groups lowers the thermal stability somewhat. 

Scheme 1. Chemical structure and synthesis of polymers and oligomers. 

 

  



Materials 2013, 6            

 

 

3025 

Table 1. Physical properties of oligomers and polymers. 

Material Mn (kg/mole) 
a
 PDI 

TGA (°C) 
b
 

Tm (°C)
 

Tc (°C) 
1% wt. loss 

P1 15 1.5 415 >350 >350 

P2 12 2.7 336 >300 260 

P3 29 2.3 347 240 190 

O1 – – 257 153 110 

O2 – – 341 181 148 
a Measured against polystyrene standard in TCB at 135 °C; b under nitrogen atmosphere. 

DSC (Supplementary Information Figure S1) shows only very weak and rather broad glass 

transition temperatures which prevents attributing a value to it. An endothermic transition on heating 

and exothermic transition upon cooling is detected for P2 and P3, which is indicative for transferring 

between a more disordered (heating) or more ordered (cooling) state in the material. The endothermic 

transition of P2 could not be observed in the DSC thermogram, which is attributed to degradation  

(Td, 1% = 336 °C) perturbing the measurement. The evolution of the endothermic (and exothermic) 

transition for this series of polymers, Tc: P1 > P2 > P3, is expected since most polymers exhibit 

reductions of such transition temperatures upon alkyl substitution due to increased flexibility of the 

polymer chain, whether this is originating from the backbone or the side chains [30]. As a side note, 

since the Tm of P3 is reduced to well below the degradation temperature, melt-processing would be 

another option to explore in the future. 

O1 and O2 (Scheme 1) were synthesized and analyzed by DSC to investigate the effect of the 

different phenyl spacer on the observed trend in the polymers’ thermal transitions while excluding 

molecular length as a factor. Tg for both oligomers could again not be determined by DSC. For both 

oligomers Tm and Tc were observed, which is 28 °C higher for O2 and opposite of the trend observed 

for the polymers (Supplementary Information Figure S2). The origin of this surprising result was 

investigated via density functional theory (DFT)-calculations, described in the next section. This trend 

in thermal behavioris most likely not continued in the polymers P1 and P2 due to reasons of symmetry, 

where rotation of one phenyl relative to the next in the chain results in the same chain conformation 

while rotation of the dimethoxy spacer offers different chain conformations [31], thereby hindering the 

ability of a material to order. 

DFT (B3LYP/6-31G (d,p)) calculations shows that O2 generally is slightly more planar than O1, 

see Table S1. Several configurations of the O1 and O2 were investigated, which show up to 0.098 eV 

difference for O1 and 0.116 eV for O2. The most stable configuration of O1 is when the sulphur on the 

thiophene is trans towards the carbonyl group on the DPP unit, see Scheme S1. For the O2 oligomer 

the most stable configuration is also when the sulphur on the thiophene and the methoxygroup on the 

benzene spacer is cis, see Scheme S1. This configuration, with the sulphur on the thiophene and the 

methoxy group on the benzene spacer is generally ~10 degrees more planar than the opposite 

configuration, see Table S1. The rotational barriers for the O1 and O2 oligomer are between 0.17 and 

0.44 eV. This trend, with more planar conformers of O2, would give rise to higher ordering and thus 

higher endothermic and exothermic transitions at higher temperatures. In addition, a larger dipole 
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moment introduced by the methoxy group could also offer an additional driving force to facilitate the 

ordering of the material. 

X-ray diffraction (XRD, Supplementary Information Figure S3) on polymer powders shows that all 

polymers exhibit some lamellar ordering, P1 > P2 > P3, which seems to correlate with the alkoxy side 

chain length. 

2.2. Electrochemical and Optical Properties 

The influence of alkoxy substitution on the energy levels of the polymers was investigated by 

square wave voltammetry (SWV, Supplementary Information Figure S4). As a result of the electron 

donating nature of the alkoxy substitution, the oxidation potential of P2 and P3 was shifted towards a 

vacuum. However, even though P2 and P3 exhibit similar optical absorption, there still exists a large 

difference between the oxidation potential of P2 and P3. We attribute this difference to the fact that 

electrochemistry is sensitive to many factors (e.g., varying ion transport through the polymer film due 

to the thickness) and provides only an estimate. Therefore, we additionally calculated the HOMO 

levels by subtracting the optical energy gap from the LUMO energy (Table 2). The combined 

SWV/UV-Vis results indicate that the HOMO is shifted towards vacuum by approximately 0.2 eV, 

predicting a lower Voc for P2 and P3 compared to P1 since the HOMOpolymer–LUMOacceptor difference 

influences the energy of the CT-state [32]. 

Table 2. Optical and electrochemical data. 

Polymer λmax (nm) λonset (nm) Eg, onset (eV) HOMO 
a
 (eV) LUMO (eV) 

P1 751 816 1.52 −5.10 −3.58 

P2 718 925 1.34 −4.89 −3.55 

P3 773 943 1.32 −4.88 −3.56 
a calculated via lowest unoccupied molecular orbital (LUMO) −Eg, opt. 

The introduction of electron-donating alkoxygroups results in a broader and 100 nm redshifted 

absorption onset for P2 and P3, both in chloroform solution (Figure 1a) and thin film (Figure 1b). The 

low energy absorption consists of two main contributing peaks, a low energy blueshifted peak and a 

low energy redshifted peak. In an attempt to compare the absorptivity of the polymers, the solution 

absorption coefficient in chloroform was determined, described by Beaujuge et al. [33]. In our case, an 

additional correction for the diluting effect due to the additional alkyl side chains in P2 and P3 was 

done. We note that, even though comparing the absorption is done for a homologous series of 

polymers, this method only offers an estimate due to uncertainties in the effective conjugation length. 

The solution absorption measurements indicate that P1 has a higher absorption coefficient at the 

absorption maximum compared to both alkoxy substituted polymers, which show broader but less 

strong absorption. This could be attributed to a stiffer backbone of P1, which either promotes 

intrachain aggregation or a more rod-like behavior, which decreases the conformational distribution in 

the polymer chain and improves the effective conjugation length. 
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Figure 1. UV-Vis absorption of (a) dilute polymer solutions (CHCl3, ~16 mg/L);  

and (b) solid state, spun from ~10 mg/mL CHCl3 solutions. 

  

(a) (b) 

UV-Vis spectra of O1 and O2 CHCl3 solutions and thin films show a redshifted absorption but no 

absorption broadening (Supplementary Information Figure S5). This leads us to believe that the origin 

of the absorption broadening for the polymers is indeed from increased conformational distribution in 

the alkoxy-substituted polymers. 

To obtain a featureless solution absorption profile we dissolved the polymers in chloronaphthalene 

(CN, Supplementary Information Figure S6), a solvent known for its good solubilizing properties 

regarding conjugated polymers. Hot polymer: CN solutions seem to result in solutions by showing a  

blueshift in absorption and the disappearance of the dual peak absorption feature upon cooling, and  

the same absorption profile obtained from chloroform solution was obtained. Alkoxy substituted 

materials continued to display a redshift compared to P1. In addition, CN seems to be a worse solvent 

compared to chloroform, at least for the P1 polymer, since large aggregates appear when cooling  

the solution to RT (Supplementary Information Figure S7) while the chloroform solutions do not show  

any visible aggregation. 

The difference in redshift and maximum peak positions between dilute solution and thin film 

absorption is rather small for all polymers, which indicates that the source of these transitions has to be 

quite similar in both environments. On going from solution to solid state, the blueshifted absorption 

contribution seems to increase more with decreasing solubility. This can be explained by the use of a 

fast drying solvent such as chloroform combined with higher polymer concentrations and reduced 

solubility when producing polymer thin films. ―Freezing‖ the chains faster into an amorphous state 

would then increase the amorphous contribution relative to a more extended/ordered chain 

conformation, thus the blue shifted absorption contribution would increase. 

2.3. Device Performance and Atomic Force Microscope (AFM) 

Blends with the same weight ratio of polymer and PC71BM, solvent and amount of additive have 

been used to prepare photovoltaic devices. The best devices of concentration, thickness, and  

1,8-diiodooctane (DIO) addition/exclusion variation are presented (Figure 2a) . In this study, devices 

based on P1 and P3:PC71BM blends produce similar values for Jsc and FF while a drastically lowered 
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voltage limits the performance of P2 (Table 3). The voltage difference corresponds for P2 and P3 to 

the observed difference in energy gap due to the alkoxy substitution. When comparing P1 and P3, the 

somewhat lower Jsc, which is mainly reflected in the lower external quantum efficiency (EQE) in the 

600–800 nm absorption region (Figure 2b), could originate from a more unfavorable blend 

morphology that hampers efficient free charge generation or charge extraction from excitons generated 

on the polymer. When comparing the performance of P2 and P3, the Voc and FF are rather similar but 

the photovoltaic performance of P2 is even further reduced due to a low current. 

Figure 2. (a) IV-characteristics; and (b) EQE of devices based on polymer:  

PC71BM-based blends. 

  

(a) (b) 

Table 3. Photovoltaic data of devices based on polymer: PC71BM blends. 

Material 
Polymer:PC71BM 

(w:w) 
Thickness (nm) 

RMS blend 

(nm) 

Jsc 

(Ma/cm
2
) 

Voc (mV) FF η (%) 

P1 1:2 125 2.77 8.4 780 49 3.2 

P2 1:2 80 10.9 3.4 590 45 0.9 

P3 1:2 77 4.27 7.1 600 46 2.0 

Active layers spun from 5 to 15 mg/mL polymer: CHCl3 with 23 mg/mL DIO. Device architecture 

ITO/PEDOT: PSS/active layer/Ca/Ag. 

AFM imaging (Figure 3) reveals similar surface roughness and blend morphology for both the P1 

and P3:PC71BM-based blends. In contrast, the P2:PC71BM blend shows increased surface roughness 

and a morphology that vastly deviates from the other two blends. The observed difference could be 

responsible for the reduced current density compared to the other two polymers: fullerene blends. 
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Figure 3. AFM topographical images (5 μm × 5 μm) for the P1, P2, and P3:PC71BM  

blends respectively. 

  

 

3. Experimental Section 

3.1. Experimental Details 

Unless otherwise stated, all reactions were done under nitrogen. Tetrahydrofuran (THF) was dried 

on sodium + benzophenon and distilled prior to use. The 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-

hexyldecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione monomer was kindly provided by BASF.  

1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene was bought from Sigma Aldrich (MO, 

USA) and recrystallized twice from ethanol prior to use, while 2,2′-(2,5-dimethoxy-1,4-

phenylene)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) and 2,2′-(2,5-bis(octyloxy)-1,4-phenylene)bis 

(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) [34], 3-(5-bromothiophen-2-yl)-2,5-bis(2-hexyldecyl)-6-

(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione oligomers [35], and polymers [19] were 

synthesized according to slightly modified literature procedures. All other chemicals and solvents were 

bought from Sigma-Aldrich and used as received. Synthetic details are included in the  

supporting information. 
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3.2. Characterization 

1H-NMR and 13C NMR spectra have been measured on a Varian 400/54/ASP with CDCl3 as the 

solvent. In all cases, the peak values were calibrated relative to tetramethylsilane. Size exclusion 

chromatography (SEC) was performed on Waters Alliance GPCV2000 with a refractive index detector 

columns: Waters Styvagel HT GE×1, Waters Styvagel HMW GE×2. The eluent was  

1,2,4-trichlorobenzene. The operating temperature was 135 °C, and the dissolution time was 2 h. The 

concentration of the samples was 0.5 mg/mL, which were filtered (filter: 0.45 µm) prior to analysis. 

The molecular weights were calculated according relative calibration with polystyrene standards.  

UV-Vis/near IR absorption spectra were measured with a Perkin Elmer Lambda 900 UV-Vis-NIR 

absorption spectrometer. For the solution absorption measurements, chloroform solutions of polymer 

with concentrations ranging from 0.0155 to 0.0175 g/L have been prepared. The mass absorption 

coefficient was then calculated, and corrected for the dilution effect of the alkyl side chains by 

multiplying with a correction factor based on the repeating unit mass. Abscorr = Abs * (mass repeating 

unitP2 or P3/mass repeating unitP1).TGA measurements were done on a Perkin Elmer TGA7 Thermo 

Graphic Analyzer, temperature range 30–600 °C, heating rate 10 °C/min. DSC measurements were 

done on a Perkin Elmer Pyris, temperature range 30–300 °C, heating/cooling rate 10 °C/min, second 

scan used after baseline subtraction. Square-wave voltammetry (SWV) measurements were carried out 

on a CH-Instruments 650A Electrochemical Workstation. A three-electrode setup was used with 

platinum wires both as working electrode and counter electrode, and Ag/Ag
+
 used as reference 

electrode calibrated with Fc/Fc
+
. A 0.1 M solution of tetrabutylammoniumhexafluorophosphate 

(Bu4NPF6) in anhydrous acetonitrile was used as supporting electrolyte. The polymers were deposited 

onto the working electrode from chloroform solution. In order to remove oxygen from the electrolyte, 

the system was bubbled with nitrogen prior to each experiment. The nitrogen inlet was then moved to 

above the liquid surface and left there during the scans. HOMO and LUMO levels were estimated 

from peak potentials of the third scan by setting the oxidative peak potential of Fc/Fc
+
 vs. the normal 

hydrogen electrode (NHE) to 0.630 V [36], and the NHE vs. the vacuum level to 4.5 V [37]. 

Specular X-ray diffraction (sXRD) measurements were recorded at room temperature on a Bruker 

D8 Advance diffractometer using Cu-Kα radiation (λ = 1.5418 Å) and equipped with an MRI (Material 

Research Instruments) heating stage for temperature-dependent measurements. The angular resolution 

was 0.02° (0.006°) per step with a typical counting time of 10 s for sXRD. For sXRD measurements 

(powder samples), a few mg of the polymer was deposited on an aluminiumplate (10 × 20 × 0.5 mm³), 

as it conducts heat. However, this substrate gives additional reflections at ca. 24.1° and 38.5° in 2θ. 

Solar cell fabrication and characterization indium-tin-oxide (ITO) coated glass substrates, 

purchased from Kintec with 10 Ω/sq, were cleaned in a sequence of detergent, deionized water, 

acetone, and isopropanol, each step for 10 min in an ultrasonic bath. The cleaned substrates were 

further purified by UV-ozone treatment for 15 min. The substrates were then spin coated with a  

0.45 µm filtered poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solution, 

Clevios PH500 purchased from HC Starck, at 5000 rpm for 60 s to produce a 25 nm thick film. 

Afterwards, the substrates were transferred to a nitrogen glovebox where the further steps of the 

sample fabrication process were performed. The substrates were subsequently heated on a hotplate at 

130 °C for 10 min to remove residual water. The active layers containing, as acceptor, PC71BM  
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(98% nano-c) were prepared with concentrations of 5 mg/mL to 15 mg/mL, dissolved in chloroform 

(99% Merck) with 23 mg/mL 1,8-diiodooctane (98% Sigma-Aldrich), and stirred for at least 15 h. 

DCB as a solvent did not result in solutions for P1 and P2. The films were prepared by spin coating at 

spin speeds of 600 rpm to 1000 rpm. The top electrodes of 20 nm calcium/150 nm silver were 

deposited in a high vacuum chamber at pressures of p < 5 × 10
−7

 torr on cooled substrates with 

temperatures of T < 0 °C. The photovoltaic characteristics were measured under nitrogen atmosphere 

using a Keithley 2602A source meter under 100 mW/cm
2
 AM1.5 simulated illumination using an Abet 

Technologies Sun 2000 solar simulator with a 550 W Xenon arc lamp. The active areas of the devices 

of about 0.03 cm
2
 were individually determined under an optical microscope. 

Theoretical calculations were done with Gaussian09 [38], DFT using hybrid functional  

B3LYP [39–41] with a valence triple-zeta Gaussian basis set, plus d-functions on heavy elements and  

p-functions on hydrogen, 6-31G (d,p) were used throughout the study. All geometries were optimized 

and local minima were checked with second derivatives. 

4. Conclusions 

Besides influencing energy levels, side chain modifications on conjugated polymers significantly 

alter the physical behavior of polymers, which affects the blend morphology obtained from solution 

processing and thus photovoltaic performance. These results show that supposed small structural 

alterations such as methoxy substitution already significantly alter the physical properties of the parent 

polymer and also that oligomers and polymers respond divergent to structural alterations made on a 

parent structure due to conformational distribution that can arise in the polymer chain. 
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